
ALGOL68 INSTRUCTION AT
OKLAHOMA STATE UNIVERSITY

G.E° lledrick
Department of Computing and

Information Sciences
Oklahoma State University

Stillwater, Oklahoma 74074
U.S.A.

At Oklahoma State University ALGOL68 is
taught to students whose background in programming
consists primarily of programming in FORTRAN.
Frequently, they have had some experience with PL/I
although it is not so extensive as their experience

with FORTRAN. PL/I is usually the only block
structured language to which the students have been
exposed. The students who study ALGOL68 are typ-
ically seniors, although there are some graduate
students, and an occasional lowerclassman. Almost

none of these students has any experience with
ALGOL 60 or any ALGOL-like language at the time he
begins his study of ALGOL68. About half of then~
have had limited experience with formal specifica-

tion of programming languages.

The students learn ALGOL68 in one of three
formats depending upon the number of students
enrolled at a given time. The most elaborate
treatment is given when there are enough students
to justify a faculty member spending one-quarter
of his time teaching the class as a special topics
lecture course. This is tile mode of instruction
that is preferred by the students. A smaller
group of students covers the same material in a
seminar format ~ather than a lecture format; the
students in the seminar do not have the same access
to faculty as do students in a special topics lec-
ture course. The final mode of instruction is
individual study; it is this instructional format
which is used when only one or two students enroll

for ALGOL68. In this format the students work
almost entirely on their own except that they do
have access to a faculty member when they cannot
adequately resolve their questions.

In each of the three modes, the students are

given six programs which they are to copy and to
run on either of the two machines available to
them (an IBM 370/158 and an IBM 1130). These pro-
grams are complete and correct when presented to
the students. By running them the students learn
the non-ALGOL68 requirements, such as JCL, etc.,
required to execute the programs, and they achieve
a familiarity with the form of ALGOL68 listings.
Each of these six programs is designed to point Out~
a feature of ALGOL68 with which they may not be
familiar from their past experience with FORTRAN

and/or PL/I.

*The author's participation in this conference is
supported, in part, by NSF Grant MCS 76-06090.

In each of the three instructional formats the
students are assigned a set of twelve programs to
write also. Eight of these are presented in the
appendix. These twelve programs must be written
during the semester in which the student is
enrolled for the course. The programs are chosen
from different areas of computer science including
numerical analysis, data structures, logic, and
other areas. Some of these programming assignments
are given in the appendix. The students cover the
greatest depth of material in the lecture course
and the least amount of material in the individual
study course, although the programming assignments
are the same for all three modes of instruction.

The primary texts for the ALGOL68 course are
Lindsey and van der Muelen's Informal Introduction
to ALGOL68 [5] , and Pagan's A Practical Guide to
ALGOL68 [6]. The students are expected to obtain
a copy of the ALGOL68 report [8] for supplemental
reading, and are given a set of class notes. It is
anticipated that the text Grammars for Programming
Languages by Cleaveland and Uzglais [i] will be
used in the future as supplemental reading also.
Neither of the primary texts is used in such a way
that it forces a structure on the course. In fact,
they are required primarily for reference material.
The ALGOL68 report costs as much as most computer
science textbooks, but neither of the stated texts
are as expensive as one should expect a computer
science textbook to be. The cost to the student
for all three textbooks is approximately the same
as it would be for a course that requires two
"average priced" textbooks. The author feels that
these costs to the student are justified for two
reasons: (i) they give the students a written
statement of the syntax and semantics of the
language; this can be used even when no instructor
is available; and (2) no serious student of ALGOL68
should be without a copy of the formal report [8]
since it is the final authority on the syntax and
the semantics of the language. Hopefully, the
required texts will be useful to the student as he
continues his studies in graduate school.

The students begin their study with a small
amount of memorization of the basic concepts and
constructions. This is followed immediately by a
survey of the general program structure for ALGOL68
programs. Program structure is examined by first
studying straight line programs, then by looking
at programs which make use of various types of con-
trol structures, rewriting each of these programs

~6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382175.803425&domain=pdf&date_stamp=1977-02-02

several times in successively more concise forms.
Such exercises serve to demonstrate both the ease
of programming in ALGOL68 and the power of the

language.

Following the study of the general program
structure for ALGOL68 programs the students are
introduced to the nested structure of the language
in a unique way. The contour model, slightly
modified, is presented to the students as a run-
time environment for ALGOL68 programs. The con-
tour model is a list structured model of the static
and dynamic portions of programs written in a block
structured language. In the static portion there
is one "algorithm contour" for each block or pro-
cedure. In the dynamic portion there is one "re-
cord contour" for each execution of each block or
procedure. The blocks are linked together to
show the relationships among the contours. This
model must be modified to be able to handle genera-
tors, names, and values which are not associated
with range entry and range exit [2]. The intro-
duction of the contour model at this point allows
the students to obtain both an intuitive feel
and a formal specification of the dynamic nature
of the run-time environment for a language with
nested structure. The study of the contour model
is extensive using the papers by Johnson [4] and
by Hedrick [2]. The students examine the Johnston
paper [4] thoroughly, using examples which are
ALGOL68 programs. Each example program is analyzed
in depth, and to the point of enabling the students
to specify what display is changed at what time
during the execution of the algorithm as specified
by the ALGOL68 program. At the conclusion of the
study of the contour model, most of the students
are familiar with what to expect at run-time from
ALGOL68, and as an added benefit, also have a bet-
ter understanding of nested languages in general.

After the study of the contour model the stu-
dents make a study of the assembler code equiva-
lent to given ALGOL68 programs. This serves much
the same purpose as the study of the contour model
in that it enhances their understanding of the
compiler and helps them to know what to expect at
run-time. Many educators might say that the use
of a assembly language in this context is inappro-
priate, but this use of assembly language actually
improves the student's ability to program in

ALGOL68.

The next item studied by the students is how
to read the ALGOL68 report [8]. This tends to be
a traumatic experience for most students. Indeed
it is helpful not to let them look at the report
until after the first three or four sessions of
study of van Wijngaarden grammars. Although it is
not required of the students, Peck's ALGOL68 Com-
panion [7] presents this topic in such a way the
students rapidly learn how to read van Wijngaarden
grammars. At that point the study of the report
begins. The course will probably be modified to
incorporate portions of the text of Cleaveland and
Uzgalis [i] prior to the start of the study of the

report [8]. Once into the study of the report,
the early part is read in order, and the later part
is studied in view of specific particular programs.
The particular programs are, for the most part,
those that the students have constructed earlier
in the course.

A great deal of time is spent on writing actual
ALGOL68 programs of various degrees of complexity.
The students construct the programs while studying
the other parts of the course in parallel. The
programs range from a simple program to find the
zeros of a quadratic polynomial at the beginning
of the course, to some game-playing which requires
sophisticated tree searching at the end of the
course. In order to help the students write these
programs, there are separate units on program de-
sign and program testing based on the article from
the Journal of Data Education [3]. These units are
not specific to ALGOL68 but are part of our attempt
to instill good programming habits in all of our
graduates independent of the language that they use
to implement their programs.

It appears that the ALGOL68 instructional
methods described in this paper have been quite
successful. The students who have completes the
course not only have a knowledge of the programming
language, ALGOL68, but they also demonstrate a
greater knowledge of the underlying data structures
required during the execution of block structured
languages than do other students at the same aca-
demic level in the computer science department.
Students who have taken the ALGOL68 course demon-
strate a better grasp of theoretical program
description languages as well. There appears to be
no significant difference among the three modes of
instruction in view of the student's knowledge of
the material at the end of the course. The stu-
dents seem to prefer the lecture format to the
other formats, however. In view of the faculty
time required, the individual study format should
be preferred, but the lecture format would be pre-
ferred for the comfort of the students. The amount
of student effort required is another point in
favor of the lecture format.

The problems encountered in the teaching of
this course include the lack of a single text for
the students to follow and the use of a compiler
which is still being developed. It is possible to
eliminate most of the first problem by adopting
Pagan's text [6] and studying the topics from the
text in order. Supplementary material would con-
tinue to be required for the study of run-time data
structures, van Wijngaarden grammars, and transput.

The second problem is attributable to the fact
that the OSU ALGOL68 compiler has been, and is being
used for the course, and this compiler is in the
development process. Some of the less-used features
became available after a problem had been assigned.
The fact that this developmental compiler is used
is no longer much of a problem since the features
of ALGOL68 implemented are now relatively static

and changes to the compiler usually are transparent
to the users.

This course has been offered once or twice a
year every academic year since 1973-1973. ~ny of
the students who have taken this course have con-
tinued their studies in graduate school. Some have
even written theses which are based on ALGOL68.
Thesis topics have included such things as the
MODE algebra, dynamic data structures for modelling
program execution, and transput topics.

17

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Cleaveland, J. Craig and Robert C. Uzgalis.
Grammars for programming languages. New
York: Elsevier, c1977.

Hedrick, G.E. An adaptation of the contour
model as a runtime environment for ALGOL68.
The SOKEN KIYO, v. 6, #3, Jan. 1977.

Hedrick, G.E. Program planning and testing.
The Journal of Data Education, v. 16, #i
Oct. 1975.

Johnston, John B. The contour model of block
structured processes, in Tou, Julius T.
and Peter Wegner (eds.), Data Structures in
Programming Languages, SIGPLAN Notices
v. 6, #2, Feb., 1971.

Lindsey, C.H. and S.G. van der Muelen.
Informal Introduction to ALGOL68. New York:
American Elsevier, c1971.

Pagan, Frank G. A Practical Guide to ALGOL68.
New York: John Wiley and Sons, c1976.

Peck, John E.L. An ALGOL68 Companion.
Vancouver, B.C.: University of British
Columbia, 1972.

van Wijngaarden, Aad (ed.) et al. Revised
Report on the algorithmic language ALGOL68.
New York: Springer-Verlag, 1976.

APPENDIX

Progran~ing Assignments for an Introductory
Course in ALGOL68

Note. These problems have been selected for the
ALGOL68 constructions they cause the students to
use. Several have come from introductory texts for
other languages. The author regrets that he is
not able to identify the original source of each
problem.

Assignment #i
Problem:
IA. Construct an ALGOL68 pro-ram which will find

the zeros of a polynomial using the method of
bisection (see Conte & de Boor, p. 28)

IB. Construct an ALGOL68 program which will find
the zeros of a polynomial using Newton's method
(see Conte & de Boor, p. 28).

Notes:
I. Return program decks with your output.
2. Variables of mode COMPL are allowed.
3. In written form the operations for +:=,-:,*:=,

etc. terminate with AB; e.g. PLUSAB for
"Plus and becomes, "MINUSAB for "minus and
becomes," etc.

Assignment #2
Notes:
i. The IS and INST operators are not presently

available on the OSU compiler.
2. Individual programmers do not have access to

the heap in the OSU ALGOL68 compiler. (You
may not use global generators in your
programs.)

3. Strings, as such, cannot be declared, but
you may declare row of character variables.
FLEX is not permitted.

Problem:
Construct an ALGOL68 program which will simulate
the SAMC computer.
Author's note:
SMAC is a simple i0 instruction, 20 location machine.
It handles only integers, i, in the range
-999 ~ i~ 999.

Assignment #3
Notes:
i. The OSU ALGOL68 compiler uses reserved words

for keywords so you cannot use keywords
(e.g. FI) for variable names. This is called
reserved word stropping.

Problem:
Construct an ALGOL68 program which will
i. Read a value, N
2. read N,(x,y) pairs of input values
3. print the pairs in order from left-to-right;

bottom to top as they would appear on an
x-y coordinate system.

Assignment #4
Problem:
A. Construct an ALGOL68 program which will
i. Read a list of 0-40 names
2. Alphabetize the list
3. Print the alphabetized list with last names

and first (and middle initials).
B. Sample Input
Jean-Paul Jonz
Mary Ellen Vouz
Philip Richard Carpenter
C. Sample Output
Carpenter, P. R.
Jonz, J. P.
Vouz, M. E.

Assignment #5
N o t e s :
i. Please sequence your decks before you submit

them with the sample output for grading.
2. When you find something that the compiler does

not support and you feel like it should be
supported, please let me have a copy of the
deck, a copy of the output, and an explanation
of why you think the compiler should support a
particular construction. (e.g. The compiler
should support because the text indicates that
it is valid ALGOL68.)

]8

3. Certain constructions that were valid accord-
ing to the old ALGOL68 report are not longer
valid. For example THEF was valid according
to the old report but the construction start-
ing with THEF is not valid according to the
new report.

Problem:
Let p be a polynomial of the form

p(x) = a 0 + alx + a2x2 + . . . + ak xk
This polynomial, p, can be represented as

p = (k, a[0], a[l], a[2] a[k])
Construct a computer program that will accept a
polynomial p as input and produce a polynomial q;
as output. With p represented as above q is to be
computed and represented as
q = (k = i, a [I], 2"a[2], 3"a[3], . . ., k*a[k])

Problem:

You have a "little black book" that contains the
names, addresses and telephone numbers of your
friends. For each one you have information about
their likes and characteristics. For this problem
your black book contains only names of members of
the opposite sex, and you keep the black book on
computer cards.

i. Make up five ficticious people and rate them
on a scale from one to five according to the
table (you may add to the table, if you wish)
below.

Characteristics rating
appearance
compatibility
conversion
financial situation
morals
scholarship

Likes
Classical music
pop music
movies
TV
parties
sports
world affairs

rating

2.

3.

Based on the rating scheme design three algo-
rithms to choose a date from your little black
book. These should i~clude methods to choose
a date for

a) the homecoming football game and homecoming
dance

b) the FLATLANDER FRAT-RAT BRAWL
c) a relaxing evening.

Write an ALGOL68 program that will accept your
little black book as input; and tell you who
to call first when you want that date.
Input:

1. Ratings tables for each person in your
black book

2. Type of date you want
Output:

Name and phone number of the first person you
want to call.

Assignment #7
Program 7A:

Construct an ALGOL68 program which will find all
three digit positive integers that are equal to
the sum of the cubes of their digits.
Program 7B:

Construct an ALGOL68 program which will read a
positive integer, N, and print the complete
factorization of N (all prime factors). If N
is 12 then the output should be 2*2*3.
Program 7C.

Construct an ALGOL68 program which will read a
number, its radix, and a new radix; the program
should then produce the representation of the
number in the new base.

Problem:
Assume that you have the tabular approximation of a
function at integral values of the ordinate; such
as,

x y

Xl f(xl) + gl
x2 f(x2) + g2

Xn ~(Xn) + ~n
For this problem {Xl, x2, x3, . . ., x n} g I. We
will represent f(xi) + ~i by Yi; where, f(x i) is
the true function values at x i and gi is the error
in our value. (This situation frequently occurs
when we are taking data for an experiment.) For
this problem we will make the additional assump-

tions that Yi, f(xi) + ci ~ R, and that

x I < x 2 < . . . < x n.
For this problem you are to write an ALGOL68 pro-
gram that will find approximations to f at input
points x, x ~ I. The approximations are to be made
using each of four methods of interpolation. The
methods are: i) linear interpolation, 2) Newton's
backward interpolation, 3) Aitken's interpolation*,
and 4) Lagrangian interpolation. You can find
these methods in any numerical analysis book. In
particular, you might want to look at

Grove, Wendell E. Brief numerical methods.
Englewood Cliffs: Prentice-Hall, c1965.

Input
Input for this program should be i) a positive
integer N, which indicates the number of points
in the table; 2) a set of N (x,y) pairs which forms
the tabular representation of the function; and
3) a set of x value (x ~ I), where function is to
be evaluated.
Output
Output is to be the tabular representation of the
function, a copy of each input x value and the
corresponding y value for each interpolation method
used.
For example, your output could appear as

ORIGINAL FUNCTION
x y
0 4.0
1 5.0
2 7/0
3 9.2
4 16.0
5 26.9
6 32.1

*Also called Aitken's process of repeated
interpolation.

19

INTERPOLATED FUNCTION VALUES
x LINEAR INTERPOLATION NEWTON'S BACKWARD

INTERPOLATION
0.5 4.5 4.7
4.3 17.0 18.0

AITKEN'S INTERPOLATION LAGRANGIAN INTERPOLATION
4.8 4.4

18. i 17.9

(Note: These values are not necessarily correct.)

Test cases
Make sure your test cases are complete; e.g., What
happens where f(x) is undefined? What happens when
x g I and x is in the table? What happens when
x ~ I and x is not in the table?, etc. Answer each

of these questions and any similar questions you
can think of about the operation of the program.
Don't forget the cases where you have correct input
and get correct output. For each case, is the
action your program takes reasonable? Why or Why
not? If not, how can you correct it?

Documentation
Full and complete documentation is expected.

20

