
METHODOLOGY FOR TEACHING

INTRODUCTORY COMPUTER SCIENCE

R.R. Oldehoeft
R.V. Roman

Department of Mathematics
Arizona State University

INTRODUCTION

In the last few years it has been gene-
rally recognized that teaching programming in-
volves more than describing a new FORTRAN
statement each day and providing programming
problems to be coded. The concepts of dis-
ciplined programming and the accompanying
interest in the problem solving process,
coupled with the increasing economic desira-
bility of constructing correct and maintain-
able software has resulted in significant
attention being focused on what should be
taught, and, to a lesser extent, on how this
is best accomplished.

In order to discuss how an introductory
programming course is taught, it is essential
to first establish a set of objectives for
such a course. Some of these objectives are
obvious and generally agreed upon, others are
engendered by the academic environment in
which this particular course exists. We
first state the objectives and then comment
on their appropriateness and interrelation.

i. The student should gain a know-
ledge of the basic problem sol-
ving methodologies applicable to
developing programmable solutions
to problems.

2. The student should gain skill in a
locally usable high level pro-
gramming language and be able to
construct understandable programs
in this language.

3. As an introductory course~ this
course should introduce novices
to what constitutes computer science
and provide basic knowledge for sub-
sequent eoursework in the area.

the question of how an introductory program-
ming course can be taught to realize these
goals. The appropriateness of the first ~wo
objectives for any introductory programming
course is generally agreed upon [Gri74].
Teaching only a programming language with no
attention to the basic problem solving metho-
dologies implies that either problem solving
is unimportant or intuitive, neither of which
is true. Teaching only abstract problem sol-
ving and either no programming language or one
which is arcane, impractical, or foppish, im-
plies a misconception of the mental capabili-
ties of the average undergraduate or a com-
plete disregard for practicality. Thus the
first two objectives are consistent and, in
themselves, appear to generate no conflitts;
the student should learn general problem sol-
ving techniques and apply them to developing
programs in a practical manner.

The last two objectives are notas general
with respect to introductory programming
courses but are necessary due to the particuo
lar academic environment in which this course
has been developed. The course serves as a
first course for computer science majors and
consequently is an introduction to the curri-
culum. For this reason it must present foun-
dation material for subsequent courses and
must also present a picture of what consti-
tutes computer science. The design of sub-
sequent courses for computer seiemee majors
may assume that students who enroll are in-
terested in the field and have more than an
average aptitude for the material. This is
not the case in an introductory course and
consequently allowances must be made for
students who are taking the course due to
requirements in another major or those who
enroll to learn what computer science is and
during the course find it inconsistent with
their abilities or interests.

4. As an introductory eourse~ students
who have no prior knowledge of com-
puter science and find it not con-
sistent with their abilities should
be able to survive the course with
moderate effort and without special
treatment by the instructor.

The remainder of this paper addresses

The third goal moderates the single-
mindedness with which the first two goals
may be pursued. Topics other than problem
solving and programming must be presented to
give an overview of computer science and the
skills which the student gains with respect to
the first two objectives must be applicable
in future courses.

123

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382063.803373&domain=pdf&date_stamp=1977-02-01

The last goal implies that whatever is
done with respect to achieving the first
three goals must take into account the stu-
dent of marginal aptitude. Large intuitive
leaps must not be required for the average
student to make reasonable progress. Furthe D
successful completion of the course should
leave the student with skills useable with-
out further coursework.

In the following section we discuss a
general scheme for teaching elementary pro-
blem solving and as associated programming
language. In subsequent sections we dis-
cuss the major decisions that must be made
in implementing this general scheme for a
specific problem solving notation and pro-
gramming language. A final section summa-
rizes the major features of the scheme and
its implementation as well as its observed
sl]cces s.

THE GENERAL SCHEME

First Phase: Precise, Sequential Thinkin~

The first phase of teaching elementary
problem solvir~ applicable to program deve-
lopment involves capitalizing on the problem
solving ability already present in the stu-
dent. During this phase the student is pre-
sented with an absurdly (possibly insulting)
simple problem involving no decisions. For
example find the sum Of squares of two
numbers or find the average of three numbers.
The problem is initially presented with speci-
fic inputs (find the sum of squares of 4 and
7) for which specific results are required.
It is then generalized and the notion of a
variable is naturally motivated (find the sum
of squares of A and B) along with the con-
cepts of giving variables initial values
(~nput), computing new values from existing
values (simple assignment) and specifying
results (output). During the presentation
of such examples the necessity of precise,
sequential thinking is strongly and repeat-
edly emphasized and a written notation for
expressing a linear sequence of precise steps
is developed.

It is at this point that elementary
statements from the programming language,
now well motivated, may be introduced. The
student is given a set of simple clerical
rules for translating individual steps in a
proble m solution to statements in the chosen
programming language.

The final exercise of this first phase
invo{ves assigning a problem which requires
computing several simple results from a small
set of input values (e.g., given 4 values,
compute their sum, the difference of the
product of the first two and the quotient of
the last two, etc.). The student is required
to firt develop a written description of the
problem solution, which is strictly graded
for preciseness, and is then required to
translate the solution and run the resulting
program. In order to allow an arbitrary

number of data sets to be handled, we intro-
duce the notion of a closed reading loop along
with the language features necessary to imple-
ment it. While the student is developing this
very simple program, debugging techniques are
introduced, including verification of input
values, and interrogation of intermediate re-
sults. A final step in this programming
assignments is for the instructor to supply
the student with test data once the student
has concluded that the program is correct.
This is an excellent opportunity for the in-
structor to convince the student: that even
the simplest program is seldom thoroughly de-
bugged (provide input so that a division by
zero will occur, or provide badly formatted
input that will yield incorrect results) and
that extreme precision is required to assure
that the resulting program does solve the
class of problems it is purported to.

Second Phase: Disciplined Control

The second phase of teaching elementary
problem solving involves introducing the stu-
dent to a small but sufficient set of control
constructs. As each construct and its notation
are introduced, the programming language fea-
tures which implement it are defined and a
precise clerical scheme for translating from
the notational form of the construct to the
programming language is presented as dogma,
i.e., deviation from the standard translation
is a serious error in graded work. The order
in which the selected control constructs are
motivated and presented is determined by how
natural they are to the student's existing
problem solving patterns. It is felt by the
authors and reflected in the ease with which
the student's grasp the various constructs
that selection constructs (IF-THEN-ELSE, and
CASE) are quite natural, while iteration con-
structs (%JHILE-DO, REPEAT-UNTIL) are not in-
tuitive. This observation and th~pedagogical
desirabil~ty of keeping the set of allowable
constructs as small as possible suggests that
IF-THEN, IF-THEN-ELSE and WHILE-DO are appro-
priate initial choices. CASE is introduced
much later as a convenient alternative to an
unwieldy collection of nested IF-THEN-ELSE
c~nstructs. REPEAT-UNTIL is introduced by
posing a problem where an iterative construct
with trailing decision is both natural and
proper (e,g., the Euclidean algorithm).

IF-THEN and IF-THEN-ELSE are easily mo-
tivated with problems only slightly more com-
plex than those used in the first phase. For
example, find the largest of three values, com-
pute the average of two values if the first is
greater than the second, otherwise compute
their sum. The student's understanding of
these constructs is assured through numerous

problems for which they are required to deve-
lop structured solutions using only those con-
structs available. Care is taken to assign
problems whose structured solutions are natural
and straight-forward, leaving problems where
purely structured solutions are awkward for
discussion only. For example, problems which
yield to the CASE construct when only IF-THEN

124

and IF-THEN-ELSE are allowed, and problems
whose natural solution involve three cases
where there is substantial overlap between,
say, cases 1 and 2 and also between cases 2
and 3 ' should be avoided.

Most students grasp the concept of
these selection constructs quite readily. It
should be noted, however, that a substantial
number of students have difficulty with the
mutally exclusive property of the IF-THEN-
ELSE construct, i.e., problem solution steps
in the ELSE portion of the construct may be
written assuming the condition tested is
false. For example, the following is typical

IF k = 0 THEN

ELSE

IF k # 0 AND a(b THEN

For most students this is corrected with
careful grading of problem solutions.

Unlike selection constructs, iterative
constructs are not easily recognizable in the
students mental problem solving process.
When asked to analyze and make precise the
mental algorithm for finding the largest
value in a list, few students recognize the
iterative nature of the search; they feel
it is sequential. This is not particularly
surpmising in that any search that the stu-
dent performs addresses a list whose length
is known and the search is sequential. Sim~
lar observations can be made with respect to
the mental algorithms we use for computing
the sum of a list of numbers (we use no ac-
cumulation variable) or sorting a list (we
do not think in terms of interchanges).
Consequently the notion of iteration must be
taught rather than just made precise as in
the case of IF-THEN and IF-THEN-ELSE.

The approach used is to, once again,
select an absurdly simple problem which
admits an iterative solution. Initially a
sequential solution is developed and then
analyzed to detect a situation where itera-
tion will greatly simplify or, more impor-
tantly, generalize the solution. For ex-
ample, consider the problem of printing the
first 5 integers. The sequential solution
is

PRINT i

PRINT 2

PRINT 3

PRINT 4

PRINT 5

The student is then asked to observe that

there are five statements that vary only
slightly. The nature of the variation is
then carefully examined. This motivates the
concept of a control variable as well as its
initialization, incrementation and testing
and yields the iterative solution

WHILE I < 5 DO
PRINT Y
I.~- I + 1

Next the problem of printing the first I00
integers is addressed and finally the general
problem of printing the first N integers is
posed and solved quite simply with iteration;
no sequential solution exists.

This process is repeated several times on
problems of increasing difficulty and the
student is required to develop iterative solu-
tions for a collection of problems of varying
difficulty.

Given that iteration is accepted as a
difficult concept requiring teaching it is
pedagogically unwise to clutter its presenta-
tion with other~new concepts. There are many
problems of vastly varying difficulty which
involve only scalars in their definition and
solution. It is neither necessary nor desiT-
able to simultaneously introduce arrays and
iteration. Problems using only scalars do
allow for the introduction of the concepts of_
an accumulation variable and a flag variable
through motivating examples and exercises.

Third Phase: Data Structures and the Top
Down Approaeh

Once the s~odent has been thoroughly
familiarized with the basic collection of co~
trol constructs, it is then approQriate to i~
troduce elementary data structures. The lin-
ear array is introduced by first motivating
its need through problems not solvable with
scalars. The concept of the array and the
accompanying notation are presented in the
environment of a model where precise, picto-
rial description of array declaration and in-
dexing are possible. After several example
problems are solved, the student is assigned
a problem set which includes array problems
of varying difficulty, to be solved but not
programmed. This problem set includes find-
ing the largest value in an array, removing
duplicate values from a sorted array, merging
the values in two sorted arrays into a singl~
third array (the studen% is warned that a
structured solution to this problem is more
difficult). This problem set is graded for
correctness (for incorrect solutions the in-
structor provides input data for which the
solution fails) and proper structuring, both
weighted equally.

At this point the student is prepared to
appreciate the notion of top down development
of problem solutions. The concept of.a pre-
cise problem solution step which has specific
inputs and requisite outputs, but requires
further work to develop its final, programm-

125

able fo~is familiar. The teaching of the
top down approach and step-wise refinement
has been discussed elsewhere [Con73]. Our
approach is comparable.

PROGRAMMING LANGUAGE CONSIDERATIONS

In this section issues concerning
teaching introductory computer science are
discussed in relation to the programming
language used. Our approaches do not dic-
tate the choice of a particular language
and general discussions regarding this ques-
tion have been adequately presented [Smi76].
The reasons for our choice of FORTRAN IV
are included in the following.

Language and Course Objectives

The objectives of this course influence
the choice of programming language and, more
importantly, how the language is presented.

i. The first objective requires that
the language be algorithmic in
nature and should have control
structures like those used by
students in the problem solving
phase that precedes coding. The
well known deficiencies of FORTAN
are taken up in the next section.

2. Availability and high level are
the only constraints derived from
the second objective; any of a va-
riety of languages will do.

3. Since the course is followed by
further course work, the program-
ming language should provide a tool
that is usable there. FORTRAN has
been maligned in this regard be-
cause of its lack of interesting in-
herent data structures. Two points
should be noted. First, FORTRAN is
the initial language not only one a
student will learn. After having
seen several languages, students who
are given projects to complete using
a language of their choice often
make an appropriate decision. FOR-
TRAN is neither clung to nor aban-
doned. Multilingual approaches have
also been common. Second, there is
a difference between learning the
nature of data structures and learn--
ing data structure applications. Im-
plementation of e.g., lists via en-
capsulating procedures written in a
language without list structures
teaches of the disadvantages of the
structure as well as the power.

4. Separation of service courses and
introductory computer science
brings clear advantages. Disadvan-
tages exist as well. Staffing is a
~jor problem. A student in a ser-
vice course who elects to pursue
further computer science study is
inadequately prepared. Since this

course must serve those who are beginning a
computer science curric0lum, those who are
undecided, and those whose main interest lies
elsewhere, the programming language should
be easy to master should be amenable to in-
cremental teaching, and should provide a use-
ful tool for those who do not study additdonal
computer science. Since this course serves
n~inly science and engineering students, FOR-
TRAN is the overwhelming choice of most de-
partments. Computer science students will
learn several more languages; keeping them
ignorant of FORTRAN would be a. serious dis-
service.

To summarize, a programming language
should be simple, subsettable, high level, al-
gorithmic and available, should possess appro-
priate control structures, should be one of the
tools an advances student will need and
should be a suitable single language for peo-
ple outside of computer science. No such lan-
guage exists. The method of presentation of
an actu&l programming language can ameliorate
deficiencies and achieve objectives.

Language and Prob_lem Solvin@ Notation

The notation used for problem solving in
this course is the flowchart. Other notations
possess the advantage that construction of
badly structured algorithms is impossible.
Our choice was based on the ubiquity and uni-
versal understanding of flowchart notation.
The f&Owchart forms used in problem solving
are restrictred to a few well-known structures.
A major aim of the course is convincing the
student that the algorithmic solution express-
ed using these forms is the most important prc~
duct. However, the implementation and compu-
ter execution of the algorithm is an effective
test, and student interest lies in the pro-
duction of correct programs. To that end, the
translation to a programming language should
be simple, consistent, and not liable to in-
troduce additional errors. Mechanical trans-
lations to FORTRAN are provided for each form;
this translation is always required. For ex-
ample, the WHILE-DO construct

< Isa1 ay State nts or
I n i t i a l i z a t i o n

IF(.NOT. Comdl~ion)

State~nts
Co~utatioQ
GO TO-n

[~ m CONTINUE

126

Globally, an entire flowchart can be se-
quentially translated from START to STOP, as
long as declarations are not re-
quired. In FORTRAN, unlike ~TART/
other languages, the s e q u e n t i a l ~
translation property is ~ Algorith~
strictly true until array
problems are addressed. In ~ T O P 2
later courses the production of
programs in other high level
languages is facilitated by supplying trans-
lations from the same constructs to the new
languages.

A Language Processing Model

Models which are simpler than reality
but which retain essential properties are
widely used pedagogical tools. Absolute
truth in a pedagogical model is unimportant;
it is sufficient to not contradict reality.
Simplicity and consistency are the required
features. In this section a FORTRAN Machine
is briefly described. All phenomena relevant
to an introductory course can be explained in
terms of the model.

The FORTRAN Machine has (initially)
five Areas in which information is stored
and manipulated;

i. The Variable Area holds all named data
items manupulated by the p~ogram.

2 The statement Area holds executable
FORTRAN statements, one per numbered
line.

3. The FORMAT Area retains FORMAT stateu
ments.

4. The Input Area has 80 spaces and func-
tions as a card buffer.

5. The Output Area has 133 spaces; a line
of printed output is constructed here.

The compilation phase involves

i. Storage of executable statements in
the Statement Area.

2. sequential, static allocation of Vari-
able Area spaces when variables are in-
itially encountered.

3. storage Of FORMAT statements in the
FORMAT Area.

4. syntactic error checking.

An important feature of the model is a reali~
tic picture of FORTRAN storage allocation.

The subsequent execution phase shows
the interaction among the various Areas:

i. A Statement Pointer in the Statement
Area moves sequentially unless altered
by a GO TO statement.

2. Getting and putting values in the Vari-
able Area shows the difference between
a name and its value, the danger of un-
initialized variables, and the array
element referencing mechanism.

3. Simple algorithms are provided which
explain how a READ or WRITE and its
accompanying FORMAT interact with the
Input or Output Area and associated
devices. These algorithms are driven
by the sequential processing of the
variable lists and the specifications
in the FORMAT statement.

When additional language features are
introduced the FORTRAN Machine is extended.
rather than defining the entire modelinitiall~

l,

2.

Character data is described as being
encoded as digit pairs; four characters
~ill fit into a Variable Area spac 9.
~uDprograms requlre [ne adGition or
several mechanisms. Each Variable Area
space is additionally named with an in-
teger address. Spaces are allocated
for functinn names an~ fnrma] narameters

during complication Of subprograms.
Function names and actual Parameters
which are h0t~simple or subscripted
variables are allocated spaces when the
referencing statement is compiled.
When a subprogram is referenced, the
address of an actual parameter is stores
in the appropriate formal parameter
space. Indirect referencing is intro-
duces to reflect the call by reference
mechanism of FORTRAN. In addition, a
new Subprogram Area has a space allo-
cated for each subprogram. The State-
ment Area line number is saved there
when a reference occurs, and RETURN
uses the value to resume after the re-
ference. Since there is only one space
for a subprogram, this mechanism shows
why recursion is disallowed.

This model has evolved over several se-
mesters and seems to be an adequate vehicle
for explaining in simple terms how FORTRAN
language processing is accomplished. The
reader may envision Machines for other lan-
guages; probably they will be more complex.

SUMMARY

We have described the objectives of our
introductory course and shown some techniques
and devices which help us to achieve them.
Several indicators lead us to believe that
these methods are successful. Students no
longer remark, "I can do this~ but I donTt
know how to start." Given a program in proper
form, nearly all students will produce the •
same flowchart. In later courses, students
learn other languages like PI/I and Algol
quickly; they are, however, nonplussed by the
lack of structure in languages like APL and
SNOBOL4. It is helpful to instructors of sub-
sequent courses that these disciplines are
used when they ~st examine student solutions
to large problems. Finally, the enrollment
continues to grow in spite of its reputation

127

as a fairly difficult course.

Many of these concepts have been used be-
for [Fri76]. Two factors make this course
work. The first is simplicity. A single new
idea is motivated, introduced and used before
another idea is presented. T~e simplest pos-
sible concept is used when a choice is pos-
sible.

The second factor iS the constant moni-
toring of student behavior. The precise use
of problem solving forms and FCRTRAN trans-
lations is required at all times. Clerical
correctness (indentation, blanks comments)
is first encouraged and then required. Assign-
ments consisting of flowchart solutions
without coding encourage students to develop
correct algorithms rather than using the com-
puter in aimless debugging. Programming assi-
gnments include preliminary status reports
consisting of flowcharts to discourage flow-
chart construction after coding. The necess-
ity for careful motivation of students can-
not be overestimated. On the instructor's
part, the work load is considerably in-
creased. But it is productive work, and the
product seems to justify the effort.

References

(Con73) Conway, R. and Gries, D., An Intro-
duction to Pro@ramming, (1973),
W~ntbrop Publishers, Inc.

(Fri76) Friedman, F. and Koffman E., "Some
Pedagogic Considerations in Teaching
Elementary Programming Using Struct-
ure4 FORTRAN," SIGCSE Bulletin 8, I,
(February 1976), pp. i-i0.

(Gri74) Gries, D. 'What Should We Teach in
an Introductory Programming Course?",
SIGCSE Bulletin 6, i, (February 1974),
pp. 81-89.

(Smi76) Smith, C. and Rickman, J., "Selecting
Languages for Pedagogical Tools in
the Computer Science Curriculum,"
SIGCSE Bulletin 8, 3 (September
1976), pp. 39~47.

128

