RELATIONS BETWEEN DIAGONALIZATION,
PROOF SYSTEMS, AND
COMPLEXITY GAPS
by

Juris Hartmanis

TR 77-312

Computer Science Department
Cornell University
Ithaca, N.Y. 14853

Abstract

In this paper we study diagonal processes over time-bounded
computations of one-tape Turing machines by diagonalizing only
over those machines for which there exist formal proofs that they
operate in the given time bound. This replaces the traditional
"clock” in resource bounded diagonalization by formal proofs
about running times and establishes close relations between pro-
perties of proof systems and existence of sharp time bounds for
one-tape Turing machine complexity classes. These diagonalization
methods also show that the Gap Theorem for resource bounded
computations can hold only for those complexity classes which
differ from the corresponding provable complexity classes.
Furthermore, we show that there exist recursive time bounds
T(n) such that the class of languages for which we can formally
prove the existance of Turing machines which accept them in
time T(n) differs from the class of languages accepted by Turing
machines for which we can prove formally that they run in time

T(n).

-2~

1. INTRODUCTION

One of the central problems in computational complexity
theory is to determine for a given computer model and computer
resource by how much a given resource bound T(n) (satisfying
some honesty conditions) has to be increased to be able to com-
pute something new which cannot be computed in the old resource
bound T(n) - [S].

In this paper we show that these problems are very closely
related to problems about what can and cannot be proven formally
about resource bounded computations. ‘

The standard way to obtain separation results for complexity
classes is by efficiently diagonalizing over all the computations
which can be performed in the given resource bound. The efficiency
of the diagonal process over the resource bounded computations,
or the additional amount of resources required to carry out the
diagonalization over all the computations computable within the
giveh resource bound, deternine.‘the sharpness of the results. The
standard way to carry out such diagonal processes is to bound the
given resource as a function of the length of the input and by
simulation determine on successive inputs what different Turing
machines do and do the oppositg, provided their simulation did
not try to exceed the given resource bound (1,4,5). Such
dlagonil processes, in essence, require that we perform two sepa-
rate computationss a simulation process and a process which shuts
the computation off if it tries to use too much of the bounded

resource.

This method works very well for reusable resource measures
where we can first compute the resource bound and then perform
the simulation within the bounded resources. For example, for
the tape bounded Turing machine computations the following result
holds [5].

1. Let t(n), t(n) > log n, be computable on t(n) tape.

Then there exists a language, A, acceptable on t(n)
tape but not acceptable of tl(n) tape, provided
t, (n)

lim = 0.

n+» t(n)

For time bounded Turing machine comput;tlonu the problems
become more difficult and the results depend whether we consider
the class of all many-tape Turing machines or the class of one-
tape Turing machines (or more generally the class of Turing
machines with a fixed number of tapes). In the first case, when
we consider multi-tape Turing machines, it is easy to run the two
computational processes of simulation and the shut-off clock
independently on separate sets of tapes and not lose any time.
On the other hand, since in this case we must simulate Turing
machines with arbitrarily many tapes on a Turing machine with a
fixed numbéer of tapes (the diagonalizer), we lose time in this
process. The use of the best known simulation result of many-
tape machines on a two-tape machine yields the following hier-
archy result for multi-tape Turing machines (7]; any improvement

in the time loss during the simulation of many-tape Turing

machines on a machine with fixed number of tapes would lead to
a corresponding improvement in this result.

2. Let T(n), T(n) > n, be computable by a k-tape Turing
machine in time T(n). Then there exists a language
which is accepted in time T(n), but not in time
rl(n), provided

Tl(n)'lhol(n) -o.
n+e T(n)

For one-tape Turing machines (or Turing machines with a
fixed number of tapes) the situation charnges. In this case the
simulation of one-tape machines on a fixed one-tape machine can
be carried out without a substantial time loss, but the running
of the shut-off "clock” must be performed (in parallel) w;th the
simulation operations on the same tape (or the fixed nurber of
tapes). The combining of two independent computations on one
tape leads to a time loss and the best result about one-tape
Turing machines known up to the present is stated below [4].

3. Let T(n) > n°log n be computable on log T(n) tape in

T(n) time by a one-tape Turing machine. Then there

exists a set acceptable by a onre-tape Turing machine
in time T(n)°log T(n) which is not acceptable by any
one-tape Turing machine in time Tl(n), provided

T, (n)
lim L

n+= T(n)

-5-

Next we consider Turing machines with k-tapes for a fixed
k, k > 2. In this case one can use two tapes to cleverly move
along parts of the "clock” and a recent result shows that one
can get sharper results for these machines than for one-tape
machines (8].

4. Let T(n) be time constructible on a k-tape Turing

machine, k > 2. Then

T, (n) log* (T, (n)]
1lim 1 1 -

nse T(n)
implies that there exists a set acceptabie in time
T(n) on a k-tape machine but not in time Tl(n).
Where
2¢

. 2
log*n = min{k|n<2® }x times).

It is seen from the last two results that the need to éarry
along a "clock” does not permit us (so far) to prove for time
bounded computations of k-tape Turing machines as sharp results
as we have for the tape bounded computations and which we con-
jecture also hold for time bounded computations.

In this paper we study a new class of diagonalization pro-
cesses over resource bounded classes in which we do not use
(explicitly) a "clock®. ‘In particular, we study the class of
diagonal processes over time-bounded computations of one-tape
(or k-tape) Turing machines in which we diagonalize over the
computations of a Turing machine My only if there is a formal
proof that "1 runs in the given time bound. Thus in these diag-

onal processes we place the "clock®” which shuts off the simulation

before it takes too much time by a formal proof that the simula-
tion will not take too much time. As we will show, this approach
will estaﬁlish close links between properties of proof systenms

and the existencé of sharp time bounds for one-tape Turing machine
computations. Thus these results raise some interesting questions
about what can and cannot be proven formally about running times
of computations and emphasizes the importance of these problems

to computational complexity theory.

It should be observed that it is known that formal mathe-
matical systems are not powerful enough for the analysis of
algorithms, since we can exhibit algoiithﬁ- vhich run in a spe-
cified time, say T(n) = nz, but such that there is not pruvf in
the forgal system that they run in less time than 2" (e}. Tﬁe
questions raised in this paper about provable properties of run-
ning times of computations are different and they have the
following form:

Is there for every set acceptable on a one-tape
Turing machine in t;ne n2 a one-tape Turing
machine "io which accepts this set in time n2

and for which it can be formally proven that
M, runs in time nz?
io h

Finally, we show that the diagonalization methods using
formal proofs show that the well known Gap Theorem for resource
bounded computations [1,5) does not hold for complexity classes
consisting of languages accepted by Turing machines for which
we can prove formally that they run in the given time bound.

This result shows that the originally surprising gap phenomenon
for computational complexity classes can appear only for the non-

constructively defined computational complexity classes

TIME[T(n)) = {A|A is accepted by a one-tape Tm in
time < T(n)}.

If we formalize our reasoninb and insist that the complexity
classes consist only of the sets accepted by Turing machines for
which we.can'prove formally that they run in the given time bound,
then the gap phenomenon disappears. ‘

-We now summarize the basic concepts and notation used in this
paper. It should be observed that though we formulate and prove
our results in the first half of this paper only for one-tape
Turing machines all results carry over directly for k-tape Turing
machines for a fixed k. Let M), My, My, ... be a standard enu-
meration of one-tape Turing machines (Tm's). The running time

T; on My is given by

Ti(n) = max{number of operations performed by Hi

on input w|w ¢ "},

The set of tapes accepted by "1 is denoted by L(Hl).

An axiomatizable theory is a triple F = (f, W, T) where

1. I is a finite non-empty alphabet,

2, W, W+, is a recursive set, referred to as the
set of well-formed formulas,

3. 1, < W, is a recursively enumerable set, referred

to as theorems provable in F.

If v is provable in F we will write
lwor |I-w

when P 'is fixed.
If the set T is recursive the system F is said to be decidable.

We can think of W as the syntactically correctly forwed
formulas and T as the subset of these for which there exist .
proofs in the formal system F. (In practice we would prescribe
a set of axioms and proof rules so that it can be recursively
decided whether a given string following a well formed fornmuia
is a proof of this formula).

We furthermore assume that the Turing machines form a model
(or a submodel) for the theory P. Thus we assume that we can
express and prove elementary facts about Turing machires in F
and that only true statements about Turing machines can be
proven in P.

The complexity classes and provable complexity classes are

defined for partial recursive functions T(n) as follows:

-9~

TIME([T(n)) = (L(Hi)l'l‘i(n) < T(n)}
and
F-TIME(T(n)] = {L("i)|'T1(") < T(n)" is provable in F} =

L) |k 1y(n) < T).

Thus the class TIME[T(n)) is the class of all sets acceptable
by one-tape Tm's whose running time is bounded by T(n), without
specifying how to determine that this is so. On the other hand,
for a fixed formal system F the ciass F-TIME[T(n)] is the com-
pPlexity class consisting of the languages accepted by Tm's for
which there is a proof in F that they run in the time bound T(n).

We shall refer to these sets as provable complexity classes.

For related work on provable properties bf computational
complexity problems see [3,9) and for early work on provable

recursive functions see [2].

2. AXIOMATIZABLE THEORIES AND DIAGONALIZATION

In this section we explore the use of formal proofs that
machines run in a given time bound in diagonalization processes.
As pointed out before, the standard way of diagonalizing is to
simulate all Turing machines and shutting the simulation off by
an independent "clock® mechanism if the simulation tries to take
too much time. 1Instead, we assume that we have a fixed formalized
mathematical system F, as described before, and only after

(searching in an efficient way for proofs when) we find a proof

-10-

in P for a ™ M; that T, (n) < T(n) do we diagonalize over M,

by simulating H1 and doing the opposite. Thus we are replacing.
the shut-off mechanism of the Previously used diagonal processes
by a formal proof that the machine under consideration halts in
a given time. As we will see in the followirg this diagonali-
zation method depends now on what can be proven formally about

running times of Turing machines and will explore these relations.

THEOREM 13 Let T(n), T(n) > n-log n, be a recursive function
for which

F-TIME(T(n)] = TIME([T(n)].
Then for any non-decreasing, unbounded recursive function
g(n), g(n) > 1, we have that

TIME[T(n)] # TIME[T(n)-g(n)).

gggggl 8ince g(n) > 1 we know that
TIME(T(n)] .S TIME[T(n)-g(n)].
To show that
" TIME[T(n)] ¥ TIME[T(n)-g(n)]
we construct a Tm M, such that

T(HD) € TIME[T(n)+g(n)] - TIME(T(n)].

The machine M, operates as follows:
1. For input x M, lays off log |x| tape in x| <log |x]|
steps and checks if x has the format

x = x) L] xy $ Xq

-11-

with Xy Xyr Xg in (L-#)* and such that

Ix, ¢ x, | < log |x].
If not the input is rejected, otherwise:
2. Mp chekcs whether Xy is a description of aTm,
say M;, and x, ig a proof in F that Ti(n) < T(n)
for all n. 1If not the input is rejected, otherwise:
3. On the marked off tape MD searches for m such that
1<m<n and lxll2 < g(m).
If no such m is found the input is rejected, otherwise:
4. MD simulates X = Mi on input
x = x] X, ¥ xy
and accepts x iff M1 rejects it.

Note that the steps 1, 2 and 3 can all be carried out in time
n-log n for n = |x!, since log n tape can be layed-off in n-log n
steps and since all the other processes halt and are carried out
on log n tape, the total time is bounded by n:log n for these
steps. Since we can only prove true properties about Turing
machines in F we know that successful completion of step 2 guar-
antees that M; runs in time T,(n) < T(n). Furthermore, since we
can simulate a step of M, computation in lelz steps on M,, the
condition lelz < g(m) for some m < n implies thaé lelz < g(n)

and therefore HD operates in time

TD(n) < Ti(n)~g(n) < T(n)+g(n).

~-12-

Thus

L(Mp) is in TIME[T(n)-g(n)].

On the other hand, L(MD) cannot be in F-TIME(T(n)) since this
would imply that there exists a T™m M; such that L(Mi) = L(MD)
‘and there is a proof in the formal system F that Ti(n) < T(n)
and therefore we must have that L(Mi) # L(MD). Thus L("i) is
not in P-TIME[T(n)] and because of our hypotheses we know that
L(My) € TIME(T(n)-g(n)] - TIME(T(n)],
as was to be shown. .
From the proof of Theorem 1 it imrediately follows that
for any recursive time bound a "slight" increase in the bound
permits a new computation which is not provably computatle in

the old complexity bound.

Corollory 2: Let T(n), T(n) < n+-log n, be a recursive function

and let g(n) > 1 be a non-decreasing, unbounded recursive function.

Then
F-TIME(T(n)] § TIME[T(n)+g(n)].
The above theorem shows that the condition
F-TIME[T(n)] = TIME([T(n))
yields very sharp hierarchy results for time bounded one-tape Tm
computations. Thus the very interesting open problem is about
the validity of the assumpticn

F-TIME([T(n)] = TIME([T(n)]).

-13-~

We conjecture that this condition holds for time bounds with
certain "honesty” conditions. For example, the previous diago-
nalization results [4] required that the time bound T(n) be
computable in time T(n) and on log T(n) tape. Thus we would
expect that

F-TIME(T(n)] = TIME(T(n)]
for such functions as
T(n) = n°log n, T(n) = nz, T(n) = 2", etc.

In the next section, we will show that the corresponding
conjecture holds for tape-bounded computations for which we can,
in essence, show that a complexity class is equal to the corre-
sponding provable complexity class iff the complexity class can
be defined by a t?pe constructible bound.

Cn the other hand, our next result shows there exist recur-

sive time bounds for which the classic complexity classes differ
» from the corresponding provable ccmplexity classes. That is, we
will show that there exist recursive, nomotonically increasing
functions T(n) such that for some set A acceptable in time T(n)
there is no Tnm Mi which accepts A and for which it can be proven
in F that T;(n) < T(n).

Though this theorem is only stated for one-tape Tm's it is
easily seen that it holds for all computational complexity

measures [S).

THECRZM 3: There exist recursive, monotonically increasing time
bounds T(n) such that

F-TIME[T(n)] # TIME(T(n)].

-14-

Proof: By the Gap Theorem [1,5] we can effectively construct
a recursive, monotonically increasing function To(n) > n-log n
such that
2
TIME[To(n)) = TIME[To(n) 1.
But by Theorem 1 we krow that, choosing o(n) = To(n), we get

F-TIME[T,(n)] # TIME(T, (n)?].

Thus
r-'rms['ro(n)] t TIMB[To(n)]:

as was to be shown. |
By similar reasoning we can get the next independence result

about non-existance of formal proofs of resource bounds.

Corollary 4: Let G(n) be a non-decreasing, unbounded recursive
function. Then ere exists an arbitrarily large, non-decreasing
recursive functiorn T(n) such that for any formal system F
(satisfying our assumptiors)

F-TIME[G(T(n))] ¥ TIME[T(n)].

It should be observed that for every formal mathematical
system F we can effectively construct a recursive bourd T(n)
such that for no Tm "j' with T(n) < Tj(n), can it be proven in
.F that "j is total.

Note though that the proof of Theorem 3 and COfollury 4
are not based on such a size argument. The time bound To(n)
of Theorem 3 is such that for any formal mathematical system F

(satisfying our previous assumptions) we must have

-15-

F~TIME(T,(n)] ¥ TIME[T,(n)].

Thus we see that for the time bound To(n), yielded by the Gap
‘Theorem, for every formal system F there will be Tm's accepting

a set A in time To(n) but for none of these machines can it be
proven in F that they run in time To(n). This effect is strength-
ened by Corollary 4.

From the above we see that though the time bound To(n) is
effectively constructed the complexity class defined by To(n)
is such that we cannot effectively list names of T™m's which
accept these sets and run in time To(n). Thus we see that the
originally surprising Gap Theorem describes a fact about non-
constructive complexity classes. Or, stated differently, it is
a result about a class of languages whose defining propertieés
cannot be verified formally.

Our next result shows that a gap result can hold for provable
complexity classes for a formal system F only if they differ from
the corresponding non-constructively defined complexity classes
ané, furthermore, that we can constructively'exhibit a set on
which they differ. As a matter of fact, this implies that there
is no proof in F that, the slmply constructed Tm, HD of Theorem 1
runs in time T(n) *g(n) nor is there a proof in F, for any other

My for which L(Hl) = L(HD), that

Ti(n) < T(n)-g(n).

-16-

Corollary S: For a recursive function T(n), T(n) > n-log n,
and a non-decreasing, unbounded recursive function g(n), g(n)> 1,
we can have, a gap in the hierarchy of the provable complexity
classes,

F-TIME(T(n)] = F-TIME(T(n)-g(n)]
if and only if

F-TIME[T(n) *g(n)] % TIME(T(n)-g(n)]

and we can effectively construct a set A such that

A € TIME(T(n) *g(n)] -~ P-TIME[T(n)-g(n)]).

Proof: From our assumption about F we know that

F-TIME[T(n) .g(n)] S TIME(T(n)-g(n)],. -
- from Theorem 1 we know that

P-TIME(T(n)]) ¢ TIME(T(n)-g(n)],
and therefore

P-TIME(T(n)) % TIME[T(n)-g(n)].

Purthermore we know that, for the effectively constructed

Tm M, of Theorem 1 we have

L(My) € TIME[T(n)*g(n)]
and from the hypotheses of this theorem it follows that
L(MD) € TIME[T(n) *g(n)} - F-TIME[T(n)-g(n)],
as was to be shown.. L]
We believe that for sufficiently powerful formal systems F
it can be proven in F for M, of Theorem 1 that

-17-

Tp(n) < T(n)-g(n),

If this conjecture is true then, as the next result shows, there

are no gaps between provable complexity classes.

Corollary 6: 1If it can be shown in F that the T™m Mp» constructed
in the proof of Theorem 1, runs in time

Tp(n) < T(n)-g(n)
(which we know is true), then

F-TIME[T(n)] # F-TIME[T(n)-g(n)).
Proof: Obvious.

3. OTHER MEASURES AND A.E. CONDITIONS

To dain.some further insight when complexity classes are
equal to the corresponding provable complexity classes and what
can and cannot be proven about complexity of computations, we
consider tape bounded computations. As in many other cases, it
turns out that we can prove sharper results for tape bounded
computations than for time bounded computations.

Let Li(n) denote the maximum amount of tape used by ™ My
on inputs of length n. Let

TAPE(T(n)] = (L(Hi)l L (n) < T(n)).
and

F-TAPE([T(n))] = {x.(ui)l F Litn) < T(n)}.

-18-

We recall that a function T(n) is tape constructible iff there

exists a Tm M which for input of length n lays off exactly
T(n) tape squares without using more than T(n) tape,

- In the next result we will consider all Tm 's with a fixed
tape alphabet I = Io and denote the corresponding complexity
classes by

TAPE, [T(n)] and F-TAPE, [T(n)].
o o

Our next result shows that in essence a complexity class
' coincides with the corresponding provable complexity class if
and only if the class can be defined by a tape constructible
bound.

Note that the following result asserts that for tape boynded
computations if a set ia_accepted by some Tm H‘ which runs on
Ll(n) tape that thea this fact can be proven formally in P. Sur-
prisingly, the corresponding result for time-bounded one-tape

Turing machines is not known to be true.

THEOREN 7:
1. If t(n) > n is tape constructible then
TAPE(t(n)]) = P-TAPE(t(n)].

2. If TAPE; [T(n)) = F-TAPE, [T(n)] then there exists
o o

a tape constructible t(n) such that

TAPE, [T(n)] = TAPE; (t(n)]).
o [+ 2

-19-

Proof: Since t(n) is tape constructible and we can prove
elementary facts about Turing machines in the formal system F,

there exists a Tm Mi with the following properties:
t

1. For any input of length n the Tm H1 lays off exactly
t

t(n) tape squares without using more than t(n) tape.

2. M; halts for all inputs w such that t(|w|) is finite.
t
3. It is provable in F that M, computes a (partial
. t
recursive) tape constructible function.

Properties 1) and 2) follow from the definition of a tape con-
structible function and elementary facts about detecting cycling
for tape bounded computations. Property 3) éollows from the
fact that "it can be so chosen that from inspection of its
description it is clear that it can only halt after printing a
"1" on each tape square it has visited except the left most and
right most squares which are marked with "#°. Thus it is prov-

able in F that M, computes a tape constructible function. It
t

is not necessarily provable in F that t(n) is a total function,
but that is not needed for our proof.
Using the machine M1 (as a subroutine to lay off the desired
t

amount of tape) we can effectively construct for any { a T™m "0(1)

with the following properties:

«20-
1. Ht(i),rejects input w if M; on w uses more than t(|w|) tape,
otherwise, "r(i) accepts w iff Mi accepts.
2. It is provable in F that Mr(i) uses no more tape
than Hit.

Thus we conclude that for a tape constructible t(n) for every
"1 which runs on tape t(n) there exists an equivalent Th Mr(i)
which provably in F uses no more than t(n) tape. Thus

TAPE([t(n)] = F-TAPE(t(n)].
Conversely, if
TAPE; [T(n)] = P-TAPE; [T(n)]
then we can effectively enumerate the set of Tm's (with tape alphabet
to) 4
(w1 |- T, (n) < T(n)) = M, | jex).
But then it follows that the function
t(n) = max ({n)u('r1 (n) | M, is enumerated on n tape}} is’ tape
constructible since we can pzmulate all enumerated "1 on Ti (n)
tape and find the maximum. Note that the machine computing
t(n) may have a larger tape alphabet than to. Furhter, we can
see that .
t(n) < T(n)
and {f H1 is 1ﬁ TAPE(T(n)], then there exists an equivalent .
M, such that L (n) < t(n). Thus
TAPE(t(n)] = TAPE([T(n))

as was to be shown. | |

From the previous reuslt it follows irmediately thet if some
set A is accepted on a tape-bound achieved by a ™m then this

fact can be proven in P.

-21-

Corollary 8: For every (totgl) Mi
TAPE(Li(n)] = F-TAPE[Li(n)].

Proof: Obvious.

It should be pointed out that it is not known whether the
corresponding result holds for one-tape (k-tape) Turing machines.

The best known result for one-tape Tm's follows form [4].

Corollagx 9: For every (total) one-tape Tm Hl

TIHB[Ti(n)) 3 P-TIHE[Ti(n)olog Ti(n)].
Proof: Similar to the diagonalization proof in (4). =

For k-tape Tm's, k>2, we can exploit [8] to get the following

result.

Corollary 10: Fore very (total) k-tape Mi
'rmzk('ri(n)l < r-'rmzkl'ri(n)log*lri(r's)]].

It would be very interesting to see whether the last two
results connot be improved . Unless the rusult for one-tape
Tm 's can be improved, it leaves us with the possibility that there
can exist sets which are accepted by a Tm M1 running in time Titn).
but that the best recognition time we can Prove in F for these sets
in Ti(n)-logri(n). This would be a rather shocking situation.

Note that Theorem 3 and Corollary 4 yield time bounds for

computations which we connot prove in_F, but these are not the

-22-

aétual running times of the Turing machines performing these
computations.

The previous results suggest that in the study of Qifferent
computational complexity measures we should invgstigate how
sharp resource bounds can be proven formally for these measures.
A natural measure for the "provability” is given by results
analoguous to Corollaries 8,9 and 10.

Next we show that if a set A is accepted in time Ti(n)
by some one-tape Tm , Hi' then it can be proven in F that such
a machine exists, but we do not krow whether we can prove for any
specific machine accepting A that it rurs in time less or equal
to Ti(") (since our best provability result is given by Corollary 9.)

We first prove a result due to A. Meyer.

Lemma 11: For a recursive function T(n) > nelog n
(L) | T,(n) < T} = {L(Mj) P'F Ty(A) < T(n) a.e.)

Proof: We construct a recursive function t such that' for all i
1. L(My) = L(Ht(i)) if T;(n) < T(n) else L% (4)) is finite
2, H'r"(n (n) < T(n) a.e.])
The machine Hr(i) has a much larger tape alphabet than Mi

so that it can simulate M; in time % T.(n). "-(1) operates

'

as follows:

On input w, |w| = n, M_(i) lays off 1°q3n tape and tries

to find on this tape a z, ;z' < loqsn, such that
T (lz]) > Ttz

If such a z is found then the input w is rejected. If

-23~

not then Mr(i) simulates M1 on w and accepts iff Hi

accepts w.
It is easily seen that Mt(i) satisfies condition 1, furthermore
TT(i)(n) < T(n) a.e. and since we can prove elementary facts
about Tm's in F we can choose a simple construction for tr such
that it is provable in F that

Ty £ T a.e.,

where T(n) is given by some Tm. Note again that the proof of
Tt(i)(n) < T(n) a.e. does not depend on knowing that T(n) is

a total function. n

Theorem 12: For one-tape Tm 's for any recursive T(n),
T(n) > n<log n, we have

TIME(T(n)] = (L(M)) | |- @njiM, = M

o) (Mg ; and Tg(n) < T(n)])

Proof: The previous result showed that for every n‘(l) we can
prove in F that
Tt(i)(n) < T(n) a.e.

Therefore we can prove in F that there exists some equivalent
T to Mr(i) which runs in time T(n) everywhere by means of a
table look-up for the initial input values. L

It follows from Theorem 12 that if A can be accepted in time
T(n) then there is a formal proof that there exists a Tm which
accepts A in time T(n). Though we know from Theorem 3 that for
mary time bounds T(n) and any formal system F there are sets which

are acceptable in time T(n) but for no Tm accepting these sets

-24-~

can it be shown that they run in time T(n). Thus showing an
interesting difference in what can be formally proven atout the

existance of time bounds without being able to prove these

bounds for any Tm.

Corollary 13: Therelexist monotomically increasing, arbitraily

large recursive functions T(n) such that

{nivp) | |- T;(n) < T(n)) ? {L(Ml)l - amy) (M =M, and T (n) < T(n)

Proof: Follows directly from Theorems 3 and 12. s

-24-

References

(1]
(2]
(3}
(4]
(5]

[6]

n
l8!

(9]

Borodin, A.B., "Computational Complexity and Existence of
Complexity Gaps®", J.ACM, Vol. 19, (1972), 158-174.

Fischer, P.C., "Theory of Provable Recursive Functions”,
Trans. American Math. Soc. Vol 117, (1965), 494-520.

Gordon, D., "Complexity class of Provable Recursive Functions®,
Typed paper, February, 1977.

Hartmanis, J., "Computational Complexity of One-Tape
Turing Machine Computations”, J.ACM, Vol. 15, (1968), 352-339.

Hartranis, J. and J.E. Hopcroft, "An overview of the Theory
of .Computational Complexity”, J.ACM, Vol. 18, (1971), 444-475.

Hartmanis, J. and J.E. Hopcroft, "Independence Results in
Computer Science", ACM SIGACT NEWS, Vol., 8, No. 4, (October-
December 1976), 13-24.

Hennie, F.C. and R.E. Stearns, 'Two-Tapé Simulation of
Multi-Tape Turing Machines®™, J.ACM, Vol. 13, (1966). 533-546.

Paul, W.J., "On Time Hierarchies", Proc. Ninth Annual ACM
Symposium on Theory of Computing, (May 2-4, 1977), 218-222.

Young, P., "Optimization Among Provably Equivalent Programs".
To appear in J.ACM.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif

