
HASHING SCHEMES FOR EXTENDIBLE ARRAYS

Extended Abstract

Arnold L. Rosenberg
Larry J. Stockmeyer

Mathematical Sciences Department
IBM Watson Research Center
Yorktown Heights, New York

ABSTRACT: The use of hashing schemes for storing extendible arrays is investigated. It is shown that
extendible hashing schemes whose worst-case access behavior is close to optimal must utilize storage ineffi-
ciently; conversely, hashing schemes that utilize storage too conservatively are inevitably poor in expected
access time. If requirements on the utilization of storage are relaxed slightly, then one can find rather
efficient extendible hashing schemes. Specifically, for any dlmenslonallty of arrays, one can find extend-
ible hashing schemes which at once utilize storage well [fewer than 2p storage locations need be set aside
for storing arrays having p or fewer positions] and enjoy good access characteristics [expected access time
is 0(i), and worst-case access time is 0(log log p) for p- or fewer-posltlon arrays]. Moreover, at the cost
of only an additive increase in access time, storage demands can be decreased to (l+~)p locations for arbi-
trary E>0. In fact, if one will abide a more drastic degradation of access.efficlency, one can lower
storage demands to p+o(p) locations.

i. INTRODUCTION

Conventional schemes for storing arrays are not
readily extendible. For instance, in two dimensions,
the familiar store-by-row scheme admits easy adJunc-
tlon of new rows but only cumbersome appendage of
columns. Such asymmetry in extendibility is not
inevitable: there are computed-access schemes for
storing arrays which are readily extended in any
direction [i]. (An array storage scheme uses com-
puted access if it assigns an address to an array
position as a displacement from the address assigned
to position <i,'-',i>, the displacement being com-
puted from the position's coordinates.) However,
extendibility in array realizations does not come
without cost. The most definitive illustration of
the cost of extendibillty is the study in [2] of the
efficiency of storage utilization by extendible
array realizations. It is shown in that paper that
every d-dimenslonal extendible array realization
must, for every integer p, "spread" some array hav-
ing p or fewer positions over at least

0(p-(log p)d-l) storage locations. This bound
suggests that the costs of unbridled extendibility
are prohibitive; and it indicates that ways of
overcoming the bound should be sought. Two avenues
to a smaller lower bound are available: one can
abandon the demand for unbridled extendibility,
or one can abandon the restriction to computed-
access realizations. With regard to the former
alternative, it is shown in [2] that, by restrict-
ing the patterns of expansions of arrays and
by focusing only on arrays which conform to the
restrictions, one can improve storage "spread" to
0(p), irrespective of the dlmenslonallty of one's
arrays. With respect to the abandonment of computed
access, two alternatives arise. If one's array-
processing algorithms are predominantly traversal-
oriented, then linked realizations of arrays
("orthogonal lists" in Section 2.2.6 of [3]) are an
attractive alternative to computed-access realiza-

tions. Such realizations are at once easily
extended and conservative of storage; only cp
locations are needed for a p-posltlon array,
where c is a small integer. If, on the other
hand, one's algorithms tend to access arrays by
successive independent probes, then hashing
represents a viable alternative to computed access,
provided that hashing schemes ca~ be found which
are readily extended, conservative of storage, and
not overly expensive to access. It is our purpose
in this note to study the cost of extendibility in
hashing schemes for extendible arrays.

S,,mm~ry of Results. In Section 2, we describe how
hashing schemes can be used to store extendible
arrays; we use a simple bucket model-of hashing
schemes, with buckets organized as balanced search
trees. We also define there the measures of effi-
ciency that are the subject of our study. Section
3 is devoted to discussing a fundamental trade-
off. For any d-dlmensional hashing scheme, the
product of total space requirements and maximum
bucket size for p-posltlon arrays must grow at

least as p-(log ,)d-l; this generalizes the result
in [2] about computed-access realizations (which
can be viewed as hashing schemes whose buckets
never contain more than one array position). Vari-
ous extreme cases are considered in Section 4.
Hashing schemes whose worst-case access time does
not grow with the size of the array being stored
(computed-access realizations are included here)
must utilize storage very poorly: total storage
needed for p- or fewer-posltlon d-dlmensional

arrays grows as p.(log p)d-l. Conversely, hashing
schemes that do not use successively morebuckets
as the arrays being stored grow suffer very ineffi-
cient access: expected access time for p- or fewer-
position arrays grows no slower than log p. Sur-
prisingly, similarly inefficient access plagues

159

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800116.803765&domain=pdf&date_stamp=1975-05-05

hashing schemes that do use ever more buckets but
do so in a very conservative way: included here
are gap-free schemes which insist that, whenever
bucket b>l is used in storing array A, so also
must be bucket b-l; here also are those schemes
whose total storage demand for p- or fewer-position
arrays is p+0(1) locations. In Section 5 we relax
the extreme restrictions on storage allocation that
plagued the schemes of Section 4, and we seek
schemes that are good in both utilization of stor-
age and time of access: ~ study hashing schemes
that use O(p) buckets for p-position arrays. We
show that any such linear hashing scheme must have
worst-case access time of at least O(log log p)
for p- or fewer-positlon arrays (a dramatic improve-
ment, if attainable, over Section 4's lower bound
of log p for expected access time). The main
message of Section 5, and, indeed, of the paper,
is that this lower bourLd is achievaSle along ~ritk
constant expected access time! Specifically, for
every dimensionality d there is a d-dimensional
extendible linear array-hashing scheme which, when
storing arrays with at most p positions, has total
storage demands of fewer than 2p locations,* has
worst-case access time 0(log log p), and has ex-
pected access time c(d) (c(2) s 3). The exact
multiple of p in the expression for total storage
demands is of little import here since, at the cost
of only an additive increase in (both expected and
worst-case) access time, this multiple can be
brought below (I+E) for arbitrarily small e>0.
Indeed one can bring total storage demands down to
p+o(p) if one is willing to suffer a more drastic
degradation of efficiency of access (but no worse
than 0(log log p)).

Related Work. Knuth [3, Section 2.2.6] discusses
both sequential (= computed-access) and linked allo-
cation schemes for arrays; and he provides a compre-
hensive list of references to earlier work on such
schemes. While scatter storage (= hashing) for
arrays was undoubtedly considered and maybe even
implemented in the 60's, we know of no reference
predating [4] that discusses such schemes for stor-
ing arrays. The use of computed-access schemes for
storing extendible arrays was considered first in
[i]. The cost of such extendibility in terms of
efficiency of storage utilization is studied in
[2,5].

2. EXTENDIBLE ARRAY-HASHING SCHEMES

A. Notation

Let N denote the positive integers; and, for

each nEN, let N denote the set N = {l,..-,n}.
n n

For arbitrary dEN, N d is the set of d-tuples of

positive integers; we ambiguously let e = <i,-.-,i>,

relying on context to specify the dimensionality of

any instance of E. For ~Nd' ~i (i = l,-'',d) is

the i th coordinate of ~; thus, c i = 1 for all i.

Finally, for any integer tuple ~, E(~) = li~ i and

H(~) = Hi~ i.

Each location is assumed capable of holding one
datum, two pointers (to other locations in the same
bucket), and a key used for searching.

B. Array Schemes and Hashin s Schemes

In consonance with conventions for computed-
access array realizations [1,3] and for the array-
hashing functions of [4], we do not allow our hash-
ing schemes to be data dependent; that is, we
restrict attention to hashing functions that assign
array positions to buckets using only a position's
coordinates (and not its contents) to determine its
bucket assignment. Accordingly, we can use as our
notion of array the simple array schemes of [2,5]
rather than any more elaborate representation of
arrays.

(2.1) The d-dimenslonal array scheme (array, for

short) of size <nl,...,nd > (d,nl,...,nd~N)

is the set A = Nnl×...×Nnd Each ~A is

called a position of A.

Graphically, we envisage an array scheme as
being imbedded in the positive orthant of the appro-
priate dimensional space, with its positions laid
on the lattice points. Extensions to arrays
(adjoining new rows and/or columns, in two dimen-
sions) can be viewed as extensions to the discrete
rectangular solid formed by the imbedding. (Note
that the "rectangularity" resides in A's being the
cross-product of the coordinate sets N .)

n i

We view our hashing schemes as operating in
the following simple manner. There is a bucket
function ~ that assigns each position of the
array A being stored to a bucket; for simplicity,
we view the buckets as being addressed by positive
integers, so ~ is a function from A into N.
Of course several array positions will usually
reside in the same bucket (or else ~ would be a
computed-access realization as in [1,2]); the col-
lisions caused by ~'s being many-to-one are
resolved by organizing all the residents of each
bucket into a balanced search tree [7, Section
6.2.3] by sorting them according to some key such
as the lexi~ographic ordering of their coordinates.
(By so exploiting the order inherent in the keys,
one can appreciably reduce both expected and worst-
case access time in external [= bucket-employing]
hashing schemes. It is not obvious that internal
hashing schemes can benefit from such exploitation,
but Amble and Knuth [8] show that internal schemes
can be so improved.) Thus we imagine the storage
available to our hashing scheme to be divided into
a collection of bucket addresses and a pool of chain-
able storage for the trees. See Figure i.

The specific problem we address in this paper
is to gauge the cost of extendibility in array-
hashing schemes. We lead up to our formal setting
by considering the following scenario. We want to
devise a bucket function ~ that will store any
array of a given dimenslonality d. We intend to
use it as follows. We construct a system (say,
a compiler or operating system) that includes an
array-storage allocator based on ~. As a customer
(say, a program or a user) declares that his vari-
able X will range over d-dlmensional arrays having
p or fewer positions, the system sets aside for X
a block of m+n locations, call them
{l,...,m, m+l,.-.,m+n}; here m = max{~(=)l~ is a
position of an array having p or" Teewer positions},
and n is the largest number of locations the
system will ever need for constructing trees.

160

--BUCKETS--

I 2

<1,2> *
\

<2,1>

3

<2, 2>* I
/ \

<1,3> <3,1> I

4

<2,3>*
/ \

<1,4> <3,2>
\

<4,1>

5

<3, I
/ \

6

<3,4> "W"
\

<4,3>

7

b,,>*l

Figure i

The Array Scheme N 4 x N 4 Stored by the Hashing Scheme ~(i,j) = i+j-l.

Starred position (= roots of trees) reside in "bucket" storage; the others reside in chainable storage

(Precisely, n = max{q-#~(A) IA is a (q~p)-position
array}.) One can now store by hashing any array in
X's domain, using the storage set aside by the system
and using ~ as the bucket function. The "extend-
ibility" in the described situation resides in the
facts that (i) the same function ~ is used as the
bucket function irrespective of what integer p
appears in the declaration binding X; and (2) the
scheme generated by the allocator will properly
store any array in the domain of the variable X.
The described scheme exhibits two types of stability:
first, the computation required to store and/or
access array positions does not change as the array
being processed is extended; second, bucket assign-
ments never change because of changes to the stored
array. In fact, even if the declared value of p
is changed dynamically, relatively minor rechaining
within buckets can restore a stable configuration
(especially if the pool of chalnable storage is
accessed from the hlgh-address side). It is such
stability under alterations to the stored array that
we equate with "extendibility" of the hashing scheme.
An alternative to our scenario might depict a differ-
ent function ~ being used for each declared bound
p. It is hard to see how any such system would
exhibit the uniformity of scheme-generatlon or of
extension and the algorithmic simplicity enjoyed
by our system. The major question raised by this
alternative is how much our uniformity costs.
Theorems 5.3 and 5.4, our main results, suggest that
the schemes generated by our imaginary system can
attain a practical level of efficiency in both time
of access and utilization of storage.

For simplicity, we henceforth identify a hash-
ing scheme with its bucket function.

(2.2) A d-dimensional extendible (array-) hashing

scheme is ~ total function ~:N d--+ N such
that ~(e) = I.

The normalizing assumption "~(e) = i" simpli-
fies certain computations in what follows but is not
indispensable. (Cf. (2.4(a)) in the absence of this
assumption.) Henceforth we shall study only (de2)-
dimensional extendible hashing schemes.

C. Measures of Efficiency

The efficiency of any hashing scheme is meas-
ured in terms of the scheme's demands on two
resources, time and storage. However, deciding on
what to measure is only half the battle; we must

decide on how to estimate the consumption of these
resources.

Access Time. We view the cost of computing a
bucket function ~ as being negllgible compared to
the cost of searching even a modest size tree. (To
make this assumption reasonable, we have tried to
use only very simple bucket functions when establish-
ing upper bounds.) Accordingly, we gauge the cost
of accessing position w of array scheme A when
A is stored by ~ as being the log of the popula-
tion of w's bucket; precisely,

Access~(~;A) = Flog(#(An~-l(~(~))) + 1) 7 .

The justification for the logarithmic cost is that
each bucket is organized into a balanced search
tree. Positions added to an array via extensions
are to be stored at the time of their first access
and so stay within our logarithmic cost. The base
of the logarithm used is immaterial in almost all
of our results because of their'"big-Oh" assertions.
In the few cases (e.g., Theorems 5.3 and 5.4) where
constants are crucial to the development, we use
the base 2 logarithm appropriately dilated. (See
Theorem A of [7, Section 6.2.3].)

Now that we have a way of gauging an extend-
ible hashing scheme's accessing characteristics on
a single array, we can formulate the first two func-
tions of interest, which reflect a scheme's access
behavior on arrays having no more than p positions.
Focus on an extendible hashing scheme ~.

(2.3)(a) Worst-Case Access Time

~(p;~) = (the worst-case time needed by

to access a position of an

array having at most p positions)

= max{Access~(~;A) IA has at most

p positions, and ~EA}.

(b) Worst Expected Access Time

~(p;~) = (the average time needed by ~ to

access a position of that p- or

fewer-positlon array having worst

expected access time under ~)

= max{(I/q)~AACCess~(~,A)I

A has q~p positions}.

161

Storage Requirements. Our view of extendible hash-
ing schemes demands that we segregate the storage
used for chaining (for building the trees that make
up the bucket interiors) from the storage used for
bucket headers (= the roots of those trees). If we
did not partition storage in this way, a series of
expansions of a stored array might demand for use
as the header of bucket k a location already being
used in the tree of bucket: A # k. Such partition-
ing also is consonant with the scenario motivating
our view of extendible hashing schemes. Finally,
this division of storage makes the analysis of
proposed hashing schemes or classes of hashing
schemes immeasurably simpler than it would be if we
used some more sophisticated method of collision
resolution (e.g., linear]probing or secondary clus-
tering [8]). We formalize this division of storage
by our method of measuring efficiency of storage
utilization. Again, let ~ be an extendible hash-
ing scheme.

(2.4)(a) Bucket Storage Requirements

8(p;~) = (the n~nber of storage locations
over which ~ "spreads" the
bucket headers [roots of search
trees] when storing arrays having
at most p positions)

= max{~(~)[H(~) ~ p}.

Note: ~ is a position of a p- or fewer-
position array iff H(~) S p.

(b) Chainable Storage Requirements

o(p;~) = (the amount of storage that is
needed to store the bucket inte-
riors [the nonroot nodes of the
search trees] when storing arrays
having at most p positions)

= max{q-#~(A)[A has q~p positions}.

(c) Total Storage Requirements

T(p;~) = (the total amount of storage that
must be set aside to store arrays
having no more than p positions)

= B(p;~) + oCp;~).

The aim of this paper is to discover relation-
ships among the five efficiency measures of (2.3)
and (2.4). In stating results, we shall fix the
hashing scheme ~ by either quantification or
instantiation; we shall then be free to consider our
five functions as functions of p alone, as in "For
all hashing schemes ~, o(p;~) = O(p)," or

"~(p;~o) = 0(i)." [As an aside, the former assertion

is obviously true; and we shall present a scheme in
Section 5 for which the latter assertion is true.]

The following lemma will be used in our inves-
tigation.

(2.5) For all dlmensionalities deN and peN,

Sd(P) = {~eNd[H(~) ~ p}.

Lemma 2.1 [2]. (a) A position ~eN d resides in
Sd(P) iff it is a position of some array having

p or fewer positions. (b) For all deN-(l},
there exist constants k,~>0 such that

k.p-(log p)d-i < #Sd(P) < A-p.(log p)d-i

for all pEN-{l}.

3. A FUNDAMENTAL TRADEOFF

As a vehicle for introducing the reader to
extendible hashing schemes, and as a prologue to a
challenging research problem, we present a funda-
mental tradeoff in storage use by extendible hash-
ing schemes. The tradeoff involves the total stor-
age function ~(p;~) and the function now defined.

(3.1) Size(p;~) = (the maximum size any bucket
attains as ~ stores p- or
fewer-position arrays)

= max{#(An~-l(~(~)))IA has p or

fewer positions, and ~EA}.

We prepare the reader for the tradeoff statement
via some examples.

(3.2) A Computed-Access Realization. If ~:N d --+ N
is one-to-one, then ~ is an extendible
array realization in the sense of [1,2,5].
It follows from Lemma 2.1, then, that

p.(log p)d-i = 0(T(p;~)); and it is tautolo-

gous that Siz e(p;~) - i.

(3.3) A Linked-Allocation Scheme. If ~(~) - i,
then ~ is a pure chaining scheme. It is
immediate, then, that T(p;~) = Size(p;~) = p.

(3.4) Define ~:N d --+ N by ~(~) = E(~)-d+l; the

two-dimensional (d=2) version of ~ is illus-

trated in Figure i. It is not difficult to

verify that 8(p;~) = p, and G(p;~) =

p-dpl/d+d-l, so that T(p;~) = 2p-dpl/d+d-l.

It is also easily seen that Size(p;~) =Inddlll
\ /

where n = pl/d, so that pl-i/d = O(Size(p;~)).

(3.5) Define ~:N d --+ N by ~(~) = H(~). Obviously,

8(p;~) = P so that p < r(p;~) < 2p. (By

definition o(p;~) < p for any ~.) Moreover,

by considering the cases when p is a power

of 2, one verifies easily that

(log p)d-1 = O(Size(p;~)).

Note that in all of the examples just presented,
the product T(p;~).Size(p;~) grows (in order of

magnitude) at least as fast as p-(log p)d-l. It is
our conjecture that this is a universal phenomenon;
however, we are able to establish only an "infinitely
often" version of this conjecture.

Theorem 3.1. Let ~:N d --+ N be an extendible hash-
i~ng ~cheme. There4 is a constant c>O such that,
for infinitely many peN,

d-i
T(p;~).Size(p;~) > c-p.(log p)

4. EXTREME CASES

It is not uncommon that a seemingly innocuous
restriction on one of our complexity measures forces
another measure to behave as badly as possible (i.e.,
to grow as fast as one could ever force it to). In
this section we present a number of such situations.
To lend the reader a point of reference, we note

162

minimax lower bounds on three of our complexity mea-
sures. (Recall that, by definition, a(p;4) cannot
be forced to exceed p.)

(4.1) A bound on 8. In [2] it is proved that, if

4aN d --+ N is one-to-one, then p'(log p)d-i =

0(8(p;4)). Moreover, for each dEN, there

a one-to-one scheme ~:N d --+ N for which is

8(p; 4) = O(p.(log p)d-1) .

(4.2) Bounds on ~ and ~. By its very definition
(cf. (3.1)), Size(p;~) can obviously not
exceed p. It follows that ~(p;4) =O(log p)
for any hashing scheme 4; ~ fortiori,

e(p;4) =O(log p) for all 4" If 4(w) E 1
so that 4 is a llnked-allocatlon scheme,
then all three of these worst cases are real-
ized simultaneously.

We begin our survey of harmful restrictions by
exhibiting two restrictions, either of which guar-
antees poor storage utilization.

Theorem 4.1. Let 4 be a d-dlmensional extendible
h-dashing scheme. If either s(p;~) = 0(i) or

a(p; 4) = 0(i), then p.(log p)d-~ = 0(B(p;4)).

Hint: The proof hinges on the fact that the array
scheme (Np) d contains the union Sd(P) of all

p- or fewer-posltion arrays. See Figure 2

and Lemma 2.1.

-q-

A = (Nq)2

~////////////////////////////////~

Figure 2

Every q-position array is a subset of the
q x qx...Xq array

It is worth noting that Theorem 4.1 cannot be

strengthened by replacing ~ by ~: in Section 5,

we show that a constant ~ can coexist with a B
that is linear in p.

Expected access time must be poor for schemes
that do not use increasing numbers of buckets as
array size grows. Such schemes would typically use
linked allocation or hashing by division (i.e.,
modular arithmetic as in 4(~) = Z(~) (rood m)).

Theorem 4.2. Let 4 be an extendible hashing

scheme. If 8(p;4) = 0(i), then

log p = 0(~(p;4)).

Hint: Such schemes behave approximately as linked-
allocation schemes (cf. (4.2)).

Finally, we note two restrictions on efficiency
of storage management which, like bounded bucket
demands, guarantee poor access time. The first
restriction is that 4 assign buckets to arrays
in a gap-free manner; that is, for every array A,
there is an integer k for which 4(A) = {l,...,k}.
(In other, words, bucket £-I is used whenever
bucket £ is.) The second restriction, which
includes special cases of bounded bucket demands,
is that total storage demands grow slowly~ for

instance, T(p;4) = p + 0(pl/2-E). The fact that
these restrictions give rise to worst-possible
access time (in the sense discussed earlier) is
somewhat more surprising than the fact that the
bounded bucket restriction does. The desired
results emerge as corollaries of the following
theorem.

(4.3) Let 4 be a d-dlmensional extendible hashing
scheme, and let ~:N ÷ Nu{0} be a nondecreas-
ing function. We say that ~ bucket-bounds
4 if, for all peN and all array schemes

A c N d having p positions,

max 4(A) - #4(A) : ~(p).

Theorem 4.3. Let 4 be a d-dimensional extendible
hashing scheme. If the function ~ bucket-
bounds 4' then

(l-i/d)-log p - log(~(p)+l) = O(:(p;4)).

Hint: If ~ bucket-bounds 4' then

4(~) ~ (~(~)-d+l)q(H(~))+l)
[by induction on Z(~)].

Corollary 4.1. If the extendible hashing scheme 4

is gap-free, then log p = O(~(p;4)).

Hint: 4 is gap-free iff it is bucket-bounded by

~(p) ~ 0.

Corollary 4.2. Let 4 he a d-dlmenslonal extendible
hashing scheme. If T(p;~) ~ p + ~(p) where
~:N + Nu{O} is nondecreas~ng, then

(l-i/d)'log p - log(~(p)+l) = O(:(p;4)).

Hint: The hypothesized bound on T's rate of growth
implies that ~ bucket-bounds 4"

The interest of Corollary 4.2 for the material
in this section is that it implies that a very
slowly-growlng ~ can signal very inefficient
access behavior. For instance, if T(p;4) = p+0(p c)

for some c < l-l/d, then log p = O(~(p;4)).

5. LINEARLY-GROWING BUCKET SPACE

The results in Section 4 indicate that for us
even to hope to find an extendible hashing scheme
that is efficient in both speed of access and utili-
zation of storage, we must relax our stringent
demands on the bucket function. Fortunately, we
needn't relax our demands so much as to admit fast-

165

growing bucket functions: one can find efficient
hashing schemes ~ with 8(p;~) = P. For the sake
of generality that will not occasion any technical
encumbrance, we study here hashing schemes with
8(p;~) = 0(p) (i.e., we allow ~ to use more than
p buckets); we call such ~'s linear hashing
schemes. (Restricting attention to such schemes is
really only a mild relaxation of our earlier demands
since 8(p;~) = P even for the d-dlmensional gap-
free scheme- ~(~) : Z(~) -d + i.) The reader who
balks at our allowing 8(p;~) to exceed p should
note that, for any integer k, the scheme

~(k)(~) = r~(~)/kl has the following properties.

(i) ~ (p ; ~ (k)) = FB(p ;~) / k l ; (2) ~ (k) i s more

conservative of total storage than ~; (3) ~(k)

has only slightly worse access time than ~ (see
Theorem 5.4). Therefore, we shall not be using the
"big Oh" to hide large multiples that can refute
our claims of efficiency.

A. Lower Bounds on Perfoz~ance

The restriction to linearly-growing bucket
space imposes floors on certain other efficiency
criteria. We present two such lower bounds.

First we note that worst-case access time for
linear hashing schemes must grow as log log p.
Two points merit note. First, this bound is
dramatically lower than the log p bounds on access
time established in Theorem 4.2 and Corollaries 4.1

and 4.2 (this last with ~!(p) = 0(p c) for c<l-I/d).
Second, whereas the cited'results bound expected
access time, the present result deals with worst-
case access time.

Theorem 5.1. For any linear extendible hashing
scheme ~, log log p = O(s(p;~)).

Hint: The array scheme (Np) d contains the set

Sd(p) (cf. Lemma 2.1).

Our second lower bound asserts that o must
grow linearly with p whenever 8 does. The
import of this result is that, if one wishes to
replace a given linear scheme ~ (for which
T(p;~) = 0(p) automatlcally) by a linear scheme ~'
for which T(p;~') = p + o(p), one cannot hope to TM
do it simply by lowering interior bucket demands
so that o(p;~') : o(p). The desired savings in
storage can come only by constructing ~' so as to
assure that 8 grows slowly. (Cf. the discussion
in the latter half of Section 5C on lowering stor-
age demands.)

Theorem 5.2. For any linear extendible hashing
scheme ~, p = 0(o(p;~)). Specifically, if
8(p;~) ~-c'p for almost all p, then
o(p,~) ~ 6.p for almost all p, where

= exp(-(c+2)).

B. An Efficient Hashin~ Scheme

(5.1) For each dimensionality dEN-{l}, define the
d-dimensional extendible hashing scheme

~d:Nd --+ N by the following recursion.
L l°g =2]

(a) For ~EN 2, ~2(~) = ~2 + (~i -1)2

(b) For TEN d , d > 2,

~d(~) = ~2(~i, ~d_l(~2,"',Zd)) •

Informally, one computes ~d(~) by taking the

minimum-length binary representation of ~l,-..,~d,

removing the leading 1 from all but that of Zl'

and concatenating the remaining strings in the
appropriate order; thus the binary representation
of ~d(~) assumes the form l~l~2.-.~d, where l~j

is the binary representation of ~j.

I 2 3 4 5 6 7 8 9 i0

2 4 5 8 9 i0 ii 16 17 18

3 6 7 12 13 14 15 24 25 26

4 8 9 16 17 18 19 32 33 34

5 i0 ii 20 21 22 23 40 41 42

6 12 13 24 25 26 27 48 49 50

7 14 15 28 29 30 31 56 57 58

8 16 17 32 33 34 35 64 65 66

9 18 19 36 37 38 39 72 73 74

i0 20 21 40 41 42 43 80 81 82

Figure 3

A Schematic View of ~2((N10)2).

Theorem 5.3. For each dimensionaltiy dEN-{1},

the extendible hashing scheme ~d has the'

following properties. (a) 8(p;~d) : p.

(b) There is a constant c > 0 such that

cp < a(p;~d) < p. (c) ~(p;~d)

(d-l) log log p + 0(i). (d) [(p;~d) = 0(i);

in particular ~(p;~2) < 8.5.

Proof sketch. (a) First, ~d(Np x {1} d-l) = Np,

so 8(P;~d) a p. On the other hand,

~2 (~) N ~2 ~' (~i-1)'~2 = ~1"~2 for all ~EN2; this

generalizes by induction to the assertion that

~d(~) ~ H(~) for all ~eN d.

(b) The upper bound on o is immediate by
definition. The lower bound follows directly from
Theorem 5.2 in conjunction with part (a).

(c) Say that i~ (~E{0,1}*) is the binary
representation of ~d(~) for some ~ESd(P). By

part (a), ~d(~) N p. There are, therefore, at most

[log(p+l)~ d-I ways that the string m can be
broken (or parsed) into the form m = $i...$d ,

each ~ie{O,l} In other words, when ~d stores

an array having p or fewer positions, no bucket

gets more than Flog(p+l)l d-I positions. Part (c)
is now Immediate by definition of Access and of ~.

(d) We consider only the case d = 2. The
analysis of the general case is similar. Say that
~2 stores the array scheme A of size <m,n>

having p = mn position. For zeN, let

Z(z) = Llog z] + i denote the length of the binary

representation of z. Let t = £(m) + £(n).

164

View the computation of ~b 2 as concatenation

of binary representations as described in (5.1).
It is clear that if bucket z is used when ~2

stores A, then Z(z) < t - i. Consider any bucket
z with £(z) = t - i. It is not hard to see that
there is at most one way z can be "parsed" (cf.
part (c)) into integers ~i and ~2 with

~i < m and ~2 -< n; therefore, the population of

such buckets is at most i. There are at most 2 t-2

such buckets. Similarly, the 2 t-3 buckets z
with Z(z) = t - 2 can each be parsed in at most

two ways, the 2 t-4 with £(z) = t - 3 in at
most three ways, and so on. This yields the bound

t+l
~(p;~2) < (l/p) E k" [log(k+l)] .2 t-k-l.

k=l

Noting that p -> 2 t-2, this sum can be bounded
above by 8.5.

Remark. A more careful analysis in part (d) proves

that ~(p;~2) < 3; and computer simulation reveals

that ~(2500;~2)_ > 2. Of course, the average access

time in practice will depend on u dilated by a
constant that reflects the particular data struc-
ture used to store buckets and the particular
algorithm used to access positions withi n buckets;
see [7, Section 6.2].

Even though our definition of Access assumes
some variant of balanced search tree as the basic
data structure, it is interesting to note that the
average access cost of ~2 remains bounded (by 8)

if one stores buckets in linear lists, charging
average cost (k+l)/2 to access a position in a
bucket of size k. Linear lists may be more attrac-
tive for "small" arrays, since the accessing algo-
rithm is simpler for linear lists than for trees.
However, the worst-case access time of ~2 becomes
roughly log p if linear lists are used.

C. Tradeoffs between Access Time
an d S torase Utilization

Theorem 5.3 does not specify precise values

for ~(p;~d) or T(p;~d) , since by means of (often

easily-effected) changes to a hashing scheme, one
can trade off access time and storage utilization:
at the cost of increasing 8(p;~) by a factor of

k, one can decrease ~(p;~) by roughly log k;

conversely, at the cost of increasing ~(p;~) by
log k, one can decrease T(p;~) - p by the factor
k.

Lowering access time. Any change to ~ that causes
a k-fold decrease in the size of buckets will reduce

~(p;~) by log k, albeit at the cost of a k-fold
increase in the number of buckets used. It is
difficult to discuss such alterations in the
abstract, since the effectiveness of a given bucket-
shrinking ploy appears to depend in an essential
way on the particular ~ in question. We limit
our discussion, therefore, to a simple example in
two dimensions.

Let ~(~) = ~i+~2-i; this is a gap-free hash-

ing scheme (cf. Corollary 4.1). Define ~':N 2 --+ N

by ~'(~) = k'~(~) - k + [~i (mod k)]. Now compare

the behaviors of both ~ and ~' on an array
A c N 2. If ~ assigns m array positions to a
given bucket i, then ~' assigns at most [m/k]
positions to each of buckets ki-k,...jki-l. The
cumulative time required to access these positions
is, therefore, at most m[log(m+l)] for ~ <and
mElog(Fm/k]+l)] for ~'. Since log([m/kT+f) -
log(m/k + 2) < log(m/Z) + 1 for almost all m,
our estimates on the time to access all of bucket
i lead us to conclude that the average access time
for A under scheme ~ exceeds the average access
time under ~' by at least log k - 2 providing only
that A has at least 4k rows and columns. Since

is monotonic in p, we see that ~(p;~')

approaches ~(p;~) - log k for sufficiently large
p.

Lowering storage demands. We can discuss techniques
for improving storage utilization with somewhat
more authority than those for improving access time,
for here we find general techniques that work for
all ~.

(5.2) Let ~ be an extendible hashing scheme. For

keN, ~(k) is the extendible hashing scheme

defined by ~(k)(~) = ~(~)/k].

If the linear hashing scheme ~ has total stor-
age demand ~(p;~) = (l+c)p for c > O, then the

(again linear) scheme ~(k) has demand not exceeding
(l+c/k)p + i. Therefore, by choosing k sufficiently
large, one can reduce storage demand below (l+s)p

for any e > 0 by replacing ~ with ~(k). Such
a replacement has an adverse effect on access effi-
ciency, but only an additive one.

Theorem 5.4. Let ~ be an extendible hashing

scheme. (a) r(p;~(k))_p ~ l+(r(p;~)-p)/k.

(b) ~(p;~(k)) ~ ~(p;~) + log k + i.

Hint: Consider how ~(k) coalesces ~'s bucket
assignments.

The following important corollary of Theorem
5.4 is immediate.

Corollary 5.1. If ~(p;~) = 0(i), then the same is

true of ~(p;~(k)) for any k.

We now have linear hashing schemes whose stor-
age requirements grow as (l+e)p and whose expected
and worst-case time grow as a constant and log log p,
respectively. (The last remark is immediate and
left to the reader for verification.) The only
material improvement one might hope for is to reduce
storage demands to p+o(p) without excessive dete-
rioration of access time. We have very little to
report with regard to such improvements.

Proposition 5.1. Let ~ be a linear hashing scheme.

The hashing scheme ~ defined by ~ (~) =

[~(~)/log H(=)] has the following properties.

(a) T(p;~,)-p ~ l+(T(p;~)-p)/log p.

(b) e(p;~) = O(e(p;~) + log log p).

If one is willing to use only worst-case behav-
ior to measure efficiency of access, Proposition 5.1

165

yields a technique for attaining both good storage
utilization and good access characteristics. However,
this technique inevitably destroys efficient
expected access time.

Proposition 5.2. For any extendible hashing scheme

~, ~(P;~) ~ log(p/SCp;~)).

This proposition indicates that, for any linear

~, log log p = O(s(p;~)1 -- since, for some c > 0

8(p;~*) s [cp/log p].

We are thus left with the following open question.

Problem. Does there exist an extendible hashing
scheme ~ such that r(p;~) = p+o(p) and

~(p;~) = o(117

Our results do not resolve this issue, but
they do narrow down the search materially. Specif-
ically we know that the desired ~ (if it exlstsl
must satisfy the following efficiency bounds.

(5.51 (el For some k,k' > 0, for almost all p,

kp ~ 8(p;~) ~ k'p.

(b) For some £ > 0, for almost all p,

~p ~ ~(p;~) < p.

The upper bound on 8 follows from our desire to
keep storage demands low; the lower bound follows
from Proposition 5.2 and our desire to keep expected
access time down. The upper bound on ~ follows
by definition; the lower bound on o follows from
Theorem 5,2 in the presence of the llnearity of ~,
i.e., (5.5(a)).

Another remaining challenge, of a materially
different nature, is to "fine tune" the results in
this section in an actual computer environment, that
is, select the necessary data representations, inves-
tigate the cost of bookkeeping details that are not
visible in any abstract investigation, and study the
real effect of the tradeoffs mentioned. We suspect,
on the basis of Theorems 5.3 and 5.4 and the remarks

on lowering s, that extendible hashing schemes
that attain a practical level of efficiency exist.

ACKNOWLEDGMENT

We are grateful to Shmuel Winograd for con-
structive suggestions in the early stages of this
research.

REFERENCES

i. A. L. Rosenberg, Allocating storage for extend-
ible arrays. JACM, 21 (1974) 652-670.

2. A. L. Rosenberg, Managing storage for extendible
arrays. SlAM J. Comput., to appear.

3. D. E. Knuth, The Art of Computer Pro~rammln~ I:
Fundamental Algorithms, Addlson-Wesley,
Reading, Mass., 1968.

4. E.v.d.s. de Villiers and L. B. Wilson, Hash
coding methods for sparse matrices. Tech.
Rpt. 45, Univ. of Newcastle-upon-Tyne (Com-
puting Lab.), May, 1973. See also, Hashing
the subscripts of a sparse matrix. BIT, 14
(1974) 347-358.

5. L. J. Stockmeyer, Extendible array realizations
with additive traversal. IBM Report RC-4578,
1973.

6. A. L. Rosenberg, Computed access in ragged
arrays, in Information Processing 74
(J. Rosenfeld, ed.) North-Holland, Amsterdam,
1974, pp. 642-646.

7. D. E. Knuth, The Art of Computer Programmin~ liT:
Sorting and Searchln~, Addlson-Wesley,
Reading, Mass., 1973.

8. O. Amble and D. E. Knuth, Ordered hash tables.
Comput. J., i_~7 (19741 135-142.

166

