
ROTATING MEMORY PROCESSORS
FOR THE

MATCHING OF COMPLEX TEXTUAL PATTERNS

Lee A. Hollaar
Department of Computer Science

University of I l l inois at Urbana-Champaign

Many people have suggested adding scanning logic to a ro-
tating memory system, such as disk or shift registers, to allow
faster execution of database operations. Most of these have
been concerned with producing a form of associative memory
which is then used to implement one or more of the models for
information storage and retrieval, such as relational or hier-
archical. While these are capable of searching for simple
character strings, they are incapable of handling the complex
patterns sometimes necessary for textual information retr leval.
In addition, textual information retrieval does not lend itself
to highly formatted databases, encoding of informationo or
arbitrary ordering of data, concepts common to the other
structures.

A description of the operations desirable in textual infor-
mation retrieval is given, and contrasted to those operations
allowed in non-textual systems. The general structure for a
scanning processor is presented, and a number of different
trade-offs in its design and operation are discussed.

I ntrocluction

As the cost of direct access storage has rapidly decreased
due to advances in disk memory and semiconductor techno-
logies, there has been a change in the ut i l izat ion of compu-
ters. While early systems performed batch operations on
sorted sequential fi les, contemporary ones operate interactive-
ly and directly retrieve and process the desired data. Data
from a number of different applications can be collected and
stored in a single database, with an accompanying increase
in u t i l i ty and decrease in storage requirements. Large col -
lections of reference material can be updated rapidly and
searched to find citations relevant to the user's needs.

Most of the work in the non-numeric processing of large
amounts of data has been in the area of database manage-
ment systems, with a number of abstract models, such as the
relational and the hierarchical, available to describe the
structure of the database. The operations of these systems
include searching the database to retrieve al l items that match
a specified pattern, performing simple computations based on
the data contained in the retrieved entries, and updating,
adding, and deleting items from the database. The search
criteria is generally quite simple. For example, in an inven-
tory management application, i t may consist of finding al l
parts manufactured by a given supplier between two dates.

Textual Information Processing

Another class of non-numeric processing of large col lec-
tions of data is the handling of textual information. Two sub-
classes exist - - the transformation of character strings to ano-
ther representation, such as done by an assembler, compiler•
or typeset formatter; and the storage and retrieval of docu-
ments based on user requests. This retrieval can either be
done on a rapidly changing database based on previously

formulated queries (such as in a sellective dissemination of
information system or a retrieval system where the user asks
the same general questions), or on a static or increasing
database using queries formulated interactively to best locate
desired information. The latter case is an automated reference
library system, and is useful• for instance, in legal research
where previous court decisions are searched for precedents
for a current case. It is on this last form of non-numerlc pro-
cesslng that this paper wi l l concentrate.

Because of the differences between a system used to re-
trieve and print relevant portions of a collection of test and
a system used to maintain current data regarding applications
such as inventory control, the operations available to the
user differ greatly. For an automated reference library, the
primary operation consists of searching the material for docu-
ments that contain specific words or phrases, and optionally
printing those ,ha,satisfy the query. The user is not permitted
to alter, add, or delete items from the database, much as he
is not allowed to deface or remove books from a conventional
reference library. (Of course• privileged instructions are
available to allow the system management to change docu-
ments wi thin the database, but these operations are far less
common than the user operatlons.) Auxi l iary operations al low
him to combine sets of documents found by searches using
Boolean expressions• browse through documents instead of
printing it in its entirety, and maintain a private f i le of
annotations or comments regarding the various documents
and sets of query results.

Un]ike the database management structure • these textual
databases are not heavily formatted. Delimiters exist that
mark the beginning and end of documents, that are blocks
of text that share a common idea, such as chapters of a
book, articles in a magazine, or individual court decisions.
Within the documents, i t is convenient to replace typogra-
phical items with flags to al low the easier identif ication of
various contexts. For example, the period at the end of a
sentence can be replaced with a special end of sentence
mark, to eliminate the ambiguity of the same character to
end a sentence• indicate an abbreviation, or as a decimal
polnt. Paragraphs can be marked instead of using a number
of leading blanks on the first line to signal their start.
Important subdivisions such as the t i t le , author, abstract,
and keywords can be flagged to allow faster searching.

In general, because the search is for items within a
large block of text rather than in a fixed field• and because
authors of different documents wi thin the database do not
use exactly the same terms to describe a subject, the search
expressions are more complex than for database for textual re-
tr ieval, and is based on a proposed modification I l l of the
query language of the EUREKA information retrieval system [2].

39

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800094.803025&domain=pdf&date_stamp=1978-04-03

The various forms can be combined to form a complex search
expression, such as:

BASSET HOUND# and (BRITAIN or ENGLAND) in sentence
and < (GRIMS or FOCHNO), KENNEL>5

that finds al l documents that contain the phrase BASSET HOUND,
or any suffix on the word HOUND, and BRITAIN or ENGLAND
in the same sentence, and either GRIMS or FOCHNO within
five words of the word KENNEL.

Useful database sizes range from under one bi l l ion char-
acters for a rapidly changing system of current newspaper and
magazine articles, to well over 25 bi l l ion for an automated
legal research system that contains al l the reported court de-
cisions, along with auxi l iary material such as the state statutes
and various regulations. This prevents the searching of the
entire database by a conventional digital computer to find the
documents that satisfy an interactive query, since even i f i t
could process one character from the database every micro-
second (unlikely even on the fastest available processors i f
the query consists of many search terms and operators), i t
would take approximately 2.8 hours to search a ten b i l l ion
character f i le . This time can be reduced to a more reasonable
value by using a part ial ly inverted f i le structure [3] to e l imin-
ate those documents that obviously cannot satisfy the user's
request. This is especially useful for the general queries in i -
t ia l ly entered in an interact ive search. If a search is made
only of the set of documents that satisfy an inverted ~ile op-
eration or matched in a previous query, i t may involve search-
ing less than one mil l ion characters. While this can take only
a few seconds on a conventional processor, if" the system ser-
vices a large number of simultaneous users even this may re-
sult in unacceptable response times.

Specialized Processors

Due to the sequential nature of searching the documents for
a given pattern, i t is not necessary to store them in a total ly
direct access memory system, such as the primary memory of a
conventional processor. Instead, a form of block accessible
sequential memory can be used. This generally consists of

A

A or 5

A and 8

A and B in sent

A B

A . . . B

A .n. h

<A,B>n

(A,B,C,D)%n

Finds any document which contains the word A.

Finos any document which contains either the
word A or the word B.

Finds any document which contains both the word
A and the word B anywhere In the document.

Finds any document which contains both word A and
word B in the same sentence. [specified context]

Finds any document which contains the word A immediately
followed by the word B. [finds a phrase]

Finds any document which contains the word A followed
(either immediately or after an arbitrary number of
words) by the word B.

Finds any document which contains the word A followed
by the word 5 within n words.

Finds any document Which contains the words A and B
within n words of each other.

Finds any document which contains at least n of the
different words A, B, C, or D. Note that if n=l,
thls operation is an OR, while if n equals the number
of' different words specified, it is an AND. [threshold OR}

alb

a#b

Hatches the character st r ing a, fo l lowed by any s lns le
charac ter , fo l lowed by the s t r i n g b. [wt ldcard charac te r)

Hatches the character s tetng a, fo l lowed by an a r b i t r a r y
number o f characters (poss ib le none), fo l lowed by
the s t r i ng b. Note tha t #a matches a w i th any
prefix, while a# matches a wlth any suffix.

Figure J - Typical Text Retrieval Operations

some form of rotating memory, such as a disk f i le or a shift
register, with a mechanism for rapidly positioning to a block
within the memory. With a disk f i le , this positioning is
provided by electr ical ly selecting one of many heads or
mechanically moving the heads to a different area on the
disk. Currently available disk memory systems al low the
storage of 300 mil l ion characters on a single drive, with
the average time to access a block of less than 50 m i l l i -
seconds. Shift register memories, implemented using CCD
or bubble technology, can access a given block either by
selecting one of many shift registers or by using a major/
minor loop technique.

Many disk memory systems, particularly those for the
IBM System/360, have faci l i t ies in their controller not only
to position the access mechanism and transfer data to and
from the central processor, but to perform a l imited search on
the data without intervention from the central processor.
While this search capabil i ty is very primit ive, and not ex-
tensively Used, i t provides a possible solution to the need
for high speed scanning of data on a disk. A specialized
processor can replace the existing disk controller to provide
for the more complex operations common to textual informa-
tion re t r ieva l . This tehn forms a backend processor to the
general purpose digital computer that is the information sys-
tem's host [4].

Figure 2 illustrates the basic structure of such a backend
system. Data is transferred from the disk memory system
either to the channel of the host system, in a mode that
makes the backencl system compatible wi th other disk sys-
tems, or is examined by scanning logic. This logic compares
characters as they are read from the disk against the specified
search terms and checks for special delimiters wi th in the text,
such as end of sentence marks or flags indicating special con-
texts. Whenever a match is found, an indication is passed to
logic that resolves whether a match has occured. If sot a
painter to the document is stored for later use in other
queries or to retrieve the document for printing. To improve
system response time, the scanning logic can be replicated
and many searches performed in parallel.

This structure is similar to the logic par trcck device
suggested by Slotnick [5] , which forms a basis for database
computers such as RAP [63, CASSM [7], RARES, [8], or

To H o S._____tt Char
System

Scanning Resolution ~_~
[Logic Logic I I

Scanning Resolution J_
Log c Logic l

Figure 2 - Basic Structure

40

DBC [91. However, each of these are designed to eff ic ient ly
implement database management schemes instead of textual
processing. They operate best on formatted data searched with
simple expressions, and devote much of their logic to update
and calculation capabilities unnecessary and undesirable for
general textual retr ieval.

Stellhorn El0] proposes a unit more suitable for text pro-
cessing, but with a limited search capabi l i ty. As original ly
proposed, i t is capable of only determining whether one or
more terms occur wi th in a given context. It did not support
more than one context in a search, or the matching of arbi-
trary characters or words. Bird Jil l has described a backend
processor for a PDP-11 computer that examines data from a
3330-type moving head dlsk memory and signals the host pro-
cessor i f one of a numberof specified keys are matched. The
resolution of whether a document matches the specified expres-
sion is then performed by the minicomputer. It too does not
include support for arbitrary characters, although a later unit
includes this feature along with the abi l i ty to search specified
documents rather than the whole database for a query.

Problems and Trade-Offs

There are a number of problems which must be considered
when a speciallzed text searching processor is designed, along
with a number of implementation trade-offs. /V~ny of the
solutions depend on the types of queries expected on the host
information retrieval system, and have no correct answer.
Others depend on the technology used to implement the back-
end system and its memory, and involve balancing cost and
performance. These include the size of queries and individual
terms that i t can handle and whether i t can process the re-
quests of more than one user at a tlme.

Whether to handle only one user at a time, or to al low
the simultaneous processing of multiple requests whi le the
f i le is being scanned depends on the nature of queries in the
system and the desired response times. If the queries in-
volve the searching of only a small subset of the database,
as would be the case using inverted files or results from pre-
vious searches, i t may be possible to offer satisfactory re-
sponse times serving users one at a time. However, i f the
entire database must be searched for each query, such as in
the system described by Bird, i t is better to have additional
hardware to allow more than one user's request to be pro-
cessed. In thls case, the scanning logic must be able to
handle considerably more terms and the resolution logic
able to determine for which user the document matches.

The question is further complicated when some mechanism
exists to rapidly position from one document to another, since
documents that may be skipped by one user's query may be
necessary for another's. The positioning logic must determine
which document to select next, and indicate which user's
queries i t should be checked against. Another complication
comes when a user enters a query during the time a search
is already in progress. If the new query is immediately added
to the search in progress, additional bookkeeping is necessary
to determine when a query has been completed and to reorder
the results that started in the middle of the f i le . If, on the
other hand, the new query search is not started unti l the
previous search completes, the system may function as i f i t
could handle only a single user, depending on the arrival
time of the queries and the time necessary to process them.

The size of queries and search terms is also highly depen-
dent on the way the host retrieval system is used. I f the words
are al l approximately the same length (no unreasonably long
words or users wi l l ing to accept a search based on only the
first n characters of a word), then simple fixed length com-
parators can be used (as in Stellhorn's proposed unit) . If,
on the other hand, these constraints are not acceptable, or
i t is not desirable to waste term storage within the scanning
logic, an approach with a bulky memory holding variable
length terms can be used, similar to the technique used by
Bird. For the queries, the problem is not as d i f f icu l t . A
reasonable upper bound on the complexity of the query can
be set after examining statistics on system ut i l izat ion. If a
query is larger than this upper bound, the system can split i t
into more than one query and merge the results of the separate
searches, using a technique similar to that used in merging in-
verted f i le directory lists.

Parallelism and Spanned Contexts

For higher speed operation, i t is desirable to either
operate on larger data items (bytes or words instead of
bits) or search more than one track of data at the same
time. This is especially productive i f the cost of the search
logic is small when compared to the cost of storage device,
as would be the case i f the scanner were implemented using
LSI techniques. The simplest form of parallel execution for
a large database stored on more than one drive is to have
separate search logic for each disk drive or group of drlves.
This is the approach suggested by Bird, and requires only
the introduction of a priority arbitration connection between
the various searcher~ and the host system. However, i f only
one user is being served at a time and only a limited subset of
the documents are being searched, many of the searchers may
be idle at any given time. This underuti l izatlon can be re-
duced by providing a switching network between a number of
processors and a pool of memory devices.

Rather than use standard disk memory systems, where
only one of the heads can be selected at a given time, the
drives can be modified to transfer data from more than one
head during an operation [121. With this modification,
either bytes can be processed instead of bits, or more than
one track can be searched at a time. Processing byte streams
from the disk rather than bit streams requffes a more complex
comparator (parallel rather than serial) and much faster reso-
lution of whether a document matches, since the time allowed
to compare a word from disk is reduced. If this parallelism
is increased to a multiple of the byte size, additional d i f f i -
culties arise in aligning the bytes within the word for
comparison.

The other approach, searching more than one track at
a time, presents problems not present in non-textual data-
base processors of similar design. These database computers
require that an entire item, such as an n-tuple, f i t wi th in
a track in memory. I f they are larger, schemes to break them
into two or more items exist. With textual information, this
is not generally possible. A great variation in the size of
a context, such as a sentence, exists. Some are short.
However, because (unlike non-textual database systems)
the specific contents are not controlled by the system mana-
ger, but by the authors of the included documents, i t is
possible that very long and complex sentences may also
exist, some possible taking up an entire paragraph, making

41

i t difficult to insure that each sentence is entirely contained
on a single track without wasting a great deal of disk storage
capacity. The difficulty is more pronounced for higher level
contexts such as a paragraph or whole document, for which
storage on a single track may be impossible.

While this causes no difficulties when each track is
examined sequentially, as in the unit suggested by Bird,
when adjacent tracks are processed at the same time problems
exist. For example, consider the case where a sentence
starts on track A and ends on track B, and the query asks
whether words X and ¥ both occur in a sentence. Suppose
further that word X only appears on track A and word ¥ on
track B. Then the logic searching tracks A and B each
cannot determine i f the documents match the query.

The solution to this problem is to introduce a communi-
cations path between neighboring resolution units, which
functions i f a desired context spans more than one track
(indicated by the absence of either a start or end of con-
text flag) and a search term has been located but the logic
cannot determine i f the document matches. In this case,
the partial information is passed to the resolution logic of
the track that contains the start of context flag for final
processing. Since the context must extend to the end of
this track (since it starts on the track and continues through
the next), when the scanning of the context is completed by
this unit, it wil l be completed by all other units. Final
resolution can then be made while the system is positioning
to the next group of tracks.

If the context starts on the current group of tracks, but
ends on the group that wil l be searched next, the partlaJ
information is sent to the processor for the first of the next
set of tracks, and its resolution unit acts as i f i t found the
start of context flag. This special case functions similarly
to the non-rnultltrack search when a context spans the
current track.

Backtracking

Another problem not present in non-textual database
processors and only to a limited extent in the other proposed
textual systems is the necessity to backtrack during the
search. This problem is introduced by using operators
in the query that can match an arbitrary number of words
or characters (the . . . or operators in EUREKA), and the
sequential nature of the memory system and the comparisons.
For example, consider searching for the substring ISSIP in
MISSISSIPPI. First, the M is compared against the I, and
since it doesn't match, is skipped. The following ISSI is
then matched, and the logic next looks for a P. However,
it finds the current input character is an S, and the match
fails at that point. However, i f it starts a new search at
this point, i t wi l l not find the desired substring, since it
wil l be comparing an I from the search term against the
current input character, an S. To function correctly,
the logic must be able to back the input up before starting
the search again. This is similar to the pulling back of the
needle in a SNOBOL bead diagram [13].

Since the sequential memory cannot be backed up, some
other scheme must be used. The simplest is to abort the
search at the point where the problem occurs and,

remembering the location, search the track again, this time
ignoring the first, i l l-fated match. This can substantially
degrade system performance i f i t occurs many times. A
second approach is to have a buffer that contains the last
few characters. If a problem occurs, the search can be
restarted with the data within the buffer. Finally, the
scanning logic can be modified so that it is always
looking for the start of a desired subs,ring. In this case,
for the example of MISSISSIPPI, a substrlng comparison
wi l l start every time an I is encountered in the input, with
the second comparison succeeding and the other three failing.
This approach requires many more comparators, but may be
easier to implement i f the bulk memory, variable length
term comparison is being used. In that case, multiplexing
of the memory and the comparators may reduce the number
of gates in the comparison hardware, at an increase in
control complexity.

Summary

The operations necessary for textual information re-
trieval in an automated reference library system have been
presented. Although on the surface the character string
matching operations appear similar to those on proposed
database processors, the complexity of the queries and
the lack of extensive formatting of the stored data require
the development of different processors. The basic struc-
ture and operation of these processors was described and
a number of problems and trade-arts in their design were
presented.

I.

2.

3.

4.

References

5.

Hollaar, L A, and P A Emrath. An Improved Query
Language for the EUREKA Textual Informatien Retrieval
System. EUREKA Project Memorandum, Department
of Computer Science, University of Illinols, in
preparation.

6.

Hollaar, L A, et al . The Design of System Archi-
tecture for Information Retrleval. Proc ACM National
Conf. 1976.

7.

Hollaar, L A. Streaming Processor Networks for Com-
bining Sorted Lists. Submitted to ACM Trans on Database
Systems, September 1977.

Hollaar, L A, and W H Stellhorn. A Specialized Archi-
tecture for Textual Information Retrieval. Proc AFIPS NCC,
June 1977.

Slotnlck, D L. Logic per Track Devices. Advances in
Computers 12, Academic Press, 1972.

Ozkarahan, E A, S A Schuster, and K C Smith. RAP - -
An Associative Processor for Data Base Management.
Proc AFIPS NCC, i975.

Healy, L D, K L Doty, and G J Lipovskl. The Archi-
tecture of a Content Addressed Segment Sequential
Storage. Proc AFIPS FJCC, 1972.

42

8. Lin, CS, DC PSmith, and J MSmith. The Design of
a Rotating Associative Memory for Relational Database
Applications. ACM Trans on Database Systems, March
1976.

9. Hslao, D K, and K Kannan. The Architecture of a
Data Base Computer - - A Summary. Proc Third Non-
Numeric Workshop, May 1977.

10. Stellhorn W H. A Processor for Direct Scanning of
Text. presented at First Non-Numeric Workshop,
October 1974.

11. Bird, R M, J C Tu, and R M Worthy. Associative/
Parallel Processors for Searching Very Large Textual
Data Bases. Proc Third Non-Numerlc Workshop,
May 1977.

12. D R Johnson. A Two Channel Movable Head Parallel
Access Disk Memory System. EUREKA Project Memo-
randum, Department of Computer Science, University of
Illinois, 1976.

13. Griswold, R E, J F Poage, and I P Polonsky. The
SNOBOL4 Programming Language. Bell Telep oh~e
Laboratories, 1968.

43

