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Abstract 

This paper presents a facility for the description 
and simulation of the inner machine of mlcroprogra,m~ble 
processors. The use of this facility for teaching mi- 
croprogra~ing and for research is discussed. Twelve 
simulations are described, and an example simulation 
shown. Observations about the research are presented, 
and future research outlined. 

i. Introduction 

This paper describes a preliminary investigation 
to analyze microprogram control structures by descrip- 
tion and simulation at the register-transfer level. 
The original motivation for this was to provide partic- 
ipants in a graduate course in microprogramming with a 
facility for writing microcode for a variety of machines. 
We also wanted the class to gain an understanding of the 
underlying hardware which executed the microcode. In 
addition, it has recently been shown by Siewlorek and 
Snow [Snow 77] that much of the PDP-II family perform- 
ance variations are due to the control implementations. 
This motivates further the use of descriptions and sim- 
ulations of inner machines for evaluation of the con- 
trol hardware itself. 

Section 2 of this paper describes the language and 
facility used for the descriptions and simulations. A 
summary of the machines described and simulated follows 
in Section 3, along with parts of an example simulation. 
Section 4 contains a brief discussion of the results of 
the simulations. 

Special acknowledgements go to Mario Barbacci for 
supplying the original idea and to Bob Richardson, AI 
Dunlop, Mike Powell, Ted Elkind, Bill Paulsen, Steve 
McConnel, Richard Blum, Jim Crowley, William Wu, Doug 
Wiedemann, Konrad Lai, Hal Bellis and Lou Hafer who 
wrote and performed the original simulations. 

2. The LanguaKe And Simulation Facillty 

The facility used to obtain the results presented 
here consists of a compiler and simulator. The user 
writes a behavioral description of the hardware to be 
simulated using the ISPL language [Siewiorek 74]. The 
description is compiled and the output from the compiler 
drives an interactive simulator. This simulator, used 
for the Computer Family Architecture evaluations [Bar- 
bacci 77], has most often been used for simulations of 
processors executing machine level instructions. These 
simulations, on the register-transfer level, contain im- 
plicit information about the control of the processors. 
For example, a sequence of statements like: 

INSTR.REG÷ M[PROG.CTR] 

NEXT PROG.CTR÷PROG.CTR + 1 

in ISPL causes the instruction register to be loaded 
with the contents of the memory location pointed to by 
the program counter. Then, the program counter is in- 
cremented. The signals causing these operations to oc- 
cur may be asynchronous or synchronous and may origin- 
ate in a microstore, a progran~nable logic array or flip- 
flops. The control transfers and signals themselves are 

not simulated. Obviously, in order to evaluate the con ~ 
trol architecture, it must be explicitly described and 
simulated. This is a new and powerful application of 
both the ISPL language and the simulator. 

The ISPL simulator used by the class had the follow- 
ing capabilities: 

*The user can start the simulation at any procedure 
name in the ISPL description, can continue the 
simulation after a breakpoint (which he has set) 
and can exit the simulator 

*The user can collect satistical data about the use 
of varlables/constants and the execution of labe~ 
ed procedures and statements 

*The user can trace, set and interrogate values of 
the registers and memories declared in the ISP 

*The user can specify input and output files for 
access and storage by the simulator 

Some of these capabilities are illustrated in Section 3 
with an example. 

3. The Simulation Expe[iment 

Twelve different microprogrammable processors were 
described and simulated (See table i). One of these, 
the convolution processor, was a paper design by one of 
the course participants. [Crowley 76]. Aspects of each 
processor architecture presented difficulties in the 
description itself and/or in the actual simulation. 
These will be discussed later. 

The sophistication of the simulations varied widely. 
Some simulations executed a few lines of microcode to 
exercise the mlcrocode and data paths. These will be 
referred to as TYPE A. Other simulations executed mi- 
croprocedures which decoded and executed one or a few 
assembly level instructions. (TYPE B). 

The most sophisticated simulations executed micro- 
code which supported an entire target machine. Assembly 
language routines could be executed with this TYPE C 
simulation. 

3.1 The Nanodata QM-I machine was the subject of two 
separate simulations. ' The reason for this is that it 
has three levels in its control hierarchy (assembly lan- 
guage, microcontrol, and nanocontrol) instead of the us- 
ual two (assembly language and microcontrol). The micro- 
level control consists of a vertical microprogram which 
interprets the assembly language instructions. The nano- 
level control contains horizontal nanoinstructions that 
interpret the mlcroinstructions. For this experiment, 
aspects of both the micro-level and the nano-level con- 
trol were described and simulated. The microlevel de- 
scription assumed an underlying nanocontrol but was writ- 
ten so that the effects of the nanooperations, not the 
execution of the nanocode itself, was simulated, much 
as the conventional ISPL processor descriptions assume 
an implicit underlying control. Even so, the descrip- 
tion was lengthy in comparison to other descriptions. 

For the microlevel simulation, microcode was writ- 
ten to fetch and execute machine level instructions 
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which load the memory with values contained in the lo- 
cal store. ~TYPE B simulation). This microeode se- 

quence exercised the data paths normally associated 
with the microcontrol and demonstrated the control 
hierarchy. 

Although the QM-I nanocontrol is straightforward, 
its description is also long. About a third of the 
nanoprimitives and most of the registers have been de- 
scribed with the ISPL language. The simulated nanopro- 
gram fetches microinstructlons from the control store 
and executes them. The two microinstructions executed 
are LD A, B which loads register pointed to by A with 
the contents of the store addressed by the contents of 
register B, and ADD A, B which adds registers selected 
by A and B (TYPE B simulation). 

3.2 Selected portions of the INTERDATA 8/32 micropro- 
gram execution were described and simulated. The mem- 

ory Access Controller (Relocation Registers),the Input/ 
Output Unit, the Format ROM, the privileged ROM, the 
Interrupt Control, and some of the Arithmetic Logic 
Unit's functions were not implemented. Two microrou- 
tines were simulated - one which transferred data from 
one memory location to another and one which rotated a 
16 bit field a variable number of times. The transfer 
routine moved seven words andthe rotate routine rotat- 
ed the same field eleven different times, rotating the 
first time once, and the eleventh time eleven times. 
(TYPE A Simulation). The simulator executed a total of 
6119 RTM* operations. 

3.3 
Simulating the DEC PDP-II/40 micro level machine 

proved to be difficult. This was due to two things. 
First, clock control is explicit in each mieroinstruc- 
tion - clock functions are selectab~&. Second, inter- 

face to the asynchronous world over the UNIHUS TM occurs 
by stopping the clock and waiting for the bus transact- 
ion to be completed. The first feature could not be im- 
plemented since ISPL does not support a clock feature, 
and all operations in ISPL are assumed asynchronous. 
ISPL does allow description of asynchronous operations 
with the WAlT and DELAY statements, but the simulator 
did not support these. Unfortunately, two other fea- 
tures are still missing from the PDP-II micro-level de- 
scription at present - the complex microcode branching 
and some ALU control. In addition, the data display, 
past microprogram counter and microprogram interrupt 
have been omitted. However, there is enough of the 
machine description so that a simulation program to ex- 
ecute an 11/40 machine level ADD instruction was written 
and executed. (TYPE B simulation). 

3.4 The Data General ECLIPSE, with its straightfor~mrd 
microcode and hardware, was less difficult to describe 
and simulate. Virtually all of the inner machine behav- 
ior except for the I/O channel was described in the mi- 
crocode. A simple simulation test program, written in 

the ECLIPSE machine language, adds together a list of 
numbers~ terminating when a negative number is reached 
(TPYE C simulation). 

3.5 Virtually all the HP21MX processor micro machine 
was simulated. The 2]_MX executes vertical microcode 

*RTM operations are operations compiled from the ISPL 
description. These could be arithmetic operations, 
register-transfers, branch merges, Joins of parallel 
paths, etc. The number of RTM operations required to 
execute a given microprogram is a somewhat rough estim- 
ate of the complexity of the micro-machine. It cannot 
be considered an accurate measure since it is sensitive 
to the level at which the ISPL description is aimed. 

with most parallel activity in the I/O. Some of the 
ROM table lookup of microprogram addresses was omitted 
due to lack of information about the specifics of this 
mechanism. In addition, a few microinstructions were 
omitted due to lack of information about the operations 
they were to evoke. The main body of the inner machine 
description is shown in Figure I, along with definitions 
of the variables. The processor begins each new cycle 
of microinstruction execution by testing for CSAR=0 and 
halt or interrupt. If neither has occurred, the micro- 
instruction is fetched and the microaddress incremented. 
The repeat bit is used for sequential mathematical cal- 
culations (multiply and divide, for example). The MXEQ 
routine, which executes the opfield of themicroinstruct- 
ion, along with routines which execute the other fields, 
are found in the declaration section of the ISPL de- 
scription of the processor. Figure 2 contains a block 
diagram of the processor, and the instruction formats 
are found in Figure 3. The ISPL description consists 
of twelve procedures, each of which describes some por- 
tion of the micro machine behavior. The control store 

was loaded with the manufacturer supplied microcode* and 
a short assembly language program was written to add 
M[1058] to M[1078] and store the results in M[I00078]. 

(TYPE C simulation). Some of the interactive simulator 
"commands and the simulator output are shown in Figure 4. 
This simulation required 3248 RTM operations. 

A second microprogramwas written to multiply the 
A register by scratchpad register 01 and store the re- 
suits in the accmulator. This program executed 1370 
RTM operations. 

3.6 since the INTEL 3000 series of chips can be con- 
figured in a variety of ways, the ISPL description of 
these chips was written with the central processing 
element (CPE) and the microprogram control unit (MCU) 
as procedures. The reference used for this is [INTEL]. 
The main body of the ISPL program contains only seven 
statements which evoke the operations and procedures. 
Thus, reconfiguring the system to be simulated involves 
adding/deleting procedures and changing the main program. 
The configuration used for this simulation had no assem- 
bly language instruction fetch/execute capability; pro- 
gramming of the system was assumed to be on the micro- 
code level only. The simulation used exercised the data 
paths of the CPE and MCU without emulating another arch- 
itecture. (TYPE A simulation). 

3.7 The Digital Scientific META micro machine was de- 
scribed completely except for a small amount of timing, 
I/0, and other logic. Two major references were used 
in writing the ISPL description [DIGITAL SCIENTIFIC 73] 
The simulated META 4 was microcoded to emulate an IBM 
1130 (TYPE C simulation). Two IBM 1130 assembly level 
programs were executed - one multiplied a negative num- 
ber by a positive number, and the other loaded the accu- 
mulator and performed an addition. The multiply routine 
executed 8340 RTM operations, while the load and add 
routine took 2661 operations. 

3.8 The BURROUGHS BI700 micro-control description was 
large. A few parts of the BI700 controller were omitted 
- parts of the register file, the cassette control, and 
the "overlay M string" operation, for example. 

The simulations performed were a 24 bit multiply 
and a bubble sort written in BI700 microcode (TYPE A 
simulation). The multiply simulation executed 3281 RTM 
operations, much more than the 21MXmultiply and less 
than the META 4 multiply (which was emulating an 1130). 
Source for the BI700 microcode is [BURROUGHS 72]. 

*A good test of the accuracy of the ISPL description. 
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3.9 The ISPL description of the MICRODATA 1600 micro 

machine contains the commands and registers available 
on the basic machine. Two simulations were performed, 
both of which computed the Fibonacci numbers. One 
transferred data by using the XOR function and one used 
the T register. The first took 4881 RTM operations and 
the second 7975. 

3.10 The convolution processor described with ISPL 
was a hypothetical architecture. A small two-dlmen- 
sional array of values was convolved with another array 
in the simulation program. The processor is a pipelined 
structure which is capable of performing the convolution 
calculation, reading a data point and calculating the 
address of the next image point, all in parallel 
[CROWLEY 76]. 

All of the above descriptions with the exception 
of the convolution processor are being or will be in- 
spected by the appropriate machine users or designers 
to determine accuracy of the ISPL descriptions. Obser- 
vations made in the process of writing these descrip- 
tions and running the simulations are discussed next. 

4. Discussion 

The goals established at the onset of the experi- 
ment were. (i) to determine the utility of ISPL for 
describing and simulating micro machine architectures 
and (2) to compare the micro machines of several micro- 
progr~mm-ble processors using an ISPL simulator as a 
measuring tool. ISPL had been used previously to de- 
scribe and simulate the instruction set level of pro- 
cessors; this was its first application to micremach- 
ines. 

4.1 Class participants reported that ISPL was easy to 
learn and use, and that its application to micromaeh- 
ine description seemed natural. The behavioral nature 
of the language made it possible to omit low level de- 
tails (such as read or write signals, ALU function se- 
lect signals, and bus protocols) and write the descrip- 
tion in terms of register transfers. The major weak- 
nesses of ISPL revolved around its inability to express 
timing considerations, and the fact that buses and I/O 
lines appear the same as registers in the descriptions 
and simulations. 

These observations meet the first goal of the ex- 
periment, and lead to the following assertions: 

*ISPL is useful for describing micro-machlnes 

*The fact that manufactures supplied mlcrocode can 
be used in simulation establishes the accuracy of a 
description. 

*The ISPL language and simulator could be applied 
during the design of a processor to describe the micro 
machine, develop the microcode, and verify its perform- 
ance by high-level simulation. 

*Incorporation in the simulator of a facility to 
permit timing of RT operations and simulation of para- 
llel activity would improve the realism of the simula- 
tions. 

4.2 Interpretation of the results of the simulations 
to compare micro~machine architectures is not yet poss- 
ible. Since a different person wrote each description, 
there is a wide variation in the description "style"and 
the level at which each description is aimed. Therefore, 
if one simulation executes more RTM operations then 
another, it could be because (I) one processor is more 
complex than another, (2) one processor description is 
more concise than another, (3) one simulation algorithm 
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is more complex than another, or any number of causes. 
No definite conclusions can be drawn until the descrip- 
tions and test programs are standardized. 

4.3 Since the experiment, some progress has been made 
in the development of the ISP language. A successor to 
ISPL, called ISPS, now has a compiler, and an up- 
graded version of the ISPL simulator supports it. The 
upgraded simulator includes a limited timing facility 
and will simulate parallel activity. There are as yet 
no emperical results to show how useful these facilities 
are for analysis purposes. 

4.4 Future research into micro-architecture evaluation 
will involve standardizing the ISPL descriptions of the 
micro machines and simulating each machine with a test 
program which performs functions identical to test pro- 
grams executed on the other machines. The real value, 
however, of this type of simulation appears to be in 
allowing changes to the control architecture by manipu- 
lating the ISPL description. These effects of changes 
could then he measured with simulations. 

4.5 Micro-level descriptions and simulations have been 
shown to be feasible and straightforward. They prove 
to be effective tools for mlcrocode debugging, mierode 
testing and documentation, In addition, formal verifi- 
cation and automated generation of microcode could be 
done based on an ISPL description of the microcontrol. 
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MANUFACTURER PROCESSOR PROJECT STATUS / PORTIONS SIMULATED 

NANODATA 

NANODATA 

IBM 

QM-I microlevel 
processor 

QM-I nanolevel 
processor 

360/67 

ISPL description assumes underlying nanocontrol, simulation exer- 
cised microcontrol logic and data paths by running small micro- 
programs 
One third of nanoprimitives ~mplemented small test nanoprograms 
run to fetch and execute microlnstructions 

Incomplete ISPL des'criptlon 

INTERDATA 8/32 Partially complete ISPL description, small test microprograms 
run 

D'IGITAL EQPT.CORP. PDP-II/40 Incomplete description, current code debugged, test microprograms 
run 

ECLIPSE Mostly complete except for I/O, runs test assembly language " - DATA GENERAL 

KmaZTT-PACKARD 

INTEL 

21MX 

3000 

META 4 

BI700 

DIGITAL SCIENTIFIC 

BURROUGHS 

supported 5y the microcode 
Mostly complete, running test assembly language supported by 
the mlcrocode 
A~$ microoperations implemented for a simple MCU-CPE configuration 

Debugge'd mostly complete ISPL, mlcrocoded to emulate the IBM 
1130 instruction set, runs 1130 programs 
Most mlcrooperatlons implemented, test microprograms run 

MICRODATA 1600 Basic 1606 completely described, test microprograms run 

Convolutlon Paper design, runs a test microprogram 
Processor 

Table i Microprogrammable Processors Described and Simulated 

¢011] 
{011] 
{011] 
[0~1:1 
(0L t ]  
[011| 
[012] 
I0~2] 
{ 0 i 2 ]  
(012] 
{012J 
{012] 
[012) 
{012] 
[012] 
(o12] 
(012] 
(o12] 
[o12] 
(0~23 
[o12] 
(012] 
[012] 
[012] 
[012] 
(012] 
(0 ;2 ]  

| t h t s  qs the main body of  the s 4 m u l a t o r  f o r  the HP21MX 
! t t  f e t c h e s  m t ( r o ] n s t r U c t | o n s  and execu tes  them and 
| fetches the next m4crO4mStpuct4on ~ , .  
! 

CSAR+U NEXT l s t a r t  o f f  at m | c r o l o c a t 4 o n  0000 
MLOOP|:(DECODE REPFAT :>  

1 
|norma l  s e q u e n t | e l  exec~ t4on  
! 
(( IF (CSAR EQE #0) AND (TNTREQ OR NOT RUNFLG) => 

CSAR+g) linterrupt/halt vector 
NEXT CSIR+CSTQRE[CSAR ] 
NEXT CBAR+(CSAR + 1)<1110> 
NEXT MXEO~; 

MLOOP) 

" f  => 
(CNTR*(CNTR + 1)<710> NEXT |keep l o o p | n g  
CSIR~CSTORE(CSAR] NEXT 
MXEO] 

(CSIR~CSTDREtCSAp] NEXT | } a s t  t fme t h r u  
CSAR+(CSAR ÷ 1)<1110> NEXT 
REPEAT+0 NEXT | r e s e t  repea t  f l a g  
MXEQ))) NEXT 

I 

! 4 n nePeat 1 oop 
| 
(DECODE CNTR<310> EQ L 

Figure 1 Main Body of the HP21MX ISPL Description 
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ARITHMETIC AND LOGIC SECTION 

P- Rqizter ] 
Switch 

RegizZtr 

st 
~' s2 
~" s3 
~, s4 
> s5 
3, se 
:)" s7 
)- se 
~" s9 
). sto 

)= st1 
I -  s t2  

h, x 

S-bus 

Scratch 
R~gls¢lr 

PN.__~M s 

CAB. 

NM s 

TAB, 
C__~AB, 

~ ICNT w 
CNT4 c 

GNTRI, . 

T-bus 

].I_~. 
DI.~Vo CABst 

LG.__.~S o 
CR.....~S o 
AR....~S o 

TAB I 

/ - - "  I L| ARS DIV T bu" 

l ~m £~--GSo MP___Y o 

ALU 
OutPut  Extend Register 

Tests 

ENVEo ~ ~ ~  LO~edlow Register [~= ENV° 

SOVsp ~ STFL~° 
OVFI- c CLFLso 

FLAGGc 

................................................................................................................................................ i 
Figure 2 Block Diagram of the HP21MX processor(from [;lewlett-Packard 74]) 
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CONTROL SECTION MAIN MEMORY SECTION 

FTCH,p 
J T k,~...~8 s~ I N C I ~  

P r o t ~ t  
. O p t i ~  

.... t o l  T ..... I 

IM_Mo T,,,t PN_~M. 

. . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . .  • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , ~ "  . . . . . . . . . . . . . . . . . . . . . . .  

, ~  ~, S-bu~ 

Immediate Data CMH~I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HIGH I 

CMLO i 

NOTES : ! 

-~ II0 bus 

Under lined vsP~,,,, 
Characters = Micro-order 

I .... ,I .... Subscripts "~ NHO, RUN~ ~ ¢ 

CIR s 

INT¢ 

; 

s ~S-bus field 

st ÷Store field 

c ~ Jump Condition field 

sp ~ Special field 

o ~Op field 

i ÷ Immediate Modifier 
field 

Example:  

CNTR 
s,s£ 

Micro-order 
"CNTR" is 
S-bus o r  
Store flelds. 

FRONT PANEL SECTION I/0 SECTION 

Figure 2 (Continued) 
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CLASS I - DATA TRANSFER / ALU OPERATIONS 

23 20 19 15 14 I0 9 5 4 0 

OP I ALU I S BUS I STORE I SPECIAL I 

3ENERAL OPS: NOP, LWF, WRTE, ASG, READ, ENV, ENVE 
RESTEICTED OPS: ARS, CRS, LGS, MPY, DIV 

ALU: 74181 Function code 
S-BUS: Source register 
STORE: Destination of T-BUS/S-BUS 
SPECIAL: Misc. control signals 

CLASS II - IMMEDIATE DATA 

23 20 19 18 17 

J 1 IMM HOD 0PERAND 

i0 9 5 4 0 

1 STORE I SPECIAL I 

MOD: Determines byte position and whether data is 
domplemented 

CLASS III - CONDITIONAL JUMP 

23 20 19 15 14 13 5 4 0 

I JMP (CONDITIONI R I OPERAND I cNDX I 

CONDITION: Selects tests 
R: Reverse condition 
OPERAND: Low 9 bits of address 

CLASS IV - UNCONDITIONAL JUMP 

23 20 19 17 16 5 4 0 

I Op , ..l 0 0 0 [ ADDRESS [ MODIFIER i 

OP: JMP, JSB 
MODIFIER: S~ecifies (conditional) modification to 

address 

Figure 3 HP21MX Microinstruction Formats 

>>SETVAL PREG:IO000 

>>SETVAL RUNFLG:I 

>>SETVAL C8AR=O 

>>l lO LINES READ 

>UTRACE ALL 

>DTRACE FO0 

>VALUE AREG 

AREG :#0 
>VALUE 8REG 

BREG =#I 
>VALUE MEMORY[IV51110] 

SETVAL sets values prior to 
simulation. It is a user 
command. 

All values are being traced 

except FO0 

The user asks the values of 
the AREG and BREG, which 
are 0 8 and 18 

MEMORY [#105] :#11  
HEMORY [#106]=#7 
MEMORY [#107]=#17 
MEMORY [~IlO]:#O 
>VALUE PREG 

The user requests memory 
values 

PREG :#10000 
>START MLOOP The user starts the simula- 

tion at MLOOP 
O MLOOP +#2 REPEAT :#0 At twostate- 
e MLOOP +#12 CSIR =#4~07471. 2 mentsbeyond 
(' MLOOP +#14 CSAR =#1 the MLOOP 
" LDSBUS +#III SBU8 :#10000 label, REPEAT 

,: is used 

SIMULATION COMPLEIED 

RUN TI~IEClO usec un t t s )=q92505  
RTM OP5 ExECUTED:~2q8 

>VALUE AREG 

AREG :#31 
>VALUE UREG 

BREG : # [  
>VALUE MEHORY[tO5|110] 

MEMORy [#105.~ :#I  I 
MEMORY [#106.]--#7 
MEMORY |#I07] :#17 
MEMORy [#llOJ=#31 

The simulation is over 

The user inspects some 
locations 

Figure 4 Output From the HP21MX Simulation 
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