
AN INTERACTIVE PSEUD0-ASSEMBLER FOR INTRODUCTORY COMPUTER SCIENCE

Ted Sjoerdsma
Department of Computer Science

The University of Iowa
Iowa City, Iowa 52242

INTRODUCTION

Since 1968 the University of Iowa Computer

Science Department has used a locally developed

E_asy A_ssembler SY_._stem (EASY) to accomplish a better

comprehension of the concepts taught in the seg-

ment of the introductory computing course which

dealt with internal structureand organization.

EASY served its purpose to a widely varying

degree. The degree of success depended primarily

upon the instructor's acceptance of EASY and a

careful understanding of its purpose for the

course. Two main problems arose in the continued

use of EASY: l) the instructor (TA or faculty

member) had to become very familiar with a nar-

rowly used language and pseudo-machine; and 2) the

amount of time spent on EASY as a language often

far outweighed the benefits relative to other nec-

essary segments of the course. Thus EASY became

an object of contention among faculty and teaching

assistants and consequently, among the students in

the course.

In the fall of 1973 my attention focused on

EASY (with all of its problems) as a likely candi-

date for a computerized-interactive-tutorial seg-

ment of this course. Since the consistency of use

and precision in presentation were important

aspects of teaching the concepts related to EASY,

such an approach seemed natural.

TUTORIAL MATERIALS

The vehicle used for the tutorial interaction

with the student is the Course Writing Facility

(CWF) [1] on the Hewlett-Packard 2000F computer.

This facility is linked with the Instructional

Management Facility on the same machine for pur-

poses of course manag@ment and statistic gathering.

The actual implementation of the tutorial

uses a variety of approaches interwoven into a

short course, called TeachEASY. These different

approaches include a prerequisite test, a student

handbook, review at student request, assignment of

student programming, step-by-step analysis of one

program, and acceptance of student programs for

the EASY system.

Pro6ram Description

The tutorial solicits student input and in-

sists on a correct answer before proceeding. The

answers are in the form of multiple choice, fill

in the blanks or reply to a question. (See exam-

ple, Figure 1). Anticipated wrong answers trigger

a hint and unanticipated answers usually supply

the correct answer. Partial answer processing

capabilities allow realistic interaction. (For

example, when two words are required for the ob-

ject code in an answer, if one word is correct the

student can be told this fact and asked to change

the other word.)

The student is able to sign-off at any time

that th~ program is expecting input, as well as at

break points. The re-entry point is always at the

beginning of the last major segment unless the

student signed off at a break point. In the lat-

ter case, the re-entry is at the beginning of the

next segment. (See flowchart, Figure 2.)

After receiving each of the programming

assignments the student may choose to review any

portion of the course. Once the student chooses

toreview, he or she remains in the review mode

342

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953026.803496&domain=pdf&date_stamp=1976-02-01

i.

.

Figure ~ Samples of interactions
between Student and TeachEASY

O~. Here's an Instructlon : START L()AD 5, HErE
There is an error. Type the letter of the field you think
It Is In. (a)Label (o)operation (c)Operand(s)
a

No . The l a o e l f i e l d i s OK. T r y a g a i n .
¢
Yes . The o p e r a n d (s) f i e l d has a f o r b i d d e n b l a n k I n I t .

Now we have gone through a first pass that an assembler
usually makes i.e., assigning a~resses and in particular,
assigning addresses to lapels. Let's make a label table.

LABEL LOCAT I ()N
k 000
TEMP OOB
TEN 015
ONE 016
ZERo OI 7

(n o t l c e : B, not 8)

Check thls table (and copy it if you are on a CRT).

Type tOk" when r e a d y t o p r o c e e d
?ok

Now u s i n g the l a b e l t a b l e and the o p e r a t i o n codes
found on pa~e 5 , we can produce the object code.
For the instruction A LOAD 5,ZERO what Is
the operation code for L()AD ?
I0
No. T r y again.
;E
~ight.
nhat register is used in A LOA~ 5,ZER(} ?
5
~re.
Now we notice that no Index register Is used,

so we Indicate this uy supplylng a zero, and we have
proauced the flrst word or the object code. It is IE50.
The second Is made up ot the address of ZE~{]. Look It
up in the table we produced and give It to me.
0017
~Ight.

The o o j e c t code o f A LOAD 5,ZERO I s IE50 0017 .
Now see I f you can g i v e me the ODJect code f o r

ADD 5,0N6
IESO 0016
You have the a d d r e s s c o r r e c t , o u t s o m e t h i n g i s wrong
i n t he I l r s t word . T r y the e n t i r e code a g a i n .
1050 0016
E x c e l l e n t .

~ o u l d you l i k e t o r e v i e w any s e c t i o n o f t h i s cou rse?
Type yes or no .

343

Figure 2 TeachEASY Flowchart

~ S l E . cm

;r~tlt r ~ r l z " s L / "1 fr~tinu~tlon | ~]

2% ? ?
Loo~inl |Convert-to-

~ITS~teY I "¢'erisciCs I | ' ~
Illeldst ers +md| ~ p ~
[Their FLm¢,~ops . I ~ . ~ , . . Y e s / " ~ r e ,

c~--+~o j + : , . ! ,,+.+I~::=:0-}
+ + ,o . i . . ~ A

~ > ~ I+.,°, I l , ,o.+. !
t'-x Y I ~,,~ i , I

;++, @
Addressinl | ~'.rwtteh ~ I~]

j.=t Cod, I ~ ~ J

I,,o.o..-I
~ I ~siimmentPr°ltram I |Assllo'ment .]

I " l I l . l

~No . ~ I 'nt;r'ctiv" [Imth. Pro, r~ Prop.. Entry ~ Y calf

I,.,/~'.~.~.~,+! :!+++iv=Y::,~.~.~", 6
4.J ~IO V " S e e t~atte 7 o f T e a e . h E ~ Y

[,f's+.,, ro ~o~,o~,
1 Continu,ttem Pt. ~ - - ~

3 4 4

until the option to continue the course is

selected. This allows the student to continue re-

view of several segments.

When the student desires to enter a program,

the Course Writing Facility calls in the Inter-

active EASY System by a simple function call to

*EAZI. After the program entry, assembly, edit-

ing, execution, and desired reruns, the control

is turned back to CWF. At this point a dump anal-

ysis segment may be chosen.

The tutorial makes study assignments in the

Interactive EASY Handbook [2] and frequently ref-

erences programs and data in it. This requires

the handbook at the terminal.

The tutorial concentrates on the concepts

relating to Computer Organization: general ma-

chine structure; instructions, their codes, and

the action they produce; operations; arithmetic;

branching; indexing; input and output; and data

representation.

Revisions

After the first student runs were completed,

it became obvious that the last few segments were

much too wordy and required too little student

interaction. Students indicated this by repeat-

ing the segments several times, or by telling me

that the segment was too much like a lecture.

Some immediate changes were made to the text which

required student responses, thus becoming much

more palatable for later student runs. However,

more of this type of change still must be made to

the sections on indexing and input.

Writing Time

Initial writing time of the interactive pro-

grams, which produced an estimated 3 hours of tu-

torial materials, was approximately 160 hours.

The revisions made after test runs and after ini-

tial student runs required approximately 30 hours

of effort. There will still be several hours

needed to continue refining the materials into

finished product form.

INTERACTIVE EASY ~

The Interactive EASY System is made up of six

programs written in H-P Time-Shared BASIC which

are "chained" together and are invoked by the stu-

dent through the interactive tutorial materials in

CWF by means of a function call. These six pro-

grams [2] are the implementation of a system de-

signed to accomplish the following:

i. Accept and syntactically analyze each student

program statement as entered; reject with an

error message if incorrect.

2. Internally build a label table and statement

table which can be displayed to the student on

request.

3. When the final program statement (END) is en-

tered, allow the student to edit (i.e., delete,

replace or insert) his statements, which, in

turn, causes the system to make necessary

changes to label and statement tables.

4. Assemble the program into machine code, state-

ment by statement (on display), stopping at

unresolved references.

5. Execute any correctly assembled program.

6. Produce an error message and a dump of regis-

ters and memory if error occurs in execution.

Provide a dump upon request for any execution.

7. Allow the student to re-edit, re-assemble, and

re-execute.

Interactive EASY uses a limited subset (see

TABLE i) of the operations found in the batch

form. (This subset was determined through class-

room experience over several years and is identi-

cal to the set of operations, with i or 2 obvious

exceptions, used in the batch mode.) This subset

includes only integer arithmetic operations, a

small set of compare and branch operations, binary

and character conversion operations, and input/

output instructions.

The file organization which allowed each stu-

dent to have his or her own files was based on the

port number assigned by the H-P system as the

terminal accessed the system. There are four

345

TABLE i. Interactive EASY Operations.

Operation Operation

LOAD CMPES
STORE BU
ADD BE
SUB BL
MULT BH
DIV CVTB
INPUT CVTC
OUTPUT HALT

(Compare Register to Storage)
Branch Unconditional)
Branch if Equal)
Branch if Low)
Branch if High)
Convert to Binary)
Convert to Character)

Assembler Operations

DC (Define Constant)
DS (Define Storage)
END

files used by all students which were segmented

according to the number of terminals available to

the class. Thus even though 100-200 students

would use the files, the number of file segments

would still be limited to, say, 16 or 32. The

files were required when building the student's

unique statement table, label table and assembled

program. The fourth file was used in updating

during the editing phase.

EVALUATION

Pretest and Quiz

Prior to the experimental period (during

which 20 of 92 students were selected to use the

interactive tutorial system while the remainder

use the batch form of EASY) a quiz was given over

previous unrelated material. Also prior to the

use of EASY a pretest was given which indicated

almost a universal lack of knowledge concerning

the concepts to be covered in this course segment.

Examinations

At the end of the experimental period all

students took an examination over the materials

and concepts covered in the first six weeks of the

course (referred to as the "EASY exam"). All

questions, except the first, were precisely related

to EASY concepts taught during the experimental

period.

The results of this exam are presented for

each group in the following graph and in TABLE 2.

Per Cent
of

Students

Figure 3. EASY Exam Results

5o-

4o-

30-

20-

i0-

0

experimental group
k control group

A

A = 87-90
B = 76-86
C = 65-75

B C D F Drop

D = 54-64
F = 38-53

TABLE 2. Results of EASY Exam

Experimental Group Control Group

Number Grade % Number Grade %

8 A 40 12 A 17
3 B 15 17 B 17
2 C i0 20 C 28
3 D 15 8 D ll
3 F 15 5 F 7

_~i drop 5 I0 drop 14
20 72

Note: 3 students dropped the course prior to the
experiment.

The results seem to indicate that the students

in the experimental group performed as well or

better than those in the control group. Admittedly

the sample is much too small to draw valid conclu-

sions.

The course final exam did not include ques-

tions about the concepts, per se, which were taught

in the experimental period. However, the exam was

comprehensive, and the final results should again

indicate the relative abilities of each group.

Both the quiz prior to the experiment and the

course final examination indicate that the two

groups were homogeneous and unbiased relative to

ability.

Relative Time ConsiderAtions

At the beginning of the experiment the stu-

dents in each group were provided log sheets to

determine the amount of time involved in this seg-

ment of the course. The batch EASY group was

346

required to hand in a program log sheet for each

of the assigned programs that they handed in. The

interactive EASY group filled out a log sheet for

each session at the terminal.

One of the items which could be checked for

accuracy was the indicated amount of terminal time

for each student using the interactive mode.

Using the student log sheets, the total average

terminal time per student was reported as 364 min-

utes (6 hours, 4 minutes). The actual average

total terminal time as recorded by the Instruc-

tional Management Facility was 359 minutes. This

five minute discrepancy indicates the accuracy of

the student reporting.

Several time-related statistics gathered from

the log sheet data are the following:

i. Program keypunch time (41.8 minutes average)

was not much different from program entry time

(41.0 minutes average).

2. Average program writing time for the interac-

tive group was only about two-thirds of that

required by the batch group (65.4 minutes aver-

age vs. 94.6 minutes average).

3. The most significant time difference is the

total time involved. The average student time

spent in the batch mode was 8 hours and 56

minutes. This compares with 7 hours and 9

minutes for the interactive mode, a full hour

and 47 minutes less (see TABLE 3).

These time comparisons do not include unclocked

study time, exam time, or time spent waiting for

turnaround or available terminals.

TABLE 3. Time Comparisons

Item Experimental Control Group

Lecture 400 min. (8 ×50 min.)
Terminal 364 min.*
Program
writing 65.5 min. 94.6 min.

Keypunch 41.8 min.

Total 429.5 min. 536.4 min.
(7 hrs., 9 min.) (8 hrs., 56 min.)

*Includes program entry time of 41.0 minutes.

It should be noted that the interactive EASY

users had several adverse conditions in the experi-

ment. These included bugs in the pseudo-assembler,

and the tutorial materials. The most serious con-

dition was a file separation problem which made it

necessary for students to enter programs serially

until the third week. This represented a serious

time loss to some of the students.

Subjective Student Reactions

One of the less tangible items in an evalua-

tion of a learning situation is the response of

the students. An experienced teacher senses rather

quickly whether or not the teaching is reaching

the level of the student and leading him or her

foreard. An interactive tutorial, however, does

not have this type of human gauge--a teacher's

feeling.

Historically, student reaction to the lecture-

batch EASY teaching has been rather negative and

the control group's reaction was still rather nega-

tive. On the other hand, seven students among the

remaining nineteen in the experimental group vol-

unteered a statement of their enjoyment of the

tutorial on interactive EASY and its related con-

cepts. Two students in the experimental group had

taken the course before and had done poorly. One

of these obtained an A in the EASY exam and the

other (who obtained a B) said that if we had used

this form of instruction the previous time, he

would have done much better and not have had to

repeat the course.

General solicited reactions from the experi-

mental group were much more positive than those

from the control group. This coupled with test

scores indicates that the experimental method

using CAI with an interactive pseudo-assembler was

a more effective teaching mode.

SUMMARY, CONCLUSIONS AND IMPLICATIONS

S1zmmar~

An interactive pseudo-assembler was designed

and implemented. An interactive tutorial course

segment was written and interfaced with the inter-

active pseudo-assembler. Twenty students out of a

class of ninety-five were selected to use this

method of instruction while the remainder stayed

347

in a lecture mode using a batch pseudo-assembler.

The students in each group used the same set of

instructions, were taught and examined on the same

concepts and were given the same programming

assignments.

The information gathered before and after the

experiment allowed comparison of student perform-

ance on an early quiz and on the final examination

which demonstrated very similar results for both

the experimental group and those in the remainder

of the class. However, the results of the exami-

nation on the concepts taught in the experimental

period showed that the experimental group did as

well as, or better than, the control group.

Comparisons made with recorded time spent

within each group showed a marked decrease in time

spent by the experimental group. A study of time

at the terminal versus the exam score obtained by

the students in the experimental group showed

little overall correlation but did indicate the

students with the better scores spent less time at

the terminals.

Conclusions

This study has established the following con-

clusions:

i. It was feasible to design and implement an

interactive pseudo-assembler.

2. A computerized tutorial course segment was

developed which, linked to the interactive

pseudo-assembler, could take the place of a

traditional course segment in the lecture-

batch mode.

3. Students using the tutorial and interactive

EASY learned the desired concepts as well, or

better, than those students in the traditional

mode.

4. The students who received the traditional lec-

ture-batch instruction required considerably

more time than those using the tutorial.

5. Within the experimental group using the tutor-

ial, those students receiving the higher

scores on the exam did not require more time

at the terminal, but considerably less.

6. The cathode ray tube is the preferable termi-

7.

nal, with hardeopy terminals required only for

producing program results that must be sub-

mitted to the instructor.

A large investment of faculty and programmer

time is needed in a carefully prepared tutor

ial. The tutorial preparation required almost

200 faculty hours for approximately 6 hours of

student terminal time. The production of

Interactive EASY required 320 programming

hours.

Implications for Computer Science Instruction

When one reviews the large number of topics

which are recommended for inclusion in the computer

science introductory course [3], it is immediately

evident that these can hardly be covered well in a

single semester course. This is especially true

when more emphasis is being placed on the style

and structure of programming.

Computer assisted instruction may well be the

vehicle which will allow computer science teach-

ers to offer a more complete course. The segment

of the course developed in this study has already

demonstrated the ability of CAI to provide equiva-

lent or better instruction in less time.

The computer organization and data representa-

tion segment discussed in this study will continue

to be used on a wider scale with future students.

It, no doubt, will be revised and improved and, in

some instances, might be used in parallel with the

lecture sessions.

The prospects of using this method success-

fully on other course segments are bright. One

can expect simple tutorials to be developed which

could be used to teach such topics as the syntax

of a language; data representations such as float-

ing point numbers, vectors, arrays, etc.; basic

programming concepts such as constants, variables,

functions, expressions, etc.; and many other con-

ceptual and factual topics.

As tutorial segments are prepared, careful

consideration of essentials for inclusion becomes

a natural process and thus extraneous topics are

eliminated. This is forced upon the author by the

large amount of time required for preparation of a

good tutorial unit. This implies that the chaff

348

is separated from the wheat and the student is

presented only essential topics.

Good materials prepared by master teachers

can be improved to a high level of excellence and

then be consistently available to all students.

Initial time spent on developing such materials

will result in better and more precise instruction

with a payoff in time conservation and better

instruction for the student.

1.

2.

3.

NOTES AND REFERENCES

Hewlett-Packard Company, Course Writin~ Facil-
ity (HP24383A), Cupertino, Calif.: Hewlett -
Packard Company, 1974.

Copies of TeachEASY, its documentation and the
Interactive EASY Handbook are available from
the author.

ACM Curriculum Committee, Curriculum '68,
Comm. ACM 11(1968), 391-401.

Other Related References

Amarel, Saul, Computer Science: A Conceptual
Framework for Curriculum Planning, Comm. ACM
i_~3(1971), 391-401.

Austing, R. H. and Engel, G. L., A Computer Sci-
ence Course Program for Small Colleges, Comm.
ACM 16(1973), 139-147.

Blount, S. E. and Fein, L., The Practical Aspect
of Computer Science Education--Discussion,
Comm. ACM 16(1973), 45-46.

Brillinger, P. C. and Cowan, D. D., A complete
package for introducing computer science,
Proc. SIGSCE Symposium in Acad. Educ. in Com-
puter Science, 1970, 118-~-12-~.

Feurzeig, W., et al., SIMON: A Simple Instruc-
tion Monitor, Washington, D.C.: Office of
Naval Research, 1970.

Schurdak, J., An approach to the use of computers
in the instructional process and an evalua-
tion, Amer. Educ. Research J. 67(1967), 59-73.

Walker, M., A University-Level, First Course in
Computer Science: A Case Study, Proc. of IFIP
World Conference 1970, II, 389-39~.

Weiner, L. H., Machine generation of assingments
for a mass education introductory progrsmmlng
course, SIGSCE Bull. 5(1973), 181-185.

349

