
METHODOLOGY FOR TEACHING 

INTRODUCTORY COMPUTER SCIENCE 

R.R. Oldehoeft 
R.V. Roman 

Department of Mathematics 
Arizona State University 

INTRODUCTION 

In the last few years it has been gene- 
rally recognized that teaching programming in- 
volves more than describing a new FORTRAN 
statement each day and providing programming 
problems to be coded. The concepts of dis- 
ciplined programming and the accompanying 
interest in the problem solving process, 
coupled with the increasing economic desira- 
bility of constructing correct and maintain- 
able software has resulted in significant 
attention being focused on what should be 
taught, and, to a lesser extent, on how this 
is best accomplished. 

In order to discuss how an introductory 
programming course is taught, it is essential 
to first establish a set of objectives for 
such a course. Some of these objectives are 
obvious and generally agreed upon, others are 
engendered by the academic environment in 
which this particular course exists. We 
first state the objectives and then comment 
on their appropriateness and interrelation. 

i. The student should gain a know- 
ledge of the basic problem sol- 
ving methodologies applicable to 
developing programmable solutions 
to problems. 

2. The student should gain skill in a 
locally usable high level pro- 
gramming language and be able to 
construct understandable programs 
in this language. 

3. As an introductory course~ this 
course should introduce novices 
to what constitutes computer science 
and provide basic knowledge for sub- 
sequent eoursework in the area. 

the question of how an introductory program- 
ming course can be taught to realize these 
goals. The appropriateness of the first ~wo 
objectives for any introductory programming 
course is generally agreed upon [Gri74]. 
Teaching only a programming language with no 
attention to the basic problem solving metho- 
dologies implies that either problem solving 
is unimportant or intuitive, neither of which 
is true. Teaching only abstract problem sol- 
ving and either no programming language or one 
which is arcane, impractical, or foppish, im- 
plies a misconception of the mental capabili- 
ties of the average undergraduate or a com- 
plete disregard for practicality. Thus the 
first two objectives are consistent and, in 
themselves, appear to generate no conflitts; 
the student should learn general problem sol- 
ving techniques and apply them to developing 
programs in a practical manner. 

The last two objectives are notas general 
with respect to introductory programming 
courses but are necessary due to the particuo 
lar academic environment in which this course 
has been developed. The course serves as a 
first course for computer science majors and 
consequently is an introduction to the curri- 
culum. For this reason it must present foun- 
dation material for subsequent courses and 
must also present a picture of what consti- 
tutes computer science. The design of sub- 
sequent courses for computer seiemee majors 
may assume that students who enroll are in- 
terested in the field and have more than an 
average aptitude for the material. This is 
not the case in an introductory course and 
consequently allowances must be made for 
students who are taking the course due to 
requirements in another major or those who 
enroll to learn what computer science is and 
during the course find it inconsistent with 
their abilities or interests. 

4. As an introductory eourse~ students 
who have no prior knowledge of com- 
puter science and find it not con- 
sistent with their abilities should 
be able to survive the course with 
moderate effort and without special 
treatment by the instructor. 

The remainder of this paper addresses 

The third goal moderates the single- 
mindedness with which the first two goals 
may be pursued. Topics other than problem 
solving and programming must be presented to 
give an overview of computer science and the 
skills which the student gains with respect to 
the first two objectives must be applicable 
in future courses. 
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The last goal implies that whatever is 
done with respect to achieving the first 
three goals must take into account the stu- 
dent of marginal aptitude. Large intuitive 
leaps must not be required for the average 
student to make reasonable progress. Furthe D 
successful completion of the course should 
leave the student with skills useable with- 
out further coursework. 

In the following section we discuss a 
general scheme for teaching elementary pro- 
blem solving and as associated programming 
language. In subsequent sections we dis- 
cuss the major decisions that must be made 
in implementing this general scheme for a 
specific problem solving notation and pro- 
gramming language. A final section summa- 
rizes the major features of the scheme and 
its implementation as well as its observed 
sl]cces s. 

THE GENERAL SCHEME 

First Phase: Precise, Sequential Thinkin~ 

The first phase of teaching elementary 
problem solvir~ applicable to program deve- 
lopment involves capitalizing on the problem 
solving ability already present in the stu- 
dent. During this phase the student is pre- 
sented with an absurdly (possibly insulting) 
simple problem involving no decisions. For 
example find the sum Of squares of two 
numbers or find the average of three numbers. 
The problem is initially presented with speci- 
fic inputs (find the sum of squares of 4 and 
7) for which specific results are required. 
It is then generalized and the notion of a 
variable is naturally motivated (find the sum 
of squares of A and B) along with the con- 
cepts of giving variables initial values 
(~nput), computing new values from existing 
values (simple assignment) and specifying 
results (output). During the presentation 
of such examples the necessity of precise, 
sequential thinking is strongly and repeat- 
edly emphasized and a written notation for 
expressing a linear sequence of precise steps 
is developed. 

It is at this point that elementary 
statements from the programming language, 
now well motivated, may be introduced. The 
student is given a set of simple clerical 
rules for translating individual steps in a 
proble m solution to statements in the chosen 
programming language. 

The final exercise of this first phase 
invo{ves assigning a problem which requires 
computing several simple results from a small 
set of input values (e.g., given 4 values, 
compute their sum, the difference of the 
product of the first two and the quotient of 
the last two, etc.). The student is required 
to firt develop a written description of the 
problem solution, which is strictly graded 
for preciseness, and is then required to 
translate the solution and run the resulting 
program. In order to allow an arbitrary 

number of data sets to be handled, we intro- 
duce the notion of a closed reading loop along 
with the language features necessary to imple- 
ment it. While the student is developing this 
very simple program, debugging techniques are 
introduced, including verification of input 
values, and interrogation of intermediate re- 
sults. A final step in this programming 
assignments is for the instructor to supply 
the student with test data once the student 
has concluded that the program is correct. 
This is an excellent opportunity for the in- 
structor to convince the student: that even 
the simplest program is seldom thoroughly de- 
bugged (provide input so that a division by 
zero will occur, or provide badly formatted 
input that will yield incorrect results) and 
that extreme precision is required to assure 
that the resulting program does solve the 
class of problems it is purported to. 

Second Phase: Disciplined Control 

The second phase of teaching elementary 
problem solving involves introducing the stu- 
dent to a small but sufficient set of control 
constructs. As each construct and its notation 
are introduced, the programming language fea- 
tures which implement it are defined and a 
precise clerical scheme for translating from 
the notational form of the construct to the 
programming language is presented as dogma, 
i.e., deviation from the standard translation 
is a serious error in graded work. The order 
in which the selected control constructs are 
motivated and presented is determined by how 
natural they are to the student's existing 
problem solving patterns. It is felt by the 
authors and reflected in the ease with which 
the student's grasp the various constructs 
that selection constructs (IF-THEN-ELSE, and 
CASE) are quite natural, while iteration con- 
structs (%JHILE-DO, REPEAT-UNTIL) are not in- 
tuitive. This observation and th~pedagogical 
desirabil~ty of keeping the set of allowable 
constructs as small as possible suggests that 
IF-THEN, IF-THEN-ELSE and WHILE-DO are appro- 
priate initial choices. CASE is introduced 
much later as a convenient alternative to an 
unwieldy collection of nested IF-THEN-ELSE 
c~nstructs. REPEAT-UNTIL is introduced by 
posing a problem where an iterative construct 
with trailing decision is both natural and 
proper (e,g., the Euclidean algorithm). 

IF-THEN and IF-THEN-ELSE are easily mo- 
tivated with problems only slightly more com- 
plex than those used in the first phase. For 
example, find the largest of three values, com- 
pute the average of two values if the first is 
greater than the second, otherwise compute 
their sum. The student's understanding of 
these constructs is assured through numerous 

problems for which they are required to deve- 
lop structured solutions using only those con- 
structs available. Care is taken to assign 
problems whose structured solutions are natural 
and straight-forward, leaving problems where 
purely structured solutions are awkward for 
discussion only. For example, problems which 
yield to the CASE construct when only IF-THEN 
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and IF-THEN-ELSE are allowed, and problems 
whose natural solution involve three cases 
where there is substantial overlap between, 
say, cases 1 and 2 and also between cases 2 
and 3 ' should be avoided. 

Most students grasp the concept of 
these selection constructs quite readily. It 
should be noted, however, that a substantial 
number of students have difficulty with the 
mutally exclusive property of the IF-THEN- 
ELSE construct, i.e., problem solution steps 
in the ELSE portion of the construct may be 
written assuming the condition tested is 
false. For example, the following is typical 

IF k = 0 THEN 

ELSE 

IF k # 0 AND a( b THEN 

For most students this is corrected with 
careful grading of problem solutions. 

Unlike selection constructs, iterative 
constructs are not easily recognizable in the 
students mental problem solving process. 
When asked to analyze and make precise the 
mental algorithm for finding the largest 
value in a list, few students recognize the 
iterative nature of the search; they feel 
it is sequential. This is not particularly 
surpmising in that any search that the stu- 
dent performs addresses a list whose length 
is known and the search is sequential. Sim~ 
lar observations can be made with respect to 
the mental algorithms we use for computing 
the sum of a list of numbers (we use no ac- 
cumulation variable) or sorting a list (we 
do not think in terms of interchanges). 
Consequently the notion of iteration must be 
taught rather than just made precise as in 
the case of IF-THEN and IF-THEN-ELSE. 

The approach used is to, once again, 
select an absurdly simple problem which 
admits an iterative solution. Initially a 
sequential solution is developed and then 
analyzed to detect a situation where itera- 
tion will greatly simplify or, more impor- 
tantly, generalize the solution. For ex- 
ample, consider the problem of printing the 
first 5 integers. The sequential solution 
is 

PRINT i 

PRINT 2 

PRINT 3 

PRINT 4 

PRINT 5 

The student is then asked to observe that 

there are five statements that vary only 
slightly. The nature of the variation is 
then carefully examined. This motivates the 
concept of a control variable as well as its 
initialization, incrementation and testing 
and yields the iterative solution 

WHILE I < 5 DO 
PRINT Y 
I.~- I + 1 

Next the problem of printing the first I00 
integers is addressed and finally the general 
problem of printing the first N integers is 
posed and solved quite simply with iteration; 
no sequential solution exists. 

This process is repeated several times on 
problems of increasing difficulty and the 
student is required to develop iterative solu- 
tions for a collection of problems of varying 
difficulty. 

Given that iteration is accepted as a 
difficult concept requiring teaching it is 
pedagogically unwise to clutter its presenta- 
tion with other~new concepts. There are many 
problems of vastly varying difficulty which 
involve only scalars in their definition and 
solution. It is neither necessary nor desiT- 
able to simultaneously introduce arrays and 
iteration. Problems using only scalars do 
allow for the introduction of the concepts of_ 
an accumulation variable and a flag variable 
through motivating examples and exercises. 

Third Phase: Data Structures and the Top 
Down Approaeh 

Once the s~odent has been thoroughly 
familiarized with the basic collection of co~ 
trol constructs, it is then approQriate to i~ 
troduce elementary data structures. The lin- 
ear array is introduced by first motivating 
its need through problems not solvable with 
scalars. The concept of the array and the 
accompanying notation are presented in the 
environment of a model where precise, picto- 
rial description of array declaration and in- 
dexing are possible. After several example 
problems are solved, the student is assigned 
a problem set which includes array problems 
of varying difficulty, to be solved but not 
programmed. This problem set includes find- 
ing the largest value in an array, removing 
duplicate values from a sorted array, merging 
the values in two sorted arrays into a singl~ 
third array (the studen% is warned that a 
structured solution to this problem is more 
difficult). This problem set is graded for 
correctness (for incorrect solutions the in- 
structor provides input data for which the 
solution fails) and proper structuring, both 
weighted equally. 

At this point the student is prepared to 
appreciate the notion of top down development 
of problem solutions. The concept of.a pre- 
cise problem solution step which has specific 
inputs and requisite outputs, but requires 
further work to develop its final, programm- 
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able fo~is familiar. The teaching of the 
top down approach and step-wise refinement 
has been discussed elsewhere [Con73]. Our 
approach is comparable. 

PROGRAMMING LANGUAGE CONSIDERATIONS 

In this section issues concerning 
teaching introductory computer science are 
discussed in relation to the programming 
language used. Our approaches do not dic- 
tate the choice of a particular language 
and general discussions regarding this ques- 
tion have been adequately presented [Smi76]. 
The reasons for our choice of FORTRAN IV 
are included in the following. 

Language and Course Objectives 

The objectives of this course influence 
the choice of programming language and, more 
importantly, how the language is presented. 

i. The first objective requires that 
the language be algorithmic in 
nature and should have control 
structures like those used by 
students in the problem solving 
phase that precedes coding. The 
well known deficiencies of FORTAN 
are taken up in the next section. 

2. Availability and high level are 
the only constraints derived from 
the second objective; any of a va- 
riety of languages will do. 

3. Since the course is followed by 
further course work, the program- 
ming language should provide a tool 
that is usable there. FORTRAN has 
been maligned in this regard be- 
cause of its lack of interesting in- 
herent data structures. Two points 
should be noted. First, FORTRAN is 
the initial language not only one a 
student will learn. After having 
seen several languages, students who 
are given projects to complete using 
a language of their choice often 
make an appropriate decision. FOR- 
TRAN is neither clung to nor aban- 
doned. Multilingual approaches have 
also been common. Second, there is 
a difference between learning the 
nature of data structures and learn-- 
ing data structure applications. Im- 
plementation of e.g., lists via en- 
capsulating procedures written in a 
language without list structures 
teaches of the disadvantages of the 
structure as well as the power. 

4. Separation of service courses and 
introductory computer science 
brings clear advantages. Disadvan- 
tages exist as well. Staffing is a 
~jor problem. A student in a ser- 
vice course who elects to pursue 
further computer science study is 
inadequately prepared. Since this 

course must serve those who are beginning a 
computer science curric0lum, those who are 
undecided, and those whose main interest lies 
elsewhere, the programming language should 
be easy to master should be amenable to in- 
cremental teaching, and should provide a use- 
ful tool for those who do not study additdonal 
computer science. Since this course serves 
n~inly science and engineering students, FOR- 
TRAN is the overwhelming choice of most de- 
partments. Computer science students will 
learn several more languages; keeping them 
ignorant of FORTRAN would be a. serious dis- 
service. 

To summarize, a programming language 
should be simple, subsettable, high level, al- 
gorithmic and available, should possess appro- 
priate control structures, should be one of the 
tools an advances student will need and 
should be a suitable single language for peo- 
ple outside of computer science. No such lan- 
guage exists. The method of presentation of 
an actu&l programming language can ameliorate 
deficiencies and achieve objectives. 

Language and Prob_lem Solvin@ Notation 

The notation used for problem solving in 
this course is the flowchart. Other notations 
possess the advantage that construction of 
badly structured algorithms is impossible. 
Our choice was based on the ubiquity and uni- 
versal understanding of flowchart notation. 
The f&Owchart forms used in problem solving 
are restrictred to a few well-known structures. 
A major aim of the course is convincing the 
student that the algorithmic solution express- 
ed using these forms is the most important prc~ 
duct. However, the implementation and compu- 
ter execution of the algorithm is an effective 
test, and student interest lies in the pro- 
duction of correct programs. To that end, the 
translation to a programming language should 
be simple, consistent, and not liable to in- 
troduce additional errors. Mechanical trans- 
lations to FORTRAN are provided for each form; 
this translation is always required. For ex- 
ample, the WHILE-DO construct 

<   Isa1 ay State nts or 
I n i t i a l i z a t i o n  

IF( .NOT. Comdl~ion) 

State~nts  
Co~utatioQ 
GO TO-n 

[ ~  m CONTINUE 
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Globally, an entire flowchart can be se- 
quentially translated from START to STOP, as 
long as declarations are not re- 
quired. In FORTRAN, unlike ~TART/ 
other languages, the s e q u e n t i a l ~  
translation property is ~ Algorith~ 
strictly true until array 
problems are addressed. In ~ T O P 2  
later courses the production of 
programs in other high level 
languages is facilitated by supplying trans- 
lations from the same constructs to the new 
languages. 

A Language Processing Model 

Models which are simpler than reality 
but which retain essential properties are 
widely used pedagogical tools. Absolute 
truth in a pedagogical model is unimportant; 
it is sufficient to not contradict reality. 
Simplicity and consistency are the required 
features. In this section a FORTRAN Machine 
is briefly described. All phenomena relevant 
to an introductory course can be explained in 
terms of the model. 

The FORTRAN Machine has (initially) 
five Areas in which information is stored 
and manipulated; 

i. The Variable Area holds all named data 
items manupulated by the p~ogram. 

2 The statement Area holds executable 
FORTRAN statements, one per numbered 
line. 

3. The FORMAT Area retains FORMAT stateu 
ments. 

4. The Input Area has 80 spaces and func- 
tions as a card buffer. 

5. The Output Area has 133 spaces; a line 
of printed output is constructed here. 

The compilation phase involves 

i. Storage of executable statements in 
the Statement Area. 

2. sequential, static allocation of Vari- 
able Area spaces when variables are in- 
itially encountered. 

3. storage Of FORMAT statements in the 
FORMAT Area. 

4. syntactic error checking. 

An important feature of the model is a reali~ 
tic picture of FORTRAN storage allocation. 

The subsequent execution phase shows 
the interaction among the various Areas: 

i. A Statement Pointer in the Statement 
Area moves sequentially unless altered 
by a GO TO statement. 

2. Getting and putting values in the Vari- 
able Area shows the difference between 
a name and its value, the danger of un- 
initialized variables, and the array 
element referencing mechanism. 

3. Simple algorithms are provided which 
explain how a READ or WRITE and its 
accompanying FORMAT interact with the 
Input or Output Area and associated 
devices. These algorithms are driven 
by the sequential processing of the 
variable lists and the specifications 
in the FORMAT statement. 

When additional language features are 
introduced the FORTRAN Machine is extended. 
rather than defining the entire modelinitiall~ 

l, 

2. 

Character data is described as being 
encoded as digit pairs; four characters 
~ill fit into a Variable Area spac 9. 
~uDprograms requlre [ne adGition or 
several mechanisms. Each Variable Area 
space is additionally named with an in- 
teger address. Spaces are allocated 
for functinn names an~ fnrma] narameters 

during complication Of subprograms. 
Function names and actual Parameters 
which are h0t~simple or subscripted 
variables are allocated spaces when the 
referencing statement is compiled. 
When a subprogram is referenced, the 
address of an actual parameter is stores 
in the appropriate formal parameter 
space. Indirect referencing is intro- 
duces to reflect the call by reference 
mechanism of FORTRAN. In addition, a 
new Subprogram Area has a space allo- 
cated for each subprogram. The State- 
ment Area line number is saved there 
when a reference occurs, and RETURN 
uses the value to resume after the re- 
ference. Since there is only one space 
for a subprogram, this mechanism shows 
why recursion is disallowed. 

This model has evolved over several se- 
mesters and seems to be an adequate vehicle 
for explaining in simple terms how FORTRAN 
language processing is accomplished. The 
reader may envision Machines for other lan- 
guages; probably they will be more complex. 

SUMMARY 

We have described the objectives of our 
introductory course and shown some techniques 
and devices which help us to achieve them. 
Several indicators lead us to believe that 
these methods are successful. Students no 
longer remark, "I can do this~ but I donTt 
know how to start." Given a program in proper 
form, nearly all students will produce the • 
same flowchart. In later courses, students 
learn other languages like PI/I and Algol 
quickly; they are, however, nonplussed by the 
lack of structure in languages like APL and 
SNOBOL4. It is helpful to instructors of sub- 
sequent courses that these disciplines are 
used when they ~st examine student solutions 
to large problems. Finally, the enrollment 
continues to grow in spite of its reputation 
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as a fairly difficult course. 

Many of these concepts have been used be- 
for [Fri76]. Two factors make this course 
work. The first is simplicity. A single new 
idea is motivated, introduced and used before 
another idea is presented. T~e simplest pos- 
sible concept is used when a choice is pos- 
sible. 

The second factor iS the constant moni- 
toring of student behavior. The precise use 
of problem solving forms and FCRTRAN trans- 
lations is required at all times. Clerical 
correctness (indentation, blanks comments) 
is first encouraged and then required. Assign- 
ments consisting of flowchart solutions 
without coding encourage students to develop 
correct algorithms rather than using the com- 
puter in aimless debugging. Programming assi- 
gnments include preliminary status reports 
consisting of flowcharts to discourage flow- 
chart construction after coding. The necess- 
ity for careful motivation of students can- 
not be overestimated. On the instructor's 
part, the work load is considerably in- 
creased. But it is productive work, and the 
product seems to justify the effort. 
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