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ABSTRACT: The use of hashing schemes for storing extendible arrays is investigated. It is shown that 
extendible hashing schemes whose worst-case access behavior is close to optimal must utilize storage ineffi- 
ciently; conversely, hashing schemes that utilize storage too conservatively are inevitably poor in expected 
access time. If requirements on the utilization of storage are relaxed slightly, then one can find rather 
efficient extendible hashing schemes. Specifically, for any dlmenslonallty of arrays, one can find extend- 
ible hashing schemes which at once utilize storage well [fewer than 2p storage locations need be set aside 
for storing arrays having p or fewer positions] and enjoy good access characteristics [expected access time 
is 0(i), and worst-case access time is 0(log log p) for p- or fewer-posltlon arrays]. Moreover, at the cost 
of only an additive increase in access time, storage demands can be decreased to (l+~)p locations for arbi- 
trary E>0. In fact, if one will abide a more drastic degradation of access.efficlency, one can lower 
storage demands to p+o(p) locations. 

i. INTRODUCTION 

Conventional schemes for storing arrays are not 
readily extendible. For instance, in two dimensions, 
the familiar store-by-row scheme admits easy adJunc- 
tlon of new rows but only cumbersome appendage of 
columns. Such asymmetry in extendibility is not 
inevitable: there are computed-access schemes for 
storing arrays which are readily extended in any 
direction [i]. (An array storage scheme uses com- 
puted access if it assigns an address to an array 
position as a displacement from the address assigned 
to position <i,'-',i>, the displacement being com- 
puted from the position's coordinates.) However, 
extendibility in array realizations does not come 
without cost. The most definitive illustration of 
the cost of extendibillty is the study in [2] of the 
efficiency of storage utilization by extendible 
array realizations. It is shown in that paper that 
every d-dimenslonal extendible array realization 
must, for every integer p, "spread" some array hav- 
ing p or fewer positions over at least 

0(p-(log p)d-l) storage locations. This bound 
suggests that the costs of unbridled extendibility 
are prohibitive; and it indicates that ways of 
overcoming the bound should be sought. Two avenues 
to a smaller lower bound are available: one can 
abandon the demand for unbridled extendibility, 
or one can abandon the restriction to computed- 
access realizations. With regard to the former 
alternative, it is shown in [2] that, by restrict- 
ing the patterns of expansions of arrays and 
by focusing only on arrays which conform to the 
restrictions, one can improve storage "spread" to 
0(p), irrespective of the dlmenslonallty of one's 
arrays. With respect to the abandonment of computed 
access, two alternatives arise. If one's array- 
processing algorithms are predominantly traversal- 
oriented, then linked realizations of arrays 
("orthogonal lists" in Section 2.2.6 of [3]) are an 
attractive alternative to computed-access realiza- 

tions. Such realizations are at once easily 
extended and conservative of storage; only cp 
locations are needed for a p-posltlon array, 
where c is a small integer. If, on the other 
hand, one's algorithms tend to access arrays by 
successive independent probes, then hashing 
represents a viable alternative to computed access, 
provided that hashing schemes ca~ be found which 
are readily extended, conservative of storage, and 
not overly expensive to access. It is our purpose 
in this note to study the cost of extendibility in 
hashing schemes for extendible arrays. 

S,,mm~ry of Results. In Section 2, we describe how 
hashing schemes can be used to store extendible 
arrays; we use a simple bucket model-of hashing 
schemes, with buckets organized as balanced search 
trees. We also define there the measures of effi- 
ciency that are the subject of our study. Section 
3 is devoted to discussing a fundamental trade- 
off. For any d-dlmensional hashing scheme, the 
product of total space requirements and maximum 
bucket size for p-posltlon arrays must grow at 

least as p-(log ,)d-l; this generalizes the result 
in [2] about computed-access realizations (which 
can be viewed as hashing schemes whose buckets 
never contain more than one array position). Vari- 
ous extreme cases are considered in Section 4. 
Hashing schemes whose worst-case access time does 
not grow with the size of the array being stored 
(computed-access realizations are included here) 
must utilize storage very poorly: total storage 
needed for p- or fewer-posltlon d-dlmensional 

arrays grows as p.(log p)d-l. Conversely, hashing 
schemes that do not use successively morebuckets 
as the arrays being stored grow suffer very ineffi- 
cient access: expected access time for p- or fewer- 
position arrays grows no slower than log p. Sur- 
prisingly, similarly inefficient access plagues 
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hashing schemes that do use ever more buckets but 
do so in a very conservative way: included here 
are gap-free schemes which insist that, whenever 
bucket b>l is used in storing array A, so also 
must be bucket b-l; here also are those schemes 
whose total storage demand for p- or fewer-position 
arrays is p+0(1) locations. In Section 5 we relax 
the extreme restrictions on storage allocation that 
plagued the schemes of Section 4, and we seek 
schemes that are good in both utilization of stor- 
age and time of access: ~ study hashing schemes 
that use O(p) buckets for p-position arrays. We 
show that any such linear hashing scheme must have 
worst-case access time of at least O(log log p) 
for p- or fewer-positlon arrays (a dramatic improve- 
ment, if attainable, over Section 4's lower bound 
of log p for expected access time). The main 
message of Section 5, and, indeed, of the paper, 
is that this lower bourLd is achievaSle along ~ritk 
constant expected access time! Specifically, for 
every dimensionality d there is a d-dimensional 
extendible linear array-hashing scheme which, when 
storing arrays with at most p positions, has total 
storage demands of fewer than 2p locations,* has 
worst-case access time 0(log log p), and has ex- 
pected access time c(d) (c(2) s 3). The exact 
multiple of p in the expression for total storage 
demands is of little import here since, at the cost 
of only an additive increase in (both expected and 
worst-case) access time, this multiple can be 
brought below (I+E) for arbitrarily small e>0. 
Indeed one can bring total storage demands down to 
p+o(p) if one is willing to suffer a more drastic 
degradation of efficiency of access (but no worse 
than 0(log log p)). 

Related Work. Knuth [3, Section 2.2.6] discusses 
both sequential (= computed-access) and linked allo- 
cation schemes for arrays; and he provides a compre- 
hensive list of references to earlier work on such 
schemes. While scatter storage (= hashing) for 
arrays was undoubtedly considered and maybe even 
implemented in the 60's, we know of no reference 
predating [4] that discusses such schemes for stor- 
ing arrays. The use of computed-access schemes for 
storing extendible arrays was considered first in 
[i]. The cost of such extendibility in terms of 
efficiency of storage utilization is studied in 
[2,5]. 

2. EXTENDIBLE ARRAY-HASHING SCHEMES 

A. Notation 

Let N denote the positive integers; and, for 

each nEN, let N denote the set N = {l,..-,n}. 
n n 

For arbitrary dEN, N d is the set of d-tuples of 

positive integers; we ambiguously let e = <i,-.-,i>, 

relying on context to specify the dimensionality of 

any instance of E. For ~Nd' ~i (i = l,-'',d) is 

the i th coordinate of ~; thus, c i = 1 for all i. 

Finally, for any integer tuple ~, E(~) = li~ i and 

H(~) = Hi~ i. 

Each location is assumed capable of holding one 
datum, two pointers (to other locations in the same 
bucket), and a key used for searching. 

B. Array Schemes and Hashin s Schemes 

In consonance with conventions for computed- 
access array realizations [1,3] and for the array- 
hashing functions of [4], we do not allow our hash- 
ing schemes to be data dependent; that is, we 
restrict attention to hashing functions that assign 
array positions to buckets using only a position's 
coordinates (and not its contents) to determine its 
bucket assignment. Accordingly, we can use as our 
notion of array the simple array schemes of [2,5] 
rather than any more elaborate representation of 
arrays. 

(2.1) The d-dimenslonal array scheme (array, for 

short) of size <nl,...,nd > (d,nl,...,nd~N) 

is the set A = Nnl×...×Nnd Each ~A is 

called a position of A. 

Graphically, we envisage an array scheme as 
being imbedded in the positive orthant of the appro- 
priate dimensional space, with its positions laid 
on the lattice points. Extensions to arrays 
(adjoining new rows and/or columns, in two dimen- 
sions) can be viewed as extensions to the discrete 
rectangular solid formed by the imbedding. (Note 
that the "rectangularity" resides in A's being the 
cross-product of the coordinate sets N .) 

n i 

We view our hashing schemes as operating in 
the following simple manner. There is a bucket 
function ~ that assigns each position of the 
array A being stored to a bucket; for simplicity, 
we view the buckets as being addressed by positive 
integers, so ~ is a function from A into N. 
Of course several array positions will usually 
reside in the same bucket (or else ~ would be a 
computed-access realization as in [1,2]); the col- 
lisions caused by ~'s being many-to-one are 
resolved by organizing all the residents of each 
bucket into a balanced search tree [7, Section 
6.2.3] by sorting them according to some key such 
as the lexi~ographic ordering of their coordinates. 
(By so exploiting the order inherent in the keys, 
one can appreciably reduce both expected and worst- 
case access time in external [= bucket-employing] 
hashing schemes. It is not obvious that internal 
hashing schemes can benefit from such exploitation, 
but Amble and Knuth [8] show that internal schemes 
can be so improved.) Thus we imagine the storage 
available to our hashing scheme to be divided into 
a collection of bucket addresses and a pool of chain- 
able storage for the trees. See Figure i. 

The specific problem we address in this paper 
is to gauge the cost of extendibility in array- 
hashing schemes. We lead up to our formal setting 
by considering the following scenario. We want to 
devise a bucket function ~ that will store any 
array of a given dimenslonality d. We intend to 
use it as follows. We construct a system (say, 
a compiler or operating system) that includes an 
array-storage allocator based on ~. As a customer 
(say, a program or a user) declares that his vari- 
able X will range over d-dlmensional arrays having 
p or fewer positions, the system sets aside for X 
a block of m+n locations, call them 
{l,...,m, m+l,.-.,m+n}; here m = max{~(=)l~ is a 
position of an array having p or" Teewer positions}, 
and n is the largest number of locations the 
system will ever need for constructing trees. 
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--BUCKETS-- 

I 2 

<1,2> * 
\ 

<2,1> 

3 

<2, 2>* I 
/ \ 

<1,3> <3,1> I 

4 

<2,3>* 
/ \ 

<1,4> <3,2> 
\ 

<4,1> 

5 

<3, I 
/ \ 

6 

<3,4> "W" 
\ 

<4,3> 

7 

b,,>*l 

Figure i 

The Array Scheme N 4 x N 4 Stored by the Hashing Scheme ~(i,j) = i+j-l. 

Starred position (= roots of trees) reside in "bucket" storage; the others reside in chainable storage 

(Precisely, n = max{q-#~(A) IA is a (q~p)-position 
array}.) One can now store by hashing any array in 
X's domain, using the storage set aside by the system 
and using ~ as the bucket function. The "extend- 
ibility" in the described situation resides in the 
facts that (i) the same function ~ is used as the 
bucket function irrespective of what integer p 
appears in the declaration binding X; and (2) the 
scheme generated by the allocator will properly 
store any array in the domain of the variable X. 
The described scheme exhibits two types of stability: 
first, the computation required to store and/or 
access array positions does not change as the array 
being processed is extended; second, bucket assign- 
ments never change because of changes to the stored 
array. In fact, even if the declared value of p 
is changed dynamically, relatively minor rechaining 
within buckets can restore a stable configuration 
(especially if the pool of chalnable storage is 
accessed from the hlgh-address side). It is such 
stability under alterations to the stored array that 
we equate with "extendibility" of the hashing scheme. 
An alternative to our scenario might depict a differ- 
ent function ~ being used for each declared bound 
p. It is hard to see how any such system would 
exhibit the uniformity of scheme-generatlon or of 
extension and the algorithmic simplicity enjoyed 
by our system. The major question raised by this 
alternative is how much our uniformity costs. 
Theorems 5.3 and 5.4, our main results, suggest that 
the schemes generated by our imaginary system can 
attain a practical level of efficiency in both time 
of access and utilization of storage. 

For simplicity, we henceforth identify a hash- 
ing scheme with its bucket function. 

(2.2) A d-dimensional extendible (array-) hashing 

scheme is ~ total function ~:N d--+ N such 
that ~(e) = I. 

The normalizing assumption "~(e) = i" simpli- 
fies certain computations in what follows but is not 
indispensable. (Cf. (2.4(a)) in the absence of this 
assumption.) Henceforth we shall study only (de2)- 
dimensional extendible hashing schemes. 

C. Measures of Efficiency 

The efficiency of any hashing scheme is meas- 
ured in terms of the scheme's demands on two 
resources, time and storage. However, deciding on 
what to measure is only half the battle; we must 

decide on how to estimate the consumption of these 
resources. 

Access Time. We view the cost of computing a 
bucket function ~ as being negllgible compared to 
the cost of searching even a modest size tree. (To 
make this assumption reasonable, we have tried to 
use only very simple bucket functions when establish- 
ing upper bounds.) Accordingly, we gauge the cost 
of accessing position w of array scheme A when 
A is stored by ~ as being the log of the popula- 
tion of w's bucket; precisely, 

Access~(~;A) = Flog(#(An~-l(~(~))) + 1) 7 . 

The justification for the logarithmic cost is that 
each bucket is organized into a balanced search 
tree. Positions added to an array via extensions 
are to be stored at the time of their first access 
and so stay within our logarithmic cost. The base 
of the logarithm used is immaterial in almost all 
of our results because of their'"big-Oh" assertions. 
In the few cases (e.g., Theorems 5.3 and 5.4) where 
constants are crucial to the development, we use 
the base 2 logarithm appropriately dilated. (See 
Theorem A of [7, Section 6.2.3].) 

Now that we have a way of gauging an extend- 
ible hashing scheme's accessing characteristics on 
a single array, we can formulate the first two func- 
tions of interest, which reflect a scheme's access 
behavior on arrays having no more than p positions. 
Focus on an extendible hashing scheme ~. 

(2.3)(a) Worst-Case Access Time 

~(p;~) = (the worst-case time needed by 

to access a position of an 

array having at most p positions) 

= max{Access~(~;A) IA has at most 

p positions, and ~EA}. 

(b) Worst Expected Access Time 

~(p;~) = (the average time needed by ~ to 

access a position of that p- or 

fewer-positlon array having worst 

expected access time under ~) 

= max{(I/q)~AACCess~(~,A)I 

A has q~p positions}. 
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Storage Requirements. Our view of extendible hash- 
ing schemes demands that we segregate the storage 
used for chaining (for building the trees that make 
up the bucket interiors) from the storage used for 
bucket headers (= the roots of those trees). If we 
did not partition storage in this way, a series of 
expansions of a stored array might demand for use 
as the header of bucket k a location already being 
used in the tree of bucket: A # k. Such partition- 
ing also is consonant with the scenario motivating 
our view of extendible hashing schemes. Finally, 
this division of storage makes the analysis of 
proposed hashing schemes or classes of hashing 
schemes immeasurably simpler than it would be if we 
used some more sophisticated method of collision 
resolution (e.g., linear ]probing or secondary clus- 
tering [8]). We formalize this division of storage 
by our method of measuring efficiency of storage 
utilization. Again, let ~ be an extendible hash- 
ing scheme. 

(2.4)(a) Bucket Storage Requirements 

8(p;~) = (the n~nber of storage locations 
over which ~ "spreads" the 
bucket headers [roots of search 
trees] when storing arrays having 
at most p positions) 

= max{~(~)[H(~) ~ p}. 

Note: ~ is a position of a p- or fewer- 
position array iff H(~) S p. 

(b) Chainable Storage Requirements 

o(p;~) = (the amount of storage that is 
needed to store the bucket inte- 
riors [the nonroot nodes of the 
search trees] when storing arrays 
having at most p positions) 

= max{q-#~(A)[A has q~p positions}. 

(c) Total Storage Requirements 

T(p;~) = (the total amount of storage that 
must be set aside to store arrays 
having no more than p positions) 

= B(p;~) + oCp;~). 

The aim of this paper is to discover relation- 
ships among the five efficiency measures of (2.3) 
and (2.4). In stating results, we shall fix the 
hashing scheme ~ by either quantification or 
instantiation; we shall then be free to consider our 
five functions as functions of p alone, as in "For 
all hashing schemes ~, o(p;~) = O(p)," or 

"~(p;~o) = 0(i)." [As an aside, the former assertion 

is obviously true; and we shall present a scheme in 
Section 5 for which the latter assertion is true.] 

The following lemma will be used in our inves- 
tigation. 

(2.5) For all dlmensionalities deN and peN, 

Sd(P) = {~eNd[H(~) ~ p}. 

Lemma 2.1 [2]. (a) A position ~eN d resides in 
Sd(P) iff it is a position of some array having 

p or fewer positions. (b) For all deN-(l}, 
there exist constants k,~>0 such that 

k.p-(log p)d-i < #Sd(P) < A-p.(log p)d-i 

for all pEN-{l}. 

3. A FUNDAMENTAL TRADEOFF 

As a vehicle for introducing the reader to 
extendible hashing schemes, and as a prologue to a 
challenging research problem, we present a funda- 
mental tradeoff in storage use by extendible hash- 
ing schemes. The tradeoff involves the total stor- 
age function ~(p;~) and the function now defined. 

(3.1) Size(p;~) = (the maximum size any bucket 
attains as ~ stores p- or 
fewer-position arrays) 

= max{#(An~-l(~(~)))IA has p or 

fewer positions, and ~EA}. 

We prepare the reader for the tradeoff statement 
via some examples. 

(3.2) A Computed-Access Realization. If ~:N d --+ N 
is one-to-one, then ~ is an extendible 
array realization in the sense of [1,2,5]. 
It follows from Lemma 2.1, then, that 

p.(log p)d-i = 0(T(p;~)); and it is tautolo- 

gous that Siz e(p;~) - i. 

(3.3) A Linked-Allocation Scheme. If ~(~) - i, 
then ~ is a pure chaining scheme. It is 
immediate, then, that T(p;~) = Size(p;~) = p. 

(3.4) Define ~:N d --+ N by ~(~) = E(~)-d+l; the 

two-dimensional (d=2) version of ~ is illus- 

trated in Figure i. It is not difficult to 

verify that 8(p;~) = p, and G(p;~) = 

p-dpl/d+d-l, so that T(p;~) = 2p-dpl/d+d-l. 

It is also easily seen that Size(p;~) =Inddlll 
\ / 

where n = pl/d, so that pl-i/d = O(Size(p;~)). 

(3.5) Define ~:N d --+ N by ~(~) = H(~). Obviously, 

8(p;~) = P so that p < r(p;~) < 2p. (By 

definition o(p;~) < p for any ~.) Moreover, 

by considering the cases when p is a power 

of 2, one verifies easily that 

(log p)d-1 = O(Size(p;~)). 

Note that in all of the examples just presented, 
the product T(p;~).Size(p;~) grows (in order of 

magnitude) at least as fast as p-(log p)d-l. It is 
our conjecture that this is a universal phenomenon; 
however, we are able to establish only an "infinitely 
often" version of this conjecture. 

Theorem 3.1. Let ~:N d --+ N be an extendible hash- 
i~ng ~cheme. There4 is a constant c>O such that, 
for infinitely many peN, 

d-i 
T(p;~).Size(p;~) > c-p.(log p) 

4. EXTREME CASES 

It is not uncommon that a seemingly innocuous 
restriction on one of our complexity measures forces 
another measure to behave as badly as possible (i.e., 
to grow as fast as one could ever force it to). In 
this section we present a number of such situations. 
To lend the reader a point of reference, we note 
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minimax lower bounds on three of our complexity mea- 
sures. (Recall that, by definition, a(p;4 ) cannot 
be forced to exceed p.) 

(4.1) A bound on 8. In [2] it is proved that, if 

4aN d --+ N is one-to-one, then p'(log p)d-i = 

0(8(p;4)). Moreover, for each dEN, there 

a one-to-one scheme ~:N d --+ N for which is 

8(p; 4) = O(p.( log p)d-1) .  

(4.2) Bounds on ~ and ~. By its very definition 
(cf. (3.1)), Size(p;~) can obviously not 
exceed p. It follows that ~(p;4) =O(log p) 
for any hashing scheme 4; ~ fortiori, 

e(p;4) =O(log p) for all 4" If 4(w) E 1 
so that 4 is a llnked-allocatlon scheme, 
then all three of these worst cases are real- 
ized simultaneously. 

We begin our survey of harmful restrictions by 
exhibiting two restrictions, either of which guar- 
antees poor storage utilization. 

Theorem 4.1. Let 4 be a d-dlmensional extendible 
h-dashing scheme. If either s(p;~) = 0(i) or 

a(p; 4) = 0(i), then p.(log p)d-~ = 0(B(p;4)). 

Hint: The proof hinges on the fact that the array 
scheme (Np) d contains the union Sd(P) of all 

p- or fewer-posltion arrays. See Figure 2 

and Lemma 2.1. 

-q-  

A = ( Nq )2 

~////////////////////////////////~ 

Figure 2 

Every q-position array is a subset of the 
q x qx...Xq array 

It is worth noting that Theorem 4.1 cannot be 

strengthened by replacing ~ by ~: in Section 5, 

we show that a constant ~ can coexist with a B 
that is linear in p. 

Expected access time must be poor for schemes 
that do not use increasing numbers of buckets as 
array size grows. Such schemes would typically use 
linked allocation or hashing by division (i.e., 
modular arithmetic as in 4(~) = Z(~) (rood m)). 

Theorem 4.2. Let 4 be an extendible hashing 

scheme. If 8(p;4) = 0(i), then 

log p = 0(~(p;4)). 

Hint: Such schemes behave approximately as linked- 
allocation schemes (cf. (4.2)). 

Finally, we note two restrictions on efficiency 
of storage management which, like bounded bucket 
demands, guarantee poor access time. The first 
restriction is that 4 assign buckets to arrays 
in a gap-free manner; that is, for every array A, 
there is an integer k for which 4(A) = {l,...,k}. 
(In other, words, bucket £-I is used whenever 
bucket £ is.) The second restriction, which 
includes special cases of bounded bucket demands, 
is that total storage demands grow slowly~ for 

instance, T(p;4) = p + 0(pl/2-E). The fact that 
these restrictions give rise to worst-possible 
access time (in the sense discussed earlier) is 
somewhat more surprising than the fact that the 
bounded bucket restriction does. The desired 
results emerge as corollaries of the following 
theorem. 

(4.3) Let 4 be a d-dlmensional extendible hashing 
scheme, and let ~:N ÷ Nu{0} be a nondecreas- 
ing function. We say that ~ bucket-bounds 
4 if, for all peN and all array schemes 

A c N d having p positions, 

max 4(A) - #4(A) : ~(p). 

Theorem 4.3. Let 4 be a d-dimensional extendible 
hashing scheme. If the function ~ bucket- 
bounds 4' then 

(l-i/d)-log p - log(~(p)+l) = O(:(p;4)). 

Hint: If ~ bucket-bounds 4' then 

4(~) ~ (~(~)-d+l)q(H(~))+l) 
[by induction on Z(~) ]. 

Corollary 4.1. If the extendible hashing scheme 4 

is gap-free, then log p = O(~(p;4)). 

Hint: 4 is gap-free iff it is bucket-bounded by 

~(p) ~ 0. 

Corollary 4.2. Let 4 he a d-dlmenslonal extendible 
hashing scheme. If T(p;~) ~ p + ~(p) where 
~:N + Nu{O} is nondecreas~ng, then 

(l-i/d)'log p - log(~(p)+l) = O(:(p;4)). 

Hint: The hypothesized bound on T's rate of growth 
implies that ~ bucket-bounds 4" 

The interest of Corollary 4.2 for the material 
in this section is that it implies that a very 
slowly-growlng ~ can signal very inefficient 
access behavior. For instance, if T(p;4 ) = p+0(p c) 

for some c < l-l/d, then log p = O(~(p;4)). 

5. LINEARLY-GROWING BUCKET SPACE 

The results in Section 4 indicate that for us 
even to hope to find an extendible hashing scheme 
that is efficient in both speed of access and utili- 
zation of storage, we must relax our stringent 
demands on the bucket function. Fortunately, we 
needn't relax our demands so much as to admit fast- 
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growing bucket functions: one can find efficient 
hashing schemes ~ with 8(p;~) = P. For the sake 
of generality that will not occasion any technical 
encumbrance, we study here hashing schemes with 
8(p;~) = 0(p) (i.e., we allow ~ to use more than 
p buckets); we call such ~'s linear hashing 
schemes. (Restricting attention to such schemes is 
really only a mild relaxation of our earlier demands 
since 8(p;~) = P even for the d-dlmensional gap- 
free scheme- ~(~) : Z(~) -d + i.) The reader who 
balks at our allowing 8(p;~) to exceed p should 
note that, for any integer k, the scheme 

~(k)(~) = r~(~)/kl has the following properties. 

( i )  ~ ( p ; ~ ( k ) )  = FB(p ;~ ) / k l  ; (2) ~ (k )  i s  more 

conservative of total storage than ~; (3) ~(k) 

has only slightly worse access time than ~ (see 
Theorem 5.4). Therefore, we shall not be using the 
"big Oh" to hide large multiples that can refute 
our claims of efficiency. 

A. Lower Bounds on Perfoz~ance 

The restriction to linearly-growing bucket 
space imposes floors on certain other efficiency 
criteria. We present two such lower bounds. 

First we note that worst-case access time for 
linear hashing schemes must grow as log log p. 
Two points merit note. First, this bound is 
dramatically lower than the log p bounds on access 
time established in Theorem 4.2 and Corollaries 4.1 

and 4.2 (this last with ~!(p) = 0(p c) for c<l-I/d). 
Second, whereas the cited'results bound expected 
access time, the present result deals with worst- 
case access time. 

Theorem 5.1. For any linear extendible hashing 
scheme ~, log log p = O(s(p;~)). 

Hint: The array scheme (Np) d contains the set 

Sd(p) (cf. Lemma 2.1). 

Our second lower bound asserts that o must 
grow linearly with p whenever 8 does. The 
import of this result is that, if one wishes to 
replace a given linear scheme ~ (for which 
T(p;~) = 0(p) automatlcally) by a linear scheme ~' 
for which T(p;~') = p + o(p), one cannot hope to TM 
do it simply by lowering interior bucket demands 
so that o(p;~') : o(p). The desired savings in 
storage can come only by constructing ~' so as to 
assure that 8 grows slowly. (Cf. the discussion 
in the latter half of Section 5C on lowering stor- 
age demands.) 

Theorem 5.2. For any linear extendible hashing 
scheme ~, p = 0(o(p;~)). Specifically, if 
8(p;~) ~-c'p for almost all p, then 
o(p,~) ~ 6.p for almost all p, where 

= exp(-(c+2)). 

B. An Efficient Hashin~ Scheme 

(5.1) For each dimensionality dEN-{l}, define the 
d-dimensional extendible hashing scheme 

~d:Nd --+ N by the following recursion. 
L l°g =2] 

(a) For ~EN 2, ~2(~) = ~2 + (~i -1)2 

(b) For TEN d , d > 2, 

~d(~) = ~2(~i, ~d_l(~2,"',Zd)) • 

Informally, one computes ~d(~) by taking the 

minimum-length binary representation of ~l,-..,~d, 

removing the leading 1 from all but that of Zl' 

and concatenating the remaining strings in the 
appropriate order; thus the binary representation 
of ~d(~) assumes the form l~l~2.-.~d, where l~j 

is the binary representation of ~j. 

I 2 3 4 5 6 7 8 9 i0 

2 4 5 8 9 i0 ii 16 17 18 

3 6 7 12 13 14 15 24 25 26 

4 8 9 16 17 18 19 32 33 34 

5 i0 ii 20 21 22 23 40 41 42 

6 12 13 24 25 26 27 48 49 50 

7 14 15 28 29 30 31 56 57 58 

8 16 17 32 33 34 35 64 65 66 

9 18 19 36 37 38 39 72 73 74 

i0 20 21 40 41 42 43 80 81 82 

Figure 3 

A Schematic View of ~2((N10)2). 

Theorem 5.3. For each dimensionaltiy dEN-{1}, 

the extendible hashing scheme ~d has the' 

following properties. (a) 8(p;~d) : p. 

(b) There is a constant c > 0 such that 

cp < a(p;~d) < p. (c) ~(p;~d ) 

(d-l) log log p + 0(i). (d) [(p;~d ) = 0(i); 

in particular ~(p;~2 ) < 8.5. 

Proof sketch. (a) First, ~d(Np x {1} d-l) = Np, 

so 8(P;~d) a p. On the other hand, 

~2 (~) N ~2 ~' (~i-1)'~2 = ~1"~2 for all ~EN2; this 

generalizes by induction to the assertion that 

~d(~) ~ H(~) for all ~eN d. 

(b) The upper bound on o is immediate by 
definition. The lower bound follows directly from 
Theorem 5.2 in conjunction with part (a). 

(c) Say that i~ (~E{0,1}*) is the binary 
representation of ~d(~) for some ~ESd(P). By 

part (a), ~d(~) N p. There are, therefore, at most 

[log(p+l)~ d-I ways that the string m can be 
broken (or parsed) into the form m = $i...$d , 

each ~ie{O,l} In other words, when ~d stores 

an array having p or fewer positions, no bucket 

gets more than Flog(p+l)l d-I positions. Part (c) 
is now Immediate by definition of Access and of ~. 

(d) We consider only the case d = 2. The 
analysis of the general case is similar. Say that 
~2 stores the array scheme A of size <m,n> 

having p = mn position. For zeN, let 

Z(z) = Llog z] + i denote the length of the binary 

representation of z. Let t = £(m) + £(n). 
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View the computation of ~b 2 as concatenation 

of binary representations as described in (5.1). 
It is clear that if bucket z is used when ~2 

stores A, then Z(z) < t - i. Consider any bucket 
z with £(z) = t - i. It is not hard to see that 
there is at most one way z can be "parsed" (cf. 
part (c)) into integers ~i and ~2 with 

~i < m and ~2 -< n; therefore, the population of 

such buckets is at most i. There are at most 2 t-2 

such buckets. Similarly, the 2 t-3 buckets z 
with Z(z) = t - 2 can each be parsed in at most 

two ways, the 2 t-4 with £(z) = t - 3 in at 
most three ways, and so on. This yields the bound 

t+l 
~(p;~2) < (l/p) E k" [log(k+l)] .2 t-k-l. 

k=l 

Noting that p -> 2 t-2, this sum can be bounded 
above by 8.5. 

Remark. A more careful analysis in part (d) proves 

that ~(p;~2) < 3; and computer simulation reveals 

that ~(2500;~2)_ > 2. Of course, the average access 

time in practice will depend on u dilated by a 
constant that reflects the particular data struc- 
ture used to store buckets and the particular 
algorithm used to access positions withi n buckets; 
see [7, Section 6.2]. 

Even though our definition of Access assumes 
some variant of balanced search tree as the basic 
data structure, it is interesting to note that the 
average access cost of ~2 remains bounded (by 8) 

if one stores buckets in linear lists, charging 
average cost (k+l)/2 to access a position in a 
bucket of size k. Linear lists may be more attrac- 
tive for "small" arrays, since the accessing algo- 
rithm is simpler for linear lists than for trees. 
However, the worst-case access time of ~2 becomes 
roughly log p if linear lists are used. 

C. Tradeoffs between Access Time 
an d S torase Utilization 

Theorem 5.3 does not specify precise values 

for ~(p;~d ) or T(p;~d) , since by means of (often 

easily-effected) changes to a hashing scheme, one 
can trade off access time and storage utilization: 
at the cost of increasing 8(p;~) by a factor of 

k, one can decrease ~(p;~) by roughly log k; 

conversely, at the cost of increasing ~(p;~) by 
log k, one can decrease T(p;~) - p by the factor 
k. 

Lowering access time. Any change to ~ that causes 
a k-fold decrease in the size of buckets will reduce 

~(p;~) by log k, albeit at the cost of a k-fold 
increase in the number of buckets used. It is 
difficult to discuss such alterations in the 
abstract, since the effectiveness of a given bucket- 
shrinking ploy appears to depend in an essential 
way on the particular ~ in question. We limit 
our discussion, therefore, to a simple example in 
two dimensions. 

Let ~(~) = ~i+~2-i; this is a gap-free hash- 

ing scheme (cf. Corollary 4.1). Define ~':N 2 --+ N 

by ~'(~) = k'~(~) - k + [~i (mod k)]. Now compare 

the behaviors of both ~ and ~' on an array 
A c N 2. If ~ assigns m array positions to a 
given bucket i, then ~' assigns at most [m/k] 
positions to each of buckets ki-k,...jki-l. The 
cumulative time required to access these positions 
is, therefore, at most m[log(m+l)] for ~ <and 
mElog(Fm/k]+l)] for ~'. Since log([m/kT+f) - 
log(m/k + 2) < log(m/Z) + 1 for almost all m, 
our estimates on the time to access all of bucket 
i lead us to conclude that the average access time 
for A under scheme ~ exceeds the average access 
time under ~' by at least log k - 2 providing only 
that A has at least 4k rows and columns. Since 

is monotonic in p, we see that ~(p;~') 

approaches ~(p;~) - log k for sufficiently large 
p. 

Lowering storage demands. We can discuss techniques 
for improving storage utilization with somewhat 
more authority than those for improving access time, 
for here we find general techniques that work for 
all ~. 

(5.2) Let ~ be an extendible hashing scheme. For 

keN, ~(k) is the extendible hashing scheme 

defined by ~(k)(~) = ~(~)/k]. 

If the linear hashing scheme ~ has total stor- 
age demand ~(p;~) = (l+c)p for c > O, then the 

(again linear) scheme ~(k) has demand not exceeding 
(l+c/k)p + i. Therefore, by choosing k sufficiently 
large, one can reduce storage demand below (l+s)p 

for any e > 0 by replacing ~ with ~(k). Such 
a replacement has an adverse effect on access effi- 
ciency, but only an additive one. 

Theorem 5.4. Let ~ be an extendible hashing 

scheme. (a) r(p;~(k))_p ~ l+(r(p;~)-p)/k. 

(b) ~(p;~(k)) ~ ~(p;~) + log k + i. 

Hint: Consider how ~(k) coalesces ~'s bucket 
assignments. 

The following important corollary of Theorem 
5.4 is immediate. 

Corollary 5.1. If ~(p;~) = 0(i), then the same is 

true of ~(p;~(k)) for any k. 

We now have linear hashing schemes whose stor- 
age requirements grow as (l+e)p and whose expected 
and worst-case time grow as a constant and log log p, 
respectively. (The last remark is immediate and 
left to the reader for verification.) The only 
material improvement one might hope for is to reduce 
storage demands to p+o(p) without excessive dete- 
rioration of access time. We have very little to 
report with regard to such improvements. 

Proposition 5.1. Let ~ be a linear hashing scheme. 

The hashing scheme ~ defined by ~ (~) = 

[~(~)/log H(=)] has the following properties. 

(a) T(p;~,)-p ~ l+(T(p;~)-p)/log p. 

(b) e(p;~ ) = O(e(p;~) + log log p). 

If one is willing to use only worst-case behav- 
ior to measure efficiency of access, Proposition 5.1 
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yields a technique for attaining both good storage 
utilization and good access characteristics. However, 
this technique inevitably destroys efficient 
expected access time. 

Proposition 5.2. For any extendible hashing scheme 

~, ~(P;~) ~ log(p/SCp;~)). 

This proposition indicates that, for any linear 

~, log log p = O(s(p;~ )1 -- since, for some c > 0 

8(p;~*) s [cp/log p]. 

We are thus left with the following open question. 

Problem. Does there exist an extendible hashing 
scheme ~ such that r(p;~) = p+o(p) and 

~(p;~ )  = o(117 

Our results do not resolve this issue, but 
they do narrow down the search materially. Specif- 
ically we know that the desired ~ (if it exlstsl 
must satisfy the following efficiency bounds. 

(5.51 (el For some k,k' > 0, for almost all p, 

kp ~ 8(p;~) ~ k'p. 

(b) For some £ > 0, for almost all p, 

~p ~ ~(p;~) < p. 

The upper bound on 8 follows from our desire to 
keep storage demands low; the lower bound follows 
from Proposition 5.2 and our desire to keep expected 
access time down. The upper bound on ~ follows 
by definition; the lower bound on o follows from 
Theorem 5,2 in the presence of the llnearity of ~, 
i.e., (5.5(a)). 

Another remaining challenge, of a materially 
different nature, is to "fine tune" the results in 
this section in an actual computer environment, that 
is, select the necessary data representations, inves- 
tigate the cost of bookkeeping details that are not 
visible in any abstract investigation, and study the 
real effect of the tradeoffs mentioned. We suspect, 
on the basis of Theorems 5.3 and 5.4 and the remarks 

on lowering s, that extendible hashing schemes 
that attain a practical level of efficiency exist. 
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