
On the Necessary Evolution Towards Improvement
Specialization in Software Production Teams

J. B@zivin
F. Gauduel
J.L. Nebut
R. Rannou

I.R.I.S.A.
Universit@ de Rennes

B.P. 25A
35031 RENNES Cedex

France

1. INTRODUCTION.

Human aspects are an essential element in the software production
cycle. This has been widely recognized and several proposals such
as the "chief programmer team" have proved their effectiveness as
methodologies to produce high quality software at a lower cost. In
this paper we investigate the possible short term implications of
recent technological andmethodological evolution on the basic
structure of software production groups.

As diversity of the underlying architectures increases (e.g. multi
microcomputer systems), programming languages are becoming more
and more independant from the particularities of these machines
Ce.g. new specification languages). At the same time, advocated by
several people from different horizons (e.g. (BAUER,1976), (KNUTH,
1974] , (WEINBERG,1972)), a new programming m e t h o d o l o g y seems to
become c r e d i b l e . I t c o n s i s t s i n p r o d u c i n g f i r s t a c o r r e c t p rogram
w i t h o u t any concern f o r p e r f o r m a n c e . The program i s then i t e r a t i -
v e l y t r a n s f o r m e d i n t o a l o g i c a l l y e q u i v a l e n t bu t more e f f i c i e n t
v e r s i o n . Me~heds to s u p p o r t t hese t r a n s f o r m a t i o n s range f rom v e r y
t h e o r e t i c a l f l o w a n a l y s i s a l g o r i t h m s t o more p r a g m a t i c t e c h n i q u e s .
As p a r t o f a r e s e a r c h p r o j e c t on sys tem pe r f o rmance imp rovemen t ,
we have been l ed t o c o n s i d e r t h a t an i d e a l system w r i t i n g language
s h o u l d p e r m i t t o e x p r e s s on one s i d e q u a l i t a t i v e s p e c i f i c a t i o n s
f o r t he sys tem, and on the o t h e r s i d e q u a n t i t a t i v e d i r e c t i v e s i n -
t ended t o imp rove the b e h a v i o u r o f t he sys tem i n a g i v e n e n v i r o n -
ment . The f e a s i b i l i t y o f t h e me thodo logy has a l r e a d y been pa r -

This research is supported by CNRS under grant A,T.P. 2317,

190

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800100.803244&domain=pdf&date_stamp=1977-08-18

tially proved by the LIS language CICHBIAH,1975). After having
recalled the major characteristics of the approach, we discuss in
this paper its social and professional implications. It is parti-
cularly argued that a lot has to be gained from the separation of
softwore production ~n two phases (qualitative specification ;
improvement) and from the assignment of different people to these
tasks.

2. TRENDS IN THE SOFTWARE PRODUCTION PROCESS.

Several shifts in emphasis have occurred in the short evolution of
software development methodology. In the first ages of program-
ming, efficiency was the main concern. Slowly people began to be-
come convinced that in addition to direct operoting costs Cmemory
and processor consumption), a second class of costs (related not
with hardware resources but with staffing) was of paramount impor-
tance. Among these "non operating costs", one may quote program-
ming costs, documentation costs, modification costs, mointenonce
costs, etc ... New methodological proposals that con be described
under the generic name of "structured programming" soon become
credible. They ore characterized by a mojor emphasis put on the
logical structure of programs.

Reactions from the progromming community to these proposals (which
were at the beginning mainly academic proposals) have not always
been favourable. A paper by KNUTH (KNUTH,1974) expresses o very
balanced view of pro and cons of Structured Programming. This ar-
ticle presents methodological aspects of program construction with
speciol emphasis on performance problems. One moin point put for-
ward by KNUTH is the following :
"... premature emphasis on efficiency is a big mistake which may
well be the source of most progran~ning complexity and grief. We
should ordinarily keep efficiency considerations in the bhckground
when we formulate our programs ... And when it is desirable to sa-
crifice clarity for efficiency ... it is possible to produce re-
liable progreons that can be maintained over a period of time, if
we start with a well structured progreon and then use well under-
stood transformations that can be applied mechanically. We
shouldn't attempt to understand the resulting program as it
appears in its final form, it should be thought as the result of
the original program followed by specified transformations. We
can envision program manipulation systems which will facilitate
making and documenting these tr~sformations ..."

We think that this view expressed by KNUTH may well become an
essential characteristic of the forthcoming software production
methods and tools. Severol remarKs can be mode to assertain this
opinion.

Premature emphasis on e~ficiency problems obviously bears o lot of
drawbacks. It diverts energy from the logical design and thus in-

191

Qualities of~

pot tabi l i ty ,I
s t o . . .

'~ Initial system

°,,o
successive

rewritings

0

system

Figure I.

Performances

Qualities of
Te~Jabi l i ty ,
portability,
et~ ...

@--~0 -~0 "-~0 --'*@
Initial Final
system system

amelioration

stages

Figure 2.

Performances

192

creases the risk of producing unclear and therefore unreliable
p~ograms, putting up the indirect costs of debugging, maintenan-
ce, modification, eto ... This has been clearly established by
WEINBERG and SCHULMAN CWEINBERG,1972). They conducted a series of
experiments to explore several aspects of programming performan-
ce. For example they asked five groups of programmers to do the
same program but gave them different goals : minimum core, maxi-
mum output clarity, maximum program clarity, minimum statements,
minimum production time. One interesting result is that each
group ranked first on its own objective. But other conclusions
were also drawn from the experiment and one of them is interest-
ing for us. The groups with efficiency objectives Cminimum core
and minimum statements) ranked fourth and third on program clari-
ty. In fact the experiment showed that some objectives tend to be
highly correlated Ce.g. program clarity and output clarity) and
some other are highly conflicting like efficiency and program cla-
rity.

Another major drawback of premature emphasis on efficiency is re-
lated to portability. As a matter of fact it is hard to define
what is really meant by efficiency, when designing a system.
Efficiency is meaningful only when it is related to a particular
environment. Environment may be viewed as composed of two parts :
the user context and the machine context. By machine context, we
mean all that has to do with the hardware supporting the system.
By user context, we mean the system load. Many efficiency choices
are taken on the grounds of an assumed characteristic of the envi-
ronment. Thus what is an immediate optimisation may turn out to
be a pessimisation when the system is transported to another site.

A lot of arguments can thus be found to support the view that pro-
duction effort must first be spent on logical design and only
when this phase is achieved on performance improvement. Unhappily
even a posteriori enhancement of programs may have negative
effects on clarity and~bility. It is often done by finding
tricks and simplifications that permits to gain some words of
storage or some milliseconds of execution time. This gain is often
swept out by the loss induced by increased maintenance costs. To
summarize, figure I illustrates the usual coding-improving scheme
whereas figure 2 illustrates an approach we would prefer.

As part of a research project on program performance improvements,
we have been led to wonder under which conditions an ideal
approach such as the one illustrated by fig. 2 - enhancement wi-
thout loss of~adability - could take place. The answer we have
come with is that whet we need is some kind of two level language.
One level will permit to express the logical structure of the pro-
blem and the second will serve to describe optimisation actions
on the first program. The remainder of this section illustrates
the fact that such an approach has received attention and is al-
ready partially implemented in several places.

193

One of the most significant example of two-level specifications is
given by the LIS language (ICHBIAH,1975). As a matter of fact, the
algorithm is written using very high level language features.
Then, an implementation part allows the programmer to choose par-
ticular implementations of the data of his program, according go
a specific physical organization ; a low level language is also
provided in order to be able to get access to the machine charac-
teristics, including the notion of interface which enables the
programmer to use machine instructions and to llnk together LIS
and non-LIS programs.

In the following example :

segment data MAIN

type T = plex
A : integer ;
B : boolean ;
C : boolean ;

end ;

P : action CX : integer,, Y : out integer) ;

end

imp l'ementation

type T = p lex
DOUBLE ALIGNED ;
A : word (0 : 1) ;
B : half (0 : 1) of word 1 ;
a half ~I I) of~1 ;

end

interface LINK CONVENTION ;
X: in R3
Y : out R4 ;
use RI, R2 ;
~in

BAL, R1 LINK CONVENTION
end ;

end

for P use LINKCONVENTION

194'

T will be implemented as follows :

A I DOUBLE WORD

The automatic data structure selection system, described by LOW
(LOW,1974), shows us another model of a two-level approach ; this
system chooses low level implementations for abstract information
structures, among a fixed set of possible representations, in or-
der to minimize the total time-space product. The system is used
on programs where data structures are expressed in terms of such
high-level information structures as sets, sequences and rela-
tions (programming language SAIL) ; this data structuration leads
to logically clear and well structured programs which are design-
ed and debugged more quickly (It is a general remark anyway that
the higher the abstraction level of the language is, the easier
it is to find effective improvement techniques (BAUER,1976). For
choosing appropriate implementations, the selection phase needs
information not only about the different representations availa-
ble (storage cost function for the representation and individual
execution time function for the primitive operations), but also
about the use of the abstract data structures of the user's pro-
gram (that information is obtained by static analysis, monitoring
the execution of the program (using default representations) and
by asking information from the user during an interactive interro-
gation phase).

A semi-automatic data-structuring method presented in (SCHONBERG,
1977), for a similar set oriented language, SETL, is based on the
same principle ; the efficient data-structuring of a SETL program
is obtained by supplying the language processor with detailed de-
clarations of structural Pelations related to the program varia-
bles. In the absence of user-supplied declarations, the SETL pro-
cessor chooses for the variables, a default representation which
is reasonably efficient for the primitive operations which appear
most frequently.

For examp le , one can write :

(1)

(2)

repr S : se__~t (c B I), c B 2 ;

repr X : ~ B I, E B 2 ~ B3 ;

"195

where (I] specifies that S ~s a subset of ~ which is also to be

considered as an element of the second base 82

(2) indicates that the object X is to have three simultane-

ous representations, as element of each of the base sets

B 1 , B 2 , B. 3.

In numerous additionnal program improvement systems, the "two-

stage programming" style assumes different aspects ; we may point
out the system described by Burstall and Darlington in [BURSTALL,

1977], for transforming programs which arsexpressed as recursion
equations into iterative and more efficient versions. This system

is based on so called transformations rules and relies on guidance
from the user. The compilation model advocated by Loveman in

{LOVEMAN,1977) falls in the same category too. It is founded on
the use of source to source transformations performed on source
language representations of a program.

In this section we have shown that a noticeable evolution is
taking place in the field of programming methodology. More and
more proposals are oriented towards separation of the production

process into several different phases and particularly towards se-
paration of the design/coding phase from the improvement phase.
Effective tools to support this Kind of methodology are beginning
to appear and usually taKe the form of a two-level language : one
level for qualitative specification and the other for quantitative
improvement. In that respect, D. LOVEMAN writes :

"... The approach we favor, however, is to allow the progreenmer to
be the strategist and to provide a mechanical assistant to perform
the optimisation itself Finally, a progrc~mer is free to use
all the facilities of his progra~ning language to produce a high
level, well-structured, modular program with the knowledge that
should it prove to be inefficient, he has access to a set of tools
to change representations and eliminate modularization overhead
while perserving the correctness of his original program "

(LOVEMAN.1977)
It is therefore important to evaluate the possible implications

of this evolution upon the production group structure.

3. TOWARDS PLURIPROGRAMMING.

It seems to us that division in methods and tools naturally indu-

ces the same division in personal profiles for the production peo-
ple. This means that in addition to the usual "algorithm program-
mer" we shall see the errival of a new intervenant in the produc-

tion cycle : the "improvement programmer".

One first point that must be stressed is that this situation is
not entirely new. The role of the system programmer in many com-
puting centers is usually to take a constructor made system and to
adapt it to some given environment. Tools available to him are for
the most part of a rudimentary nature (system generation tools]

196

I

I ~Y~S I

i
C qualitative

specifications

ALGORITHM I
r m "~'~''- PROGRAMMER
I
I

quantitative
specii~ications]

program

"'--" t

Information
Extraction |
Tools

("-static !dynamic
~analysis of program J

1
I programmation" ~-

/~f
IMPROVEMENT PROGRAMMER'~TASK

| ~ ~- J
l path ~21~ ~th 1

L..~ recording ~ ~improvement
directivesJ ~ directives] k_

Figure 3. : Overall relations between ANALYST, ALGORITHM
PROGRAMMER and IMPROVEMENT PROGRAMMER

197

but his work is essentially an improvement programmer's work.

We shall give in the remainder of this section some details on the
work of the improvement programmer as we see it. Such a prospecti-
ve description cannot be very precise because it is highly depen-
dant on the programming tools that will be available in some
years. Nevertheless we hope it is sufficient to convey the idea
that the optimisation task is distinct enough from the programming
task so as to justify the assignment of different people to these
different works. As noticed by B. WEIGBREIT (WEIGBREIT,1975), the
quantitative analysis of many algorithms requires considerable
mathematical expertise. In our opinion, this required expertise
goes beyond what one can honestly expect from an average applica-
tion programmer. To put it in other words the monumental work of
KNUTH dealing with quantitative evaluation of programs (KNUTH,
1968) for example, cannot be entirely assumed in a normal computer
science curriculum. It represents however only the emerged part of
the iceberg in the huge study domain of performance evaluation and
improvement.

We have drawn in fig. 3 a simplified illustration of what the re-
lations between the analyst, the algorithm programmer and the im-
provement programmer could look like. Although this is only a
naive picture intended to clear up our mind, it will help us deri-
De what the work of an improvement programmer could look like.

In this simplified graph, the algorithm programmer produces a pro-
gram compatible with the qualitative specifications provided by
the analyst. This program is then processed by automatic tools.
[The error correction process takes place at this stage but has
not been represented in the graph because we are not concerned
with this problem here). The improvement programmer's werk starts

~ his point and his intervention will take three forms :
Extracting the relevant information from the "program".

Checking that the characteristics of the program do not vio-
late the quantitative requirements set up by the analyst. (If
they do, then taking the necessary actions].
Trying as much as possible the resource consumption to r e d u c e
of the program.

The improvement programmer performs thus a double task : perfor-
mance analysis and improvement contr61. The latter means taking
reaction decisions that may take one of the two following forms :

BY using the facilities offered to him in the second level
of the language, the improvement programmer will write a se-
quence of improvement directives. (pat~ I in the graph].
Or he may forward to the algorithm programmer a to re- demand
write some parts of the program according to some more preci-
se guidelines. (pat~ 2 in the graph).

198

The second path Is absolutely necessary because ... "there is ob-
viously a limit to how f~r a compiler" [or a program improvement
system] "however sophisticated, can eliminate the effects of bad
program~ning" [BATES,1976).
This fact has been widely recognized by those who are Involved in
the area of program improvement transformatlon. We can quote B.
WEGBREIT for example :
"... While the techniques we have presented can yield some interes-
ting results, it would be a mistake to overestimate their capabi-
lities. They are limited in effect to the transformation of one
program to a better one. Case in which the input/output mapping
can be better realized by a radically different algorithm are be-
yond the scope of this method. For exomple we can see no way to
transform a definition of ~ubble-sort to a version of quick-
s o r t . . . " (WEGBREIT,1976).
The usual behaviour howe y3~r forths improvement programmer would
be to use pcsslbilltles RRR~and R~In that order. Hopefully in most
cases, when t he ava i l ab le - - t o o l s w i l l be r i c h enough, p o s s i b i l i t y

~will be sufficient to mae~ the bWJactlves.

As we have seen It, the work of the improvement programmer will
thOs have the followlng characteristics :
i) A maln part of it is related to Informatlon gathering. In order
to do this, many classical methods and tools are available. They
are related either to the analysls, of the program ifsalf (static
analysis (LOW,1974), assertions or relations declared by the user,
...), or to the study of the program within Its execution environ-
ment (hardware or software monitoring, execution profile techni-
ques (KNUTH,1971), [INGALLS,i971)). In the same way, the
Knowledge of execotlon environment features (particular hardware
mechanisms, instruction repertory, computing speed) may
supply useful information.
ll) It is essentially iteratlve in nature. That means that once
an optimisation action has bean taken, the system has to be eva-
luated again in order to bharactmrlze its new behaviour and to va-
lidate the effect of the optlmlsation.
iii) It is moderately interactive. A set of tools will be availa-
ble to help the improvement programmer in his task and will be a-
vailable in a semi-interactive way.
iv) There will be important interactions with the algorithm pro-
~rammer. As we said earlier if a program has been very badly desi-
gned there is little hope to transform it in a good one by succes-
sive optimisation. In that case the improvement programmer will
play an important educative rule towards the algorithm programmer
by handling him back new programming directives. The objective is
that this latter will learn in practice to produce very clear pro-
grams with acceptable performances. Such a program is likely to be
improved by a significant amount in the optimisation phase.

199

4. CONCLUSION.

Classical methods of software production have proved de facto
their applicability but have severe limitations {GOLOBERG,1973).
New proposals to produce at a lower cost software of better quali-
ty are hampered by the rigid frame into which the same people are
asked to deal with several different production tasks. Neverthe-
less, an evolution towards separation of the production process in
two phases (qualitative construction, then quantitative enhance-
ment) can be noticed in that respect among language designers.

In this paper, we have tried to show how this separation and as-
signement of different people to different tasks seem to us an
ineluctable evolution and a good move. The evolution seems ineluc-
table because :
OIt is no more possible to rely only upon optimizing compilers
which however clever they are cannot take into account all the

pc~anSible improvement transformations.
It is no more realistic to add new integrated improvement me-
isms to programming languages (e.g. the packed attribute of

the PASCAL language). We have described elsewhere {ANDRE,1977) the
pollution-like problem faced by programming languages that are
being lotted into accepting and integrating a huge variety of dif-
ferent mechanisms related not only to improvement but also to cor-
rectness proofs, error handling, traolng, documentation

The evolution seems to bear many potential benefits as one may
judge from the first results of the experiments conducted in that
domain (the LIS language is already available within an indus-
trial environment and used to write operating systems).

It is our opinion that if the programming team structure is fle-
xible enough to accomodate the improvement speclalisation move,
then the optimisation methods and tools that are becoming availa-
ble will be of paramount importance in tomorrow's software pro-
duction environment.

200

(ANDRE,1977)

(BASILI,1975]

(BATES,1976)

[BAUER,1976)

(BURSTALL,1977]

(GZLDBERG,1973)

[ICHBIAH,1975)

[INGALLS,1971]

[KNUTH,1968)

(KNUTH,1971]

REFERENCES

ANDRE, J. & el.
Professional needs for Software Morphology.
Presented at TC2 Conference on Constructing
Quality Software, NovosibirsK, May 1977.

BASILI , V.R. & TURNER, A .J .
Iterative Enhancement : A practical technique for
software development.
First National Conference on Software Engineering,
IEEE Comp. Society, Washington D.C., Sept. 1975.

BATES, O. lEd .]
Program optimization.
I n f o t e c h S t a t e o f The A r t R e p o r t .

BAUER, F .L .
Programming as an Evolutionary Process.
Invited Lecture, 2rid International Conference on
Software Engineering, Sen Francisco, Oct. 1976.

BURSTALL, R.M. & DARLINGTON, J.
A Transformation System for Developing Recursive
Programs.
3ACM, Vol. 24, N ° 1, Jan. 1977.

S~LDBERG, J . l e d .)
Proceedings of a Symposium on The High Cost of
Software.
Stanford Research Institute, Sept. 1973.

ICHBIAH, J.D. & al,
The System Implementation Language LIS.
Technical Report 4549 E/FN, CII, 1975.

INGALLS, D.
The.Execution Time Profile as a Progran~ing Tool.
in Design and Optimization of Compilers, R. Rustin
Ed., Prentice Hall Inc., 1971.

KNUTH, O.E.
The Art of Computer Programming.
Addison Wesley.

KNUTH, D.E.
An Empirical Study of FORTRAN Programs.
Software Practice & Experience, Vol. 1, N ° 2,
1971.

201

(KNUTH,1974J

(LOVEMAN, 1977)

(LBW, 1974)

[SCHCNBERG,1977)

(WEGBREIT,1975)

[WEINBERG,1972]

KNUTH, D.E.
Structured Prograr~ning with go to Statements.
Comput ing Su rveys , V o l . 6, N ° 4, O~c. 1974.

L~VEMAN, D.B.
Progree~ning Improvement by Source-to-Source
Transformation.
JACM, V o l . 24, N ° 1, Jan. 1977.

LQW, J.R.
Automatic coding : choice of data structures.
Technical Report n ° I, University o~ Rochester,
Aug. 1974.

SCHONBERG, E. & LIU, S.C.
Manual and Automatic Data-structuring in SETL.
Ecole de I'IRIA : "Les langages de tr@s haut ni-
veau", May 1977.

WEGBREIT, B.
Mechanical Program Analysis.
CACM, Vo l . 18, N ° 9, Sep t . 1975.

WEINBERG, G,M.
The Psychology of Improved Programming Perfor-
mance.
Da tama t i on , pp. 82-85 , Nov. 1972.

2 0 2

