
MACHINE LANGUAGE PROGRAMMING IN AN
UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Ian Sommerville,
Dept. of Computer Science,
Heriot-Watt University,
Edinburgh, Scotland.

ABSTRACT

This paper examines the advantages and dis-
advantages of teaching machine inaguage pro-
gramming to computer science undergraduate
students. A teaching language based on re-
verse Polish notation, but with high-level
control constructs, is presented as an alter-
native to conventional assembly language.
Experiences with using this language are de-
scribed.

INTRODUC TION

Since the introduction of undergraduate com-
puter science courses in universities an as-
sembly language programming module has been
widely regarded as an essential part of the
curriculum. Such a module is usually inclu-
ded either at the end of the first or at the
beginning of the second year after students
have learnt some high-level language. Their
programming experience, at this stage is
usually fiarly limited.

The inclusion of such a machine language pro-
gramming course offers some benefits:-

(i) Assembly code is used a great deal
in the commercial programming en-
vironment. Exposure to a low-level
language provides a practical train-
ing for the student.

(i~) Programming at machine level prov~
ides knowledge and understanding of
the host machine and of concepts of
machine architecture.

(iii) Assembly language programming gives
students an indication of how high-
level language statements may be
translated to machine code. This
provides background material for a
compiling course.

Benefits (ii) and (iii) above are very real
but the first 'benefit' is oftvery dubious
nature. Commercial utilisation of assembly
languages is often based on ill-considered
ideas of efficiency. Thankfully more and
more users are realising that machine effic-
iency and system economy are not synonymous

terms and are turning away from assembly
language programming.

As a result, the market for machine language
programmers is contracting and probably only
a fiarly small percentage of graduates will
be employed in this task. Time spent in
'practical training' can therefore be time
wasted for most students.

However, there are also a number of disad-
vantages involved when a course in assembly
language programming is included in the cur-
riculum:-

(i) A course of this nature using a
language such as IBM S/360 as=
sembler is time consuming for
both staff and students. Typic-
ally a course like this occupies
20-25 lecture hours. About half
this time is spent covering back-
ground material needed before the
student can run a program.

(ii) Assembly language programming is
error prone and most assemblers
are not noted for the quality
and readability of their error
diagnostics. This is discouraging
and the students motivation is
rapidly eroded.

(iii) 'Bit twiddling' constructs are
available most assemblers and
inexperienc,:d programmers see no
reason why these should not be
used. Hence, the more able
students tend to develop "dirty"
programming habits.

Our experience has been that, in teaching a
conventional assembler, the time spent by
both staff and students is disproportionate
to the returns obtained in terms of the
student's understanding of computing concepts.
However, we recognise the advantages which

I04

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382063.803369&domain=pdf&date_stamp=1977-02-01

accrue from learning a low-level language
and are relectant to lose them by merely
teaching high-level languages.

It was, therefore decided to design and
implement a low-level language for teaching
purposes. The language bad to illustrate
principles of machine architecture and the
translated form of high-level language st-
atements. Essential requirements for this
system were identified as:-

(i) The language should be easy to use
and understand.

(ii) Cleanliness and consistency should
be inherent - "dirty" programming
should be impossible.

(iii) The implementation should be such
that discouraging and inexplicable
errors should not occur.

(iv) The language should be teachable
in not more than eight one hour
lectures.

It was finally decided that the most suitable
type of language was not a conventional assem-
bler-like language; but a form of reverse
Polish notation.

As the students had previously attended an
ALGOL programming course, a reverse Polish
language is eminently Suitable for illust-
rating the translation of ALGOL statements
to some lower level form. Our language,
POLLY. is described below.

THE PROGRAMMING LANGUAGE POLLY

A POLLY program consists of variable and
procedure declarations followed by a reverse
Polish string of instructions. Basically
these have a one-to-one correspondance with
machine instructions but higher-level control
statements have been included in the langu-
age. The language description below is very
informal and illustrates, mostly by example,
the language POLLY. The system is described

~ fully in the appropriate reference manual [i].

Va r ia ble s

All variables used in a POLLY program must be
declared and initialised before they are used
in instructions. Variables are not typed
and both simple variables and arrays are
declared using a Y~EF declaration.
For example:-

%DEF A=I, B=2, C(3):(Ij,2 3);

This declares A and B as simple variables,
initialised to 1 and 2 respectively, and a
3 element array C with the elements initia-
lised to i, 2, and 3.

%DEF STR(16) = "THIS IS A STRING",

BIGARRAY(IOO) = (0*50, 1"50);

Declares two arrays, STR ~nitialiFed to the
character string "THIS IS A STRING" and
BIGARRAY. The first 50 elements of BIGARRAY
are initialised to 0, to last 50 to i.

Procedures

The POLLY programmer may name sections of
code by declaring them as a procedure. Pro-
cedures do not have parameters but local
variable declarations are allowed. An ex-
ample of a procedure declaration is:-

%PROC ANYPROC
[

%DEF P=O, Q=O;

POLLY instructions

];

Procedures are activated using the %CALL
statement thus:-

%CA LL A NY PROC

Parameters may be passed to a procedure
by leaving their addresses or values on
the machine stack before calling the pro-
cedure and storing them in local variables
on entry to the procedure.

Statements

The machine instructions in a POLLY program
are written as a reverse Polish string with
the elements of that string separated by
commas. For example : -

~C, A, B, +, 6] -, %STORE

corresponds to the assignment statement

C :=A+ B- 6

Notice that variable and constant values
are stacked merely by writing the variable
name or constant itself. A variable address
is stacked by preceding the name by an
symbol.

The usual arithmetic and conditional operators
+, -, *, /, =, ,, etc. are provided along
with stack operations such an YJJNSTACK~ Y~)UP
(push a copy of the top element) and %SWAP
(swap the top two elements).

There is no mechanism in POLLY for array
indexing and this must be handled by the
programmer. For example~ element P+Q of
array A would be loaded onto the machine
stack as follows:-

105

~A I Load base address of array
P,Q,+,+, [Compute index and add to

base !
%LOAD [Load value onto stack

The language has a number of operations for
working with arrays:-

%LOAD Replace address on top of stack
with its contents.

%LDSAVE Push contents of address on top
of stack onto the stack.

Y~TSAVE Store top of stack at address
in second top element.
Leave address on the stack.

ZINC Add 1 to top of stack.

Control Statements

Unlike most languages at this level POLLY
does not use conditional and unconditional
goto statements to control the flow of the
program. Rather, two bigber level statements,
the IF statement and the REPEAT statement are
provided.

The IF statement is the familiar two-armed
conditional but with the condition preceding
the if part. For example:-

A, B, : , %IFTRUE X Y~LSE Y,

If A=B then X otherwise Y is pushed onto the
stack.

A,B,:,C,D,>,~ND.%IFTRUE(A,B,+)

If A=B and C D then A÷B is pushed onto the
stack. Notice that brackets group POLLY in-
structions into a compound statement.

A loop may be programmed by preceding a com-
pound statement with the command %REPEAT.
This will cause that statement to be repeated-
ly executed until either a %BRKTRU (condit-
ional break) or %BREAK (unconditional break)
instruction is executed. Control is then
transferred to the following POLLY instruction.
For example:-

~EPEAT (I,+,%DUP,10,=,ZBRKTRU)

This will add i to the top stack element
until it is equal to i0. The compiler
checks that there is always a break state-
ment as part of the compound statement thus
avoiding one source of infinite loops. These
control statements were chosen for POLLY on
the basis of their simplicity, their re-
latively structured nature and because they
fit into a reverse Polish notation.

Input-Output Instructions

Input/output instructions are often difficult
to understand and use at this low-level.
Hence a simple but adequate set of I/O inst-
ructions have been included in POLLY.

These are:-

%READ

%READCH

%READSTR~array name>

~RITE

?~RITCH

?~RISTR<a rray name>

Y~EWCARD
Y&NEWLINE
Y~NEW PAGE

Reads a number onto the
stack.
Reads a character onto
the stack.
Reads a string of chara-
cters into the given
array.
Prints the top of the
stack as a number.
Prints the top of the
stack as a Character.
Prints the string held
in the given array.
Go onto next card.
Print on new line.
Print on new page.

Experience has shown that these commands
are easy to use and not particularly error
prone.

IMPLEMENTING POLLY

POLLY is implemented using a compiler/in-
terpreter system with the underlying abstract
machine designed to provide diagnostic
facilities and to protect the programmer
from himself,

The organisation of this machine (STAC) is
diagrammed below in figure i,

I PROGRAM
STACK

STORE I

ARITHMETIC
UNIT

DATA
STOKE

/

1
ADDRESS
STACK

Orsanisatlon of the STACMachln£

Fisure 1

Notice that the m~cbine has five distinct
data areas:-

(i) A program stack Used for computat-
ion

(ii) An address stack Stores return ad-
dresses

(iii) A data store Stores program var-
iables

(iv) A program store Stores compiled
program

(v) A symbol table Stores information
about declared
na me s.

106

The organisation ensures:-

(i)

(ii)

'(iii)

That the student cannot overwrite
his program code
That return addresses cannot be
accidentally used as data.
Variable names are available for
diagnostic purposes.

All POLLY variables and procedures are addres-
sed indirectly via the symbol table. For ex-
ample, the statement

~/2ALL ANYPROC

compiles into

<call op code> ~ymbol table address of
ANYPROC~.

This addressing technique makes the implemen-
tation of diagnostic facilities very straight-
forward. For example a statement

%TRACE A, B, C

which prints the values of A, B and C when-
ever they are changed may be simply implemen-
ted by flagging A, B and C in the symbol
table.

In addition to this trace statement the fol-
lowing diagnostic facilities are provided:-

(i) CTRA CE

(ii) PTRACE

(iii) SDUMP
(iv) VDUMP

Diagnostic information for
each instruction executed is
printed.
A trace of procedure calls
is printed
Prints the program stack.
Prints values of all declared
variables.

POLLY IN USE

In this section, we discuss the reaction of
the students to POLLY, and compare that re-
action with the feelings of students who were
taught a conventional (S/360) assembler lan-
guage.

To our surprise, students who had no previous
knowledge of low-level programming reacted to
POLLY extremely well. The class~ in general,
progressed very quickly and the hotion of re-
verse Polish notation was easily understood.
Students enjoyed the course, found the lan-
guage interesting (many tackled signigicant
personal programming projects) and some sug-
gested extensions to the language.

Programming projects with a time limit set on
the basis of conventional assembler projects
were, in many cases, completed in less than
half the allotted time and were generally well
programmed.

After learning and using POLLY, the student's
unaerstanding of ALGOL concepts was improved.
This is especially true of procedure parameter

passing techniques, which POLLY illustrated
very well.

These reactions may be compared with those
of another group of slightly more advanced
students who were concurrently attending
a course in S/360 assembler. In general
this language was disliked for its incon-
sistent and unstructured nature. Projects
were late, badly programmed and, in some
cases, were carried out mechanically by
programming in ALGOL and band translating
this to assembler. They questioned why
they had to learn that language rather
than POLLY.

Subsequent questioning (6 months later) of
each group of students revealed that those
students who studied POLLY appeared to have
assimilated the concepts of stack machines
and reverse Polish programming. On the
other hand, the S/360 group seem to have
forgotten almost everything they learned
about the 360 structure.

A total of seven one-hour lectures were
spent teaching POLLY. These were broken
shown as follows:-

Lecture 1

Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7

Stacks and reverse Polish
notation
POLLY Declarations
POLLY Statements
The STAC Machine
Procedures and parameter passing
Arrays
Use of diagnostics

As a result of our experiences, conventional
assembly language teaching has now been
dropped from our course. The time saved
(15 hours) is devoted to a course in com-
paritive machine architecture. We feel this
benefits the students more than wrestling
with the idiosyncracies of assembly code.

REFERENCES

i. POLLY - A Reverse Polish Programming
Language.
Ian Sommerville,
Department of Computer Science,
Heriot-Watt University.
Revised edition June 1976.

107

