
DESCRIPTION AND SIMULATION OF MICROCODE EXECUTION

Alice C. Parker Andrew Nagle
Department of Electrical Engineering

Carnegie-Mellon University
Pittsburgh, Pa. 15213

Abstract

This paper presents a facility for the description
and simulation of the inner machine of mlcroprogra,m~ble
processors. The use of this facility for teaching mi-
croprogra~ing and for research is discussed. Twelve
simulations are described, and an example simulation
shown. Observations about the research are presented,
and future research outlined.

i. Introduction

This paper describes a preliminary investigation
to analyze microprogram control structures by descrip-
tion and simulation at the register-transfer level.
The original motivation for this was to provide partic-
ipants in a graduate course in microprogramming with a
facility for writing microcode for a variety of machines.
We also wanted the class to gain an understanding of the
underlying hardware which executed the microcode. In
addition, it has recently been shown by Siewlorek and
Snow [Snow 77] that much of the PDP-II family perform-
ance variations are due to the control implementations.
This motivates further the use of descriptions and sim-
ulations of inner machines for evaluation of the con-
trol hardware itself.

Section 2 of this paper describes the language and
facility used for the descriptions and simulations. A
summary of the machines described and simulated follows
in Section 3, along with parts of an example simulation.
Section 4 contains a brief discussion of the results of
the simulations.

Special acknowledgements go to Mario Barbacci for
supplying the original idea and to Bob Richardson, AI
Dunlop, Mike Powell, Ted Elkind, Bill Paulsen, Steve
McConnel, Richard Blum, Jim Crowley, William Wu, Doug
Wiedemann, Konrad Lai, Hal Bellis and Lou Hafer who
wrote and performed the original simulations.

2. The LanguaKe And Simulation Facillty

The facility used to obtain the results presented
here consists of a compiler and simulator. The user
writes a behavioral description of the hardware to be
simulated using the ISPL language [Siewiorek 74]. The
description is compiled and the output from the compiler
drives an interactive simulator. This simulator, used
for the Computer Family Architecture evaluations [Bar-
bacci 77], has most often been used for simulations of
processors executing machine level instructions. These
simulations, on the register-transfer level, contain im-
plicit information about the control of the processors.
For example, a sequence of statements like:

INSTR.REG÷ M[PROG.CTR]

NEXT PROG.CTR÷PROG.CTR + 1

in ISPL causes the instruction register to be loaded
with the contents of the memory location pointed to by
the program counter. Then, the program counter is in-
cremented. The signals causing these operations to oc-
cur may be asynchronous or synchronous and may origin-
ate in a microstore, a progran~nable logic array or flip-
flops. The control transfers and signals themselves are

not simulated. Obviously, in order to evaluate the con ~
trol architecture, it must be explicitly described and
simulated. This is a new and powerful application of
both the ISPL language and the simulator.

The ISPL simulator used by the class had the follow-
ing capabilities:

*The user can start the simulation at any procedure
name in the ISPL description, can continue the
simulation after a breakpoint (which he has set)
and can exit the simulator

*The user can collect satistical data about the use
of varlables/constants and the execution of labe~
ed procedures and statements

*The user can trace, set and interrogate values of
the registers and memories declared in the ISP

*The user can specify input and output files for
access and storage by the simulator

Some of these capabilities are illustrated in Section 3
with an example.

3. The Simulation Expe[iment

Twelve different microprogrammable processors were
described and simulated (See table i). One of these,
the convolution processor, was a paper design by one of
the course participants. [Crowley 76]. Aspects of each
processor architecture presented difficulties in the
description itself and/or in the actual simulation.
These will be discussed later.

The sophistication of the simulations varied widely.
Some simulations executed a few lines of microcode to
exercise the mlcrocode and data paths. These will be
referred to as TYPE A. Other simulations executed mi-
croprocedures which decoded and executed one or a few
assembly level instructions. (TYPE B).

The most sophisticated simulations executed micro-
code which supported an entire target machine. Assembly
language routines could be executed with this TYPE C
simulation.

3.1 The Nanodata QM-I machine was the subject of two
separate simulations. ' The reason for this is that it
has three levels in its control hierarchy (assembly lan-
guage, microcontrol, and nanocontrol) instead of the us-
ual two (assembly language and microcontrol). The micro-
level control consists of a vertical microprogram which
interprets the assembly language instructions. The nano-
level control contains horizontal nanoinstructions that
interpret the mlcroinstructions. For this experiment,
aspects of both the micro-level and the nano-level con-
trol were described and simulated. The microlevel de-
scription assumed an underlying nanocontrol but was writ-
ten so that the effects of the nanooperations, not the
execution of the nanocode itself, was simulated, much
as the conventional ISPL processor descriptions assume
an implicit underlying control. Even so, the descrip-
tion was lengthy in comparison to other descriptions.

For the microlevel simulation, microcode was writ-
ten to fetch and execute machine level instructions

159

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800094.803043&domain=pdf&date_stamp=1978-04-03

which load the memory with values contained in the lo-
cal store. ~TYPE B simulation). This microeode se-

quence exercised the data paths normally associated
with the microcontrol and demonstrated the control
hierarchy.

Although the QM-I nanocontrol is straightforward,
its description is also long. About a third of the
nanoprimitives and most of the registers have been de-
scribed with the ISPL language. The simulated nanopro-
gram fetches microinstructlons from the control store
and executes them. The two microinstructions executed
are LD A, B which loads register pointed to by A with
the contents of the store addressed by the contents of
register B, and ADD A, B which adds registers selected
by A and B (TYPE B simulation).

3.2 Selected portions of the INTERDATA 8/32 micropro-
gram execution were described and simulated. The mem-

ory Access Controller (Relocation Registers),the Input/
Output Unit, the Format ROM, the privileged ROM, the
Interrupt Control, and some of the Arithmetic Logic
Unit's functions were not implemented. Two microrou-
tines were simulated - one which transferred data from
one memory location to another and one which rotated a
16 bit field a variable number of times. The transfer
routine moved seven words andthe rotate routine rotat-
ed the same field eleven different times, rotating the
first time once, and the eleventh time eleven times.
(TYPE A Simulation). The simulator executed a total of
6119 RTM* operations.

3.3
Simulating the DEC PDP-II/40 micro level machine

proved to be difficult. This was due to two things.
First, clock control is explicit in each mieroinstruc-
tion - clock functions are selectab~&. Second, inter-

face to the asynchronous world over the UNIHUS TM occurs
by stopping the clock and waiting for the bus transact-
ion to be completed. The first feature could not be im-
plemented since ISPL does not support a clock feature,
and all operations in ISPL are assumed asynchronous.
ISPL does allow description of asynchronous operations
with the WAlT and DELAY statements, but the simulator
did not support these. Unfortunately, two other fea-
tures are still missing from the PDP-II micro-level de-
scription at present - the complex microcode branching
and some ALU control. In addition, the data display,
past microprogram counter and microprogram interrupt
have been omitted. However, there is enough of the
machine description so that a simulation program to ex-
ecute an 11/40 machine level ADD instruction was written
and executed. (TYPE B simulation).

3.4 The Data General ECLIPSE, with its straightfor~mrd
microcode and hardware, was less difficult to describe
and simulate. Virtually all of the inner machine behav-
ior except for the I/O channel was described in the mi-
crocode. A simple simulation test program, written in

the ECLIPSE machine language, adds together a list of
numbers~ terminating when a negative number is reached
(TPYE C simulation).

3.5 Virtually all the HP21MX processor micro machine
was simulated. The 2]_MX executes vertical microcode

*RTM operations are operations compiled from the ISPL
description. These could be arithmetic operations,
register-transfers, branch merges, Joins of parallel
paths, etc. The number of RTM operations required to
execute a given microprogram is a somewhat rough estim-
ate of the complexity of the micro-machine. It cannot
be considered an accurate measure since it is sensitive
to the level at which the ISPL description is aimed.

with most parallel activity in the I/O. Some of the
ROM table lookup of microprogram addresses was omitted
due to lack of information about the specifics of this
mechanism. In addition, a few microinstructions were
omitted due to lack of information about the operations
they were to evoke. The main body of the inner machine
description is shown in Figure I, along with definitions
of the variables. The processor begins each new cycle
of microinstruction execution by testing for CSAR=0 and
halt or interrupt. If neither has occurred, the micro-
instruction is fetched and the microaddress incremented.
The repeat bit is used for sequential mathematical cal-
culations (multiply and divide, for example). The MXEQ
routine, which executes the opfield of themicroinstruct-
ion, along with routines which execute the other fields,
are found in the declaration section of the ISPL de-
scription of the processor. Figure 2 contains a block
diagram of the processor, and the instruction formats
are found in Figure 3. The ISPL description consists
of twelve procedures, each of which describes some por-
tion of the micro machine behavior. The control store

was loaded with the manufacturer supplied microcode* and
a short assembly language program was written to add
M[1058] to M[1078] and store the results in M[I00078].

(TYPE C simulation). Some of the interactive simulator
"commands and the simulator output are shown in Figure 4.
This simulation required 3248 RTM operations.

A second microprogramwas written to multiply the
A register by scratchpad register 01 and store the re-
suits in the accmulator. This program executed 1370
RTM operations.

3.6 since the INTEL 3000 series of chips can be con-
figured in a variety of ways, the ISPL description of
these chips was written with the central processing
element (CPE) and the microprogram control unit (MCU)
as procedures. The reference used for this is [INTEL].
The main body of the ISPL program contains only seven
statements which evoke the operations and procedures.
Thus, reconfiguring the system to be simulated involves
adding/deleting procedures and changing the main program.
The configuration used for this simulation had no assem-
bly language instruction fetch/execute capability; pro-
gramming of the system was assumed to be on the micro-
code level only. The simulation used exercised the data
paths of the CPE and MCU without emulating another arch-
itecture. (TYPE A simulation).

3.7 The Digital Scientific META micro machine was de-
scribed completely except for a small amount of timing,
I/0, and other logic. Two major references were used
in writing the ISPL description [DIGITAL SCIENTIFIC 73]
The simulated META 4 was microcoded to emulate an IBM
1130 (TYPE C simulation). Two IBM 1130 assembly level
programs were executed - one multiplied a negative num-
ber by a positive number, and the other loaded the accu-
mulator and performed an addition. The multiply routine
executed 8340 RTM operations, while the load and add
routine took 2661 operations.

3.8 The BURROUGHS BI700 micro-control description was
large. A few parts of the BI700 controller were omitted
- parts of the register file, the cassette control, and
the "overlay M string" operation, for example.

The simulations performed were a 24 bit multiply
and a bubble sort written in BI700 microcode (TYPE A
simulation). The multiply simulation executed 3281 RTM
operations, much more than the 21MXmultiply and less
than the META 4 multiply (which was emulating an 1130).
Source for the BI700 microcode is [BURROUGHS 72].

*A good test of the accuracy of the ISPL description.

]6O

3.9 The ISPL description of the MICRODATA 1600 micro

machine contains the commands and registers available
on the basic machine. Two simulations were performed,
both of which computed the Fibonacci numbers. One
transferred data by using the XOR function and one used
the T register. The first took 4881 RTM operations and
the second 7975.

3.10 The convolution processor described with ISPL
was a hypothetical architecture. A small two-dlmen-
sional array of values was convolved with another array
in the simulation program. The processor is a pipelined
structure which is capable of performing the convolution
calculation, reading a data point and calculating the
address of the next image point, all in parallel
[CROWLEY 76].

All of the above descriptions with the exception
of the convolution processor are being or will be in-
spected by the appropriate machine users or designers
to determine accuracy of the ISPL descriptions. Obser-
vations made in the process of writing these descrip-
tions and running the simulations are discussed next.

4. Discussion

The goals established at the onset of the experi-
ment were. (i) to determine the utility of ISPL for
describing and simulating micro machine architectures
and (2) to compare the micro machines of several micro-
progr~mm-ble processors using an ISPL simulator as a
measuring tool. ISPL had been used previously to de-
scribe and simulate the instruction set level of pro-
cessors; this was its first application to micremach-
ines.

4.1 Class participants reported that ISPL was easy to
learn and use, and that its application to micromaeh-
ine description seemed natural. The behavioral nature
of the language made it possible to omit low level de-
tails (such as read or write signals, ALU function se-
lect signals, and bus protocols) and write the descrip-
tion in terms of register transfers. The major weak-
nesses of ISPL revolved around its inability to express
timing considerations, and the fact that buses and I/O
lines appear the same as registers in the descriptions
and simulations.

These observations meet the first goal of the ex-
periment, and lead to the following assertions:

*ISPL is useful for describing micro-machlnes

*The fact that manufactures supplied mlcrocode can
be used in simulation establishes the accuracy of a
description.

*The ISPL language and simulator could be applied
during the design of a processor to describe the micro
machine, develop the microcode, and verify its perform-
ance by high-level simulation.

*Incorporation in the simulator of a facility to
permit timing of RT operations and simulation of para-
llel activity would improve the realism of the simula-
tions.

4.2 Interpretation of the results of the simulations
to compare micro~machine architectures is not yet poss-
ible. Since a different person wrote each description,
there is a wide variation in the description "style"and
the level at which each description is aimed. Therefore,
if one simulation executes more RTM operations then
another, it could be because (I) one processor is more
complex than another, (2) one processor description is
more concise than another, (3) one simulation algorithm

]6]

is more complex than another, or any number of causes.
No definite conclusions can be drawn until the descrip-
tions and test programs are standardized.

4.3 Since the experiment, some progress has been made
in the development of the ISP language. A successor to
ISPL, called ISPS, now has a compiler, and an up-
graded version of the ISPL simulator supports it. The
upgraded simulator includes a limited timing facility
and will simulate parallel activity. There are as yet
no emperical results to show how useful these facilities
are for analysis purposes.

4.4 Future research into micro-architecture evaluation
will involve standardizing the ISPL descriptions of the
micro machines and simulating each machine with a test
program which performs functions identical to test pro-
grams executed on the other machines. The real value,
however, of this type of simulation appears to be in
allowing changes to the control architecture by manipu-
lating the ISPL description. These effects of changes
could then he measured with simulations.

4.5 Micro-level descriptions and simulations have been
shown to be feasible and straightforward. They prove
to be effective tools for mlcrocode debugging, mierode
testing and documentation, In addition, formal verifi-
cation and automated generation of microcode could be
done based on an ISPL description of the microcontrol.

References

BARBACCI 77 Barbacci, M., et al., "Architecture Re-
search Facility: ISP Descriptions, Simu-
lation, and Data Collection", AFIPS Con-
ference Proceedings, 1977, NCC, AFIPS
Press, 1977.

BURROUGHS 72 Burroughs BI700 Systems Reference Manual,
Burroughs Corproation, Detroit, 1972.

CROWLEY 76 Crowley, James, "The Design and ISPL Sim-
ulation of a Micro-Program Controlled
Convolution Processor", Department of
Electrical Engineering, Carnegie-Mellon
University, 1976.

DIGITAL 73 META 4 Computer System Hardware Descri P-
tion, Publication No. 7050M0, and Compu-
ter System Microprogrmmmdng Reference
Manual, Publication No. 7043[40
Corporation, 1973.

HEWLETT 74 Microprosramming 21MX Computers - Operat-
in~ and Reference Manual, Hewlett-Packa~
Company, Cupertino, Ca., 1974.

INTEL INTEL Series 3000 Reference Manual, INTEL
Corporation, Santa Clara, Ca.

SNOW 77 Snow, Edward, and Daniel Siewiorek,
"Impacts of Implementaiton Design Trade-
offs on Performance: The PDP-II, A Case
Study," Department of Computer Science
and Electrical Engineering, Carnegie-
Mellon University, 1977.

This research was supported by the U.S. Army Research
Office under grant #DAAG29-76-G-0224, and the National
Science Foundation under grant #GJ-32758X.

MANUFACTURER PROCESSOR PROJECT STATUS / PORTIONS SIMULATED

NANODATA

NANODATA

IBM

QM-I microlevel
processor

QM-I nanolevel
processor

360/67

ISPL description assumes underlying nanocontrol, simulation exer-
cised microcontrol logic and data paths by running small micro-
programs
One third of nanoprimitives ~mplemented small test nanoprograms
run to fetch and execute microlnstructions

Incomplete ISPL des'criptlon

INTERDATA 8/32 Partially complete ISPL description, small test microprograms
run

D'IGITAL EQPT.CORP. PDP-II/40 Incomplete description, current code debugged, test microprograms
run

ECLIPSE Mostly complete except for I/O, runs test assembly language " - DATA GENERAL

KmaZTT-PACKARD

INTEL

21MX

3000

META 4

BI700

DIGITAL SCIENTIFIC

BURROUGHS

supported 5y the microcode
Mostly complete, running test assembly language supported by
the mlcrocode
A~$ microoperations implemented for a simple MCU-CPE configuration

Debugge'd mostly complete ISPL, mlcrocoded to emulate the IBM
1130 instruction set, runs 1130 programs
Most mlcrooperatlons implemented, test microprograms run

MICRODATA 1600 Basic 1606 completely described, test microprograms run

Convolutlon Paper design, runs a test microprogram
Processor

Table i Microprogrammable Processors Described and Simulated

¢011]
{011]
{011]
[0~1:1
(0L t]
[011|
[012]
I0~2]
{ 0 i 2]
(012]
{012J
{012]
[012)
{012]
[012]
(o12]
(012]
(o12]
[o12]
(0~23
[o12]
(012]
[012]
[012]
[012]
(012]
(0 ;2]

| t h t s qs the main body of the s 4 m u l a t o r f o r the HP21MX
! t t f e t c h e s m t (r o] n s t r U c t | o n s and execu tes them and
| fetches the next m4crO4mStpuct4on ~ , .
!

CSAR+U NEXT l s t a r t o f f at m | c r o l o c a t 4 o n 0000
MLOOP|:(DECODE REPFAT :>

1
|norma l s e q u e n t | e l exec~ t4on
!
((IF (CSAR EQE #0) AND (TNTREQ OR NOT RUNFLG) =>

CSAR+g) linterrupt/halt vector
NEXT CSIR+CSTQRE[CSAR]
NEXT CBAR+(CSAR + 1)<1110>
NEXT MXEO~;

MLOOP)

" f =>
(CNTR*(CNTR + 1)<710> NEXT |keep l o o p | n g
CSIR~CSTORE(CSAR] NEXT
MXEO]

(CSIR~CSTDREtCSAp] NEXT | } a s t t fme t h r u
CSAR+(CSAR ÷ 1)<1110> NEXT
REPEAT+0 NEXT | r e s e t repea t f l a g
MXEQ))) NEXT

I

! 4 n nePeat 1 oop
|
(DECODE CNTR<310> EQ L

Figure 1 Main Body of the HP21MX ISPL Description

162

ARITHMETIC AND LOGIC SECTION

P- Rqizter]
Switch

RegizZtr

st
~' s2
~" s3
~, s4
> s5
3, se
:)" s7
)- se
~" s9
). sto

)= st1
I - s t2

h, x

S-bus

Scratch
R~gls¢lr

PN.__~M s

CAB.

NM s

TAB,
C__~AB,

~ ICNT w
CNT4 c

GNTRI, .

T-bus

].I_~.
DI.~Vo CABst

LG.__.~S o
CR.....~S o
AR....~S o

TAB I

/ - - " I L| ARS DIV T bu"

l ~m £~--GSo MP___Y o

ALU
OutPut Extend Register

Tests

ENVEo ~ ~ ~ LO~edlow Register [~= ENV°

SOVsp ~ STFL~°
OVFI- c CLFLso

FLAGGc

.. i
Figure 2 Block Diagram of the HP21MX processor(from [;lewlett-Packard 74])

163

CONTROL SECTION MAIN MEMORY SECTION

FTCH,p
J T k,~...~8 s~ I N C I ~

P r o t ~ t
. O p t i ~

.... t o l T I

IM_Mo T,,,t PN_~M.

. , . • . , ~ " .

, ~ ~, S-bu~

Immediate Data CMH~I .
HIGH I

CMLO i

NOTES : !

-~ II0 bus

Under lined vsP~,,,,
Characters = Micro-order

I ,I Subscripts "~ NHO, RUN~ ~ ¢

CIR s

INT¢

;

s ~S-bus field

st ÷Store field

c ~ Jump Condition field

sp ~ Special field

o ~Op field

i ÷ Immediate Modifier
field

Example:

CNTR
s,s£

Micro-order
"CNTR" is
S-bus o r
Store flelds.

FRONT PANEL SECTION I/0 SECTION

Figure 2 (Continued)

164

CLASS I - DATA TRANSFER / ALU OPERATIONS

23 20 19 15 14 I0 9 5 4 0

OP I ALU I S BUS I STORE I SPECIAL I

3ENERAL OPS: NOP, LWF, WRTE, ASG, READ, ENV, ENVE
RESTEICTED OPS: ARS, CRS, LGS, MPY, DIV

ALU: 74181 Function code
S-BUS: Source register
STORE: Destination of T-BUS/S-BUS
SPECIAL: Misc. control signals

CLASS II - IMMEDIATE DATA

23 20 19 18 17

J 1 IMM HOD 0PERAND

i0 9 5 4 0

1 STORE I SPECIAL I

MOD: Determines byte position and whether data is
domplemented

CLASS III - CONDITIONAL JUMP

23 20 19 15 14 13 5 4 0

I JMP (CONDITIONI R I OPERAND I cNDX I

CONDITION: Selects tests
R: Reverse condition
OPERAND: Low 9 bits of address

CLASS IV - UNCONDITIONAL JUMP

23 20 19 17 16 5 4 0

I Op , ..l 0 0 0 [ADDRESS [MODIFIER i

OP: JMP, JSB
MODIFIER: S~ecifies (conditional) modification to

address

Figure 3 HP21MX Microinstruction Formats

>>SETVAL PREG:IO000

>>SETVAL RUNFLG:I

>>SETVAL C8AR=O

>>l lO LINES READ

>UTRACE ALL

>DTRACE FO0

>VALUE AREG

AREG :#0
>VALUE 8REG

BREG =#I
>VALUE MEMORY[IV51110]

SETVAL sets values prior to
simulation. It is a user
command.

All values are being traced

except FO0

The user asks the values of
the AREG and BREG, which
are 0 8 and 18

MEMORY [#105] :#11
HEMORY [#106]=#7
MEMORY [#107]=#17
MEMORY [~IlO]:#O
>VALUE PREG

The user requests memory
values

PREG :#10000
>START MLOOP The user starts the simula-

tion at MLOOP
O MLOOP +#2 REPEAT :#0 At twostate-
e MLOOP +#12 CSIR =#4~07471. 2 mentsbeyond
(' MLOOP +#14 CSAR =#1 the MLOOP
" LDSBUS +#III SBU8 :#10000 label, REPEAT

,: is used

SIMULATION COMPLEIED

RUN TI~IEClO usec un t t s)=q92505
RTM OP5 ExECUTED:~2q8

>VALUE AREG

AREG :#31
>VALUE UREG

BREG : # [
>VALUE MEHORY[tO5|110]

MEMORy [#105.~ :#I I
MEMORY [#106.]--#7
MEMORY |#I07] :#17
MEMORy [#llOJ=#31

The simulation is over

The user inspects some
locations

Figure 4 Output From the HP21MX Simulation

165

