
Optimal Code Generation for Expression Trees

A. V. Aho
S. C. Johnson

Bell Laborator ies ,
Murray Hill, N e w Jersey 07974

0. Summary
We discuss the problem of generating code

for a wide class of machines, restricting our-
selves to the computation of expression trees.
After defining a broad class of machines and dis-
cussing the properties of optimal programs on
these machines, we derive a necessary and
sufficient condition which can be used to prove
the optimality of any code generation algorithm
for expression trees on this class. We then
present a dynamic programming algorithm which
produces optimal code for any machine in the
class; this algorithm runs in time which is linear-
ly proportional to the number of vertices in an
expression tree.

1. Introduction

Code generation is an area of compiler
design that has received relatively little theoreti-
cal attention. Bruno and Sethi [BS] show that
generating optimal code is difiqcult, even if the
target machine has only one register; specifically,
they show that the problem of generating op-
timal code for straight-line sequences of assign-
ment statements is NP-complete [C, Ka].

On the other hand, if we restrict the class
of inputs to straight line programs with no com-
mon subexpressions, optimal code. generation
becomes considerably easier. Sethi and Ullman
[SU], extending the work of Nakata [N] and
Redziejowski [R], present an emcient code gen-
eration algorithm for a class of machines having
n "general purpose" registers, symmetric
register-to-register operations, but no complex
addressing features such as indirection. They
prove the optimality of their algorithm on ex-
pression trees using a variety of cost criteria, in-
cluding output code length.

In generating code, the major issues are de-
ciding what instructions to use, in what order to
execute them, and which intermediate results to
store in temporary memory locations. In gen-
eral, there are an infinite number of programs
which compute a given expression; even restrict-
ing ourselves to "reasonable" programs, the
number of possible programs may grow ex-
ponentially with the size of the expression.
WasiIew [W] has suggested an erkumerative code
generation algorithm which produces good code

for expression trees not requiring temporary
stores for their evaluation but' which can take
exponential time. W e show that, by using
dynamic programming, optimal code can always
be generated for expression trees in linear time
over a wide class of machine models, including
the machines studied by Sethi and Ullman. The
code produced has the interesting property that,
unlike the Sethi-UIIman algorithm, it is not pro-
duced by a simple tree walk of the expression
tree.

Additionally, we prove a theorem which
characterizes any optimal code generation algor-
ithm for a machine in our class. We also derive
a number of results which characterize optimal
programs, and prove that optimal programs can
be written in a "normal form." This normal form
theorem forms the basis of our dynamic pro-
gramming algorithm.

2. Basic Definitions

In this section, we define expression trees,
the machine model, and programs for the model
machines.

2.1 Dags and Expression Trees
The sequence of assignment statements

X ' - - A - C

X ' - X * X

Y ' - B - C

y . - - y * y

Z ' - X + Y

may be represented by the following labeled
directed acyclic graph ("dag" for short).

+
/ \

ig ill

() ()

,4 B C

Fig. 1. A dag.

207

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800116.803770&domain=pdf&date_stamp=1975-05-05

See [AU] for a formal correspondence between
straight line programs and dags.

We assume the sequence of assignment
statements represems a basic block of a source
program. Our objective is to find algorithms that
generate good code for dags. Unfortunately, the
optimal code generation problem for dags is
NP-complete , even for very simple machine
models [BS].

For this reason, we shall consider only the
special case where the dag is a tree; this occurs
when there are no identified c o m m o n subexpres-
sions or operands. We shall see that, unlike for
dags, optimal code generation is relatively easy
for this class of inputs over a broad class of
machine models.

In particular, we assume a countable set of
operands E and a finite set of operators 19. We
define an expression tree as follows:

1. A single vertex labeled by a name from 7_,
is an expression tree.

2. I f T 1, T 2 T k are expression trees
whose leaves all have distinct labels, and 0
is a k-ary operator in 19, then

0

T! T 2 . . " T1¢

is an expression tree. For example,

/ \
a ind

I
+

/ \
b c

Fig. 2. An expression tree.

is an expression tree, assuming that + and
* are binary operators, and ind is a unary
operator.

If T is an expression tree and S is a subtree
o f T, then we define T / S as an expression, tree
which is obtained from T by. replacing S by a
single leaf labeled by a distinct name from ,E.

2.2 The Machine Model

We assume that we are generating code for
a machine with n general purpose registers, and
a countable sequence of memory locations. All
memory locations are assumed interchangeable,
as are all registers.

The actual machine operations are of two
types:

(a) r *- E

(b) m ' - - r

The r in (a) and (b) refers to any of the n
registers o f the machine; the m refers to any
memory location. The E is a dag containing
operators f rom O, and leaves which are either
registers or memory locations. It is assumed that
if E contains an operator 0, then all operands o f
0 are also present. In addition, if E contains any
registers, then the register on the left is assumed
to be one o f the registers in E.

A typical example o f this type o f instruc-
tion is

+

r - - / \
r ind

I
rn

in which the contents of the memory location
pointed to by m is added to register r. To avoid
writing trees, we will usually write this in infix
notation: r ~-- r + (ind m) . We assume that
in each instruction of this type the dag E has a
root that dominates all vertices in E. This root
will be used to define the value o f an instruction
in a program.

For convenience, we also assume that
every machine h a s a simple " load" instruction:
r ' - - m . This instruction assigns the value
currently in memory location m to the register r.
The type (b) instruction is the inverse "s tore"
instruction; it assigns the value currently in re-
gister r to memory location m.

We also assume that no instruction has any
side effects; in particular, the only instruction to
after the state of memory is the store instruction.

In the type (a) instruction r "-- E we say r
is set by the instruction. If z is a register or
memory location in E, then the instruction is
said to use z. In a type (b) instruction m ~-- r,
m is set and r is used.

If I is an instruction, we shall use the nota-
tion use (I) and set (I) for the set o f things used
and the thing set, respectively.

208

2.3 Programs

A mach ine program consis ts of a set ~ ! o f
input m e m o r y locat ions and a finite sequence o f
ins t ruct ions P = I 1 12 - - - lq. Each inst ruct ion
I t is of the form r '--- E or m '--- r.

W e def ine v t (z) , the value o f z a t t ime t,
0 ~< t <~ q, as a rooted dag. z is e i ther a register
or m e m o r y location. Initially, v 0 (z) is a single
ver tex labeled z if z E Et ; o therwise v 0 (z) is
undefined. For t > 0 we def ine v t (z) as fol-
lows:

a. I f I t is r ' - - E , then v t (r) is the dag ob-
ta ined by taking the dag represen t ing E and
subs t i tu t ing for each leaf ! in E the root o f
the dag represen t ing v t _ 1 (!) . The result-
ing dag becomes the value o f register r at
t ime t. The root o f E becomes the root of
the new dag. W e shall refer to the new dag
as the value o f instruction I t . If the value o f
any leaf of E is undef ined at t ime t - I ,
then v t (r) is undefined.

b. If I t is m , - r, then v t (m) is v t _ l (r) . The
dag v t (m) is said to be the value of I t.

c. Otherwise, v t (z) = v t _ l (z) .

v (P) , the value o f program P ffi I l l ~ . . . lq,
is defined to be the value of ins t ruct ion I¢.

For example , the program

r I ' - - b
r I * - - r I - 4 - c

r2.--- a
r 2 '--- r 2 * (i n d r I)

(where ind is the indirect ion, or "con ten t s of"
operator) has as its value the tree of Fig. 2.

A program P is said to compu te a dag D if
v (P) = D. Two programs that compu te the
same dag are said to be equivalent .

Notice that we do not specify a part icular
register or m e m o r y location to hold the final
value o f a program. Since registers are assumed
to be comple te ly in te rchangeable , we can get a
des i red value into any register s imply by renam-
ing the registers th roughou t a program. Thus
the issue of which register holds the answer is
immater ia l in oor model.

Since the inputs to our code genera t ion al-
gor i thms will always be express ion trees, we will
be interested only in mach ine programs that
compute trees. As a consequence , no such pro-
gram can use a mach ine ins t ruct ion in which the
same register or m e m o r y locat ion is used more
than once. In the next sect ion we shall der ive
general condi t ions under which a mach ine pro-
gram computes a t ree ra ther than a dag.

3. Properties of Programs which Compute Ex-
pression Trees

In this sect ion we give a s imple character i -
zation o f programs which compu te express ion
trees with no wasted instruct ions, and state some
s imple l emmas about the rearrangeabi l i ty of
these programs.

3.1 Useless Instructions

An instruct ion I t in a program
P = 1112 • • • lq is said to be useless in P if the
program I! 12 • • • I t _ l It+ 1 " " " l q is equ iva len t to
P Not ice that the uselessness of an instruct ion
depends on its context .

A n y program can be reduced to an
equivalent shor te r program by e l iminat ing some
useless instruct ion. Repea t ing this finally yields
an equivalent program with no useless instruc-
tions. Thus , we can freely assume that:~programs
conta in no useless instruct ions.

3.2 Scope of Instructions

Fol lowing [AU], we define the scope of an
ins t ruct ion I t in a program
P • 1 1 1 2 . . . 1 q, l ~ < t < q , as the sequence of
s ta tements It+ 1 • • • I s, where s is the largest in-
dex t < s<~q, such that

a. set (I t) E use (I s)

b. set (It) ~ set (/y), t < j < s .

W e call s ~the use of t, and write s ---- U (t) .

If there is no such s, the scope of I t is
undefined, and we write U (t) - - ~ . Since U
depends on the contex t P, we somet imes write
Up. If" the scope of I t is undefined, then I t is
useless. If the scope of I t is def ined, then we
say that s e t (I t) .is act ive immedia te ly before
every s t a t emen t in its scope. W e shall see that
the m a x i m u m n u m b e r o f registers that a te active
at any one t ime in a program de te rmines the
n u m b e r of registers needed to execute that pro-
gram.

3.3 Programs which Compute Expression Trees

W e may character ize programs which com-
pute express ion trees as follows.

I f P ffi 11 • • • lq is a program With no use-
less instruct ions, then v (P) is an express ion tree
if and only if

a. For all l ~ < t < q, there is exact ly one in-
s t ruct ion in the scope of I t which uses
set (I t).

209

b. For all X in I; t, there is at most one in-
struction which uses X before it is set.

3.4 Rearrangeability of Programs
One of the main problems in code genera-

tion is deciding the order in which an expression
tree should be evaluated. Thus, it makes sense
to ask which rearrangements o f the instructions
in a program produce an equivalent program.

For example, suppose P is a program in
which s ta tement I t is r 3 " - r 3 + X. We can
move I t in front o f s ta tement l t _ l if I t _ t does
riot use r 3, or set r 3 or X. Similarly, we can
move I t after s ta tement It+ I if I t+ t does not use
r 3, or set r 3 or X. If P computes an expression
tree, there is a particularly simple characteriza-
tion o f what rearrangements o f P are possible
without changing the value o f P.

Theorem 3.1. (Rearrangement Theorem)
Let P = I 1 1 2 . . . 1 q be a program which com-
putes an expression tree and has no useless in-
structions. Let ,r be a permutat ion on {1 q}
with ~r (q) -- q. Then the program
Q = l , ~ (l) . . . l , ~ { #) is equivalent to P if and
only if

* r (U p (t)) = Uo . (z r (t)),

for al l t , 1 ~< t < q.

Proof. The proof is a straightforward induction
on t, based on the definition o f value. The de-
tails are left to the reader. []

Another important aspect o f code genera-
tion is determining the n u m b e r o f registers
needed to compute an expression tree. We shall
see that certain rearrangements o f a program
may require more registers to be used than other
equivalent rearrangements.

Let P = ! 1 . . . 1 q be a program with no
useless instructions; for each I t we define the
width of I t to be the number o f distinct j, 1 < ~ < t ,
with U(/) > t and lj not a store instruction. We
define the width o f P to be the max imum over t,
1 ~< t < q, of t he width o f I t.

Intuitively, the width o f a program is the
max imum number o f registers that are active at
any one time. It should be clear that eliminating
useless instructions from a program can never
increase its width.

In our machine model, any one register is
indistinguishable from any other. Thus, if at
most w registers are active at any time, by
renaming registers we can cause any specified
set o f w registers to be the only ones used.

Lemma 3.2. Let P be a program of width
w, and let R be a set o f w distinct registers.
Then, by renaming the registers used by the in-
structions o f P, we may construct an equivalent
program P , with the same number o f instruc-
tions as P, which uses only registers in R.

Proof. Let P = I I I 2 . . . I q. We shall rewrite P
into an equivalent program Q = J I J2 "" " Jq, such
that Q uses only registers in R. Each instruction
• It will be equal to I t with relabeled registers.
Provided that the relabeling is consistent, i. e.,
when a set variable is relabeled its use is also re-
labeled, P and Q will be equivalent if and only if
Ut, (t) = U 0 (t) , for all t. For a relabeling o f P
to have this property, it is enough to specify the
relabeling on those instructions of the form
r ' - E (including load instructions) where E con-
tains no register leaves; in the other cases, the
register which is set is forced to be one o f the
(relabeled) registers o f E, by consistency. If I t is
an instruction which uses no registers, then the
relabeled register which is set by Jt should not
be active in Q right after time t - 1 , since other-
wise U O will be different from Up. But, there
are at most w--1 active registers in P immediate-
ly prior to time t (since the width o f I t in P is at
most w), and thus this is so in Q; this implies
that there is some register in R which is not ac-
tive immediately prior to time t. We can choose
some such register as the register set by Jr.
Cont inuing in this way, we may relabei P using
only registers from R, and thus get an equivalent
program Q []

Lemma 3.2 justifies calling a program of
width w a program which uses w registers.

The following theorem identifies a class o f
equivalent rearrangements o f a program with no
useless instructions. At least one o f these rear-
rangements uses the fewest n u m b e r o f registers
of any equivalent rearrangement.

Theorem 3.2. (Rear rangement Theorem)
Let P ---- I I • • • lq be a program of width w with
no stores and no useless instructions. Suppose
lq uses k registers whose values at time q - - I are
A . I , . . . , A k. Then, there exists an equivalent
program Q = Jl " "" Jq and a permutat ion ,r on
{1 k} such that:

1. Q has width at most w,

2. Q can be written as PIP2 . . . P k J q , where
v (P i) = A,r(i) for l <~i~k, and the width
o f Pi, by itself, is at most w - - i + 1.

Proof. Since P has width w, we may assume that
P uses at most w registers, say 1, 2 w. Ex-
amine the value computed by I i. Since P has no
useless instructions, this value mus t be a subtree
of a unique Aj; thus ,r (1) ---- j. Let Pl be made

21f~

up of the set of instructions whose values are
subtrees of A j, in the order in which they appear
in P It is easy to see that v(P 1) =Aj . Since
the instructions in Pt use at most w registers,
the width of Pl is at most w. By relabeling the.
registers of Pl we may assume that it computes
its value in register w.

Now, consider the remaining instructions
in P, not in Pl. These, taken in order, compute
the other A values, and then execute lq. How-
ever, the width of this sequence is at most w--1,
since at each stage in the program there is at
least one register devoted to a value which is a
subtree of Aj. Thus, we may relabei these in-
structions to use only the registers
1, 2 w--1. We may then repeat the above
construction to obtain P2, of width at most
w - - l , which computes some A,r(2), and so on.
We are left with the single instruction lq, and
A,r (1) A,r (k) computed in registers
w, w--1 w - k + 1, respectively. The final
instruction Jq is the obvious relabeling of lq to
reflect the relabeling of the registers. The job of
proving that this relabeled program is equivalent
to P is left to the reader. 17

A program is said to be strongly cont{guous
if it satisfies Theorem 3.2 and each Pi is itself
strongly contiguous. Using the transformation in
the proof of Theorem 3.2 recursively, we can
easily prove:

Theorem 3.3. (Strong Rearrangment
Theorem) Every program without stores can be
transformed into an equivalent strongly contigu-
ous program.

4. Optimal Code Generation Algorithms

This section defines our criterion of pro-
gram optimality and shows that every optimal
program can be put into a normal form. This
normal form theorem forms the foundation of
our dynamic programming algorithm. A neces-
sary and sufficient condition for an algorithm to
generate optimal code follows.

A code generation algorithm A is a map-
ping from expression trees to programs. We
shall usually denote the program produced by al-
gorithm A for expression tree T as A(T) . A
code generation algorithm is correct if
v (A (T)) --- T for all T.

We shall judge programs by their length.
A program P is optimal for T if P is as short as
any program that computes T. Clearly, an op-
timal program for T has no useless instructions.

A code generation algorithm is said to be
optimal if A (T) is an optimal program for every
input T. Our goal is a necessary and sufficient

condition for a correct code generation algorithm
to be optimal.

4.1 Normal Forms
We begin by showing that every program

can be transformed into an equivalent, normal
form, program that first; computes an expression
tree T l, stores it into a memory location m l,
then computes an expression tree T 2, stores it
into a memory location m 2, and so on, and final-
ly combines these expression trees into a result-
ing expression tree T. The final computation of
T proceeds without stores, using the memory lo-
cations ml, m 2, etc., as input variables.

Let P = I I . . . l q be a machine program
with no useless instructions. We say P is in nor-
malform if it can be written as

p -- PIJIP2J2 . . . P s _ l J s _ l P s

such that

1. Each Ji is a store instruction, and no Pi
contains a store instruction.

2. No registers are active immediately after
each store instruction.

Lemma 4.1. Let P be an optimal program
which computes an expression tree. Then there
exists a permutation of P which computes the
same value and is in normal form.

Proof. We can assume, without loss of generali-
ty, that each Store instruction in P refers to a
distinct memory location. Let If be the first
store instruction in P We can determine all
statements in 11 • • • If that are not used in com-
puting any part of v(lf). We can move these
statements en masse immediately after statement
If. We now have a program of the form P1 J1 Ql
such that Jl = If and the scope of every state-
ment in PI does not extend beyond If. Since If
sets a unique memory location, no statement in
Qt can reset that memory location. Thus,
v(Oi) = v(P).

We may repeat this same process on Ql;
continuing in this way we obtain the normal
form. []

We combine the concepts o f strong con-
tiguity and normal form in the following
definition and theorem.

Let P = P i J l . . . P s _ l J s _ l P s be a pro-
gram in normal form. We say that it is in strong
normal form if each Pi is strongly contiguous.

Theorem 4.1. (Strong Normal Form
Theorem) Let P be an optimal program of width
w. We can transform P into an equivalent pro-
gram Q such that

211

1. P and Q have the same length,

2. Q has width at most w, and

3. Q is in strong normal form.

Proof. We can apply Lemma 4.1 to P to
transform it into normal form. We can then ap-
ply Theorem 3.2 recursively to each Pi in the
resulting program to make each Pi strongly con-
tiguous. This satisfies; condition (3). Conditions
(1) and (2) follow since these two transforma-
tions do not change tlhe length of a program and
never increase the width. I-I

4.2 The Optimality Theorem

We can now derive a theorem which gives
a necessary and sufficient condition that a code
generation algorithm be optimal.

Let A be a correct code generation algor-
ithm. Let c(T) be the cost (number of instruc-
tions) of A (T) for any expression tree T. Let
~(T) be the cost of' an optimal program that
computes T. Then, clearly, A is optimal if and
only if c (T) -- ~ (T) for all T.

Theorem 4.2. A is an optimal code genera-
tion algorithm if and only if

1. c(T) = ~(T) for all trees T for which
there exists an optimal program with no
stores, and

2. c(T) <~ c(S) + c(T/S) + 1, for each T
and every subtree S of T.

Proof. Let T be a tree which has an optimal pi'o-
gram with k stores. We shall show by induction
on k that if A is a code generation algorithm that
satisfies conditions (1) and (2), then A (T) is an
optimal program.

Basis. k = O. By condition (1),
c(T) = ~(T).

Inductive Step. Suppose the inductive state-
ment is true for all trees for which there exists
an optimal program computing the tree with
k - 1 or fewer stores. Let T be a tree for which
an optimal program P exists with k stores. We
may assume that P is in strong normal form.

Let P - - PllP2, w h e r e / -- m i . - r j i s t h e
first store instruction in P We may consider P1
as computing a subtree S of T into register rj, 1
as storing this value, and P2 as then computing a
value equivalent to T/S.

Since P is optimal, we can conclude that PI
is an optimal program for S and P2 is an optimal
program for T/S. Therefore,
~ (T) = ~ (S) + 1 + ~ (T / S) , the 1 taking into
account the cost of the store instruction /.

Let us now consider A (T), the program
produced by A. Since S can be evaluated op-
timally with no stores (e.g., by P1), condition (1)
implies that A evaluates S optimally. Since T/S
can be evaluated optimally with k - - I stores (e.g.,
by P2), the inductive hypothesis implies that A
evaluates T/S optimally. From condition (2) we
have

c(T) ~ c(S) + c(T/S) + 1
- -O(S) + ~(T/S) + 1
= ~ (r)

Therefore A evaluates Toptimally.

Conversely, suppose A is optimal; then (1)
is immediate. To prove (2), we note that, given
any program PI for S and any program P2 for
T/S, we may construct a program Pl IP2 which

computes T, where I stores the result of PI into
the added memory cell in T/S. Thus, we obtain
from A(S) and A(T/S) a program of cost
c(S) + c(T/S) + 1 which computes T; since A
is optimal, this is no better than c(T), i.e.,
c(T) <<, c(S) + c(T/S) + 1. []

5. The Dynamic Programming Algorithm

This section presents a dynamic program-
ming algorithm which produces an optimal pro-
gram to compute a given expressio n tree; the al-
gorithm can be applied to produce programs for
any machine, in the class described in Section 2.
The running time of the algorithm is linear in
the number of vertices in the expression tree be-
ing compiled. Before stating the algorithm, we
will need some preliminary results.

5.1 Covering

Suppose P - - - - I i . . . l q is a program with
no useless instructions that computes an expres-
s ion tree T, and suppose the last instruction is of
the form r "-- E. Then the roots of T a n d E
must correspond. In fact, all of the non-leaf ver-
tices of E must match corresponding vertices in
T. Moreover, for each leaf of E which is a regis-
ter, there is a subtree of T computed into that
register. For each leaf of E which is a memory
location, there is either a leaf of T or another
subtree of T which has been computed and
stored in that memory location.

For example, consider the following pro-
gram P.

212

r I *-- d
r I ~ r I + e

m I , - - r I

r I ~ - - b

r 1 * - r I 4 - c

r I "-- r I * (ind m I)
m 2 * - - r 1

r I *"" a

r I * - r I - - m 2

P computes the expression tree in Fig. 4.

/ 7 \
° +/\

ind / . \
b c + / \

d e

Fig. 4. Expression tree.

The last instruction uses register r I and memory
location m 2. At that time, register r I contains as
value a subtree consisting of the single operand
a; memory location m 2 contains the subtree
dominated by the vertex labeled * We say that
the instruction r*--- r -- m covers the expression
tree in Fig. 4. Given an instruction covering a
tree S, we can identify subtrees of S which must
be computed into registers, or into memory, in
order that the instruction produce S as its value.

More formally, we shall define an algor-
ithm cover(E, S) which will return true or false
depending as E covers S. S is taken to be an ex-
pression tree, and E a tree on the right side of an
instruction (see Section 2.2). If E covers S, cover
will place into two (initially empty) sets, regset
and memset, the subtrees which need to be com-
puted in registers and memory, respectively.

algorithm cover(E, S):

1. If E is a single register vertex, add S to reg-
set and return true.

2. If E is a single memory vertex, add S to
memset and return true.

3. If E has the form

0

/ \
E l . . . e s

then, if the root o f S is not 0, return false.
Otherwise, write S as

0

/ \
- . . s s

Then, for all i from 1 to s, recursively in-
voke cover(El, S i). ; I f any such invocation
returns false, then return false. Otherwise,
return true. []

If E covers S, we shall denote the resulting
sets regset and memset by { S 1 S k } and
{ T l T t }, respectively.

We say that an instruction r '-- E covers an
expression tree S if cover(E, S) is true. Note, as
a boundary condition, that the load instruction
covers all trees, with k = 0 , I = 1 , and T I = $.
By comparison, the store instruction covers all
trees with k ffi 1, I •0, and S 1 -- $.

Lemma 5.1. If P is a progra m that com-
putes an expression tree T, the last ifistruction of
P c o v e r s T.

Proof Straightforward, from the definition of
value. []

5.2 The Algori thm

We shall associate with the root of each
subtree S of T an array of costs c j (S) for
0 < ~ < n . Here, as before, n is the number of re-
gisters in the machine. For all such j and S,
c j (S) is an integer or oo; c j (S) gives the
minimal num, ber of instructions needed to com-
pute S by a program in strong normal form

Q = QIJI . . . Q s _ l J s _ l Q s

in which the width of Qs is at mos t j . I f j -- 0,
we shall interpret this to mean the minimal cost
of comput ing S into a memory location. Thus, if
S is a leaf of T, we set c 0 (S) = 0 . Clearly,
c j (S) is a nonincreasing function o f j for
1 <~<n .

The dynamic programming algorithm con-
sists o f three phases. In the first phase, we com-
pute the cj (S) values for all subtrees S and all
values o f j, 0 < ~ < n . In the second phase, we use
the values of the cj arrays to traverse T and
mark a sequence o f vertices. These vertices
represent subtrees of T that must be computed
into memory locations either because there are
not enough registers available or because certain
machine instructions require some operands to
be in memory. Thus, after the second phase the
required number o f stores is known, as well as
which subcomputat ions o f T will be stored in
temporary variables. In the final phase, we gen-
erate code for the each of the subcomputat ions.
The result of the third phase is a program of op-

2 1 3

t imal length comput ing T.

We shall now descr ibe the algori thm for a
part icular mach ine with n registers and a fixed
set of instruct ions. As input, we are given an
express ion tree T for which we are to cons t ruc t
an opt imal program.

Phase 1. Comput ing cj (S) for each sub t ree S
of T.

Initially, we set cj (S) - - ~ for all sub t rees
S of T, and all j with 0 ~< j~< n. We then visit
e a c h , v e r t e x o f T in postorder.* At each vertex,
we compu te the c j (S) array for the sub t ree
domina ted by that ver tex as follows:

a. If S consists of a leaf, set c o (S) = 0.

b. Loop over all ins t ruct ions r ' - E which
cover S. For each such ins t ruct ion qbtain
from cover(E, S) the sub t rees S! Sg
which mus t be c o m p u t e d into registers,
and the subtree, s T t T t which mus t
be c o m p u t e d into memory . Then , for each
pe rmuta t ion 7r o f {1, 2 k} and for all j ,
k <~<<, n, compute.

cj (S) = m i n (~) (S) , i

~.dCj_i+l (S,r(i)) + ~.dCo(T i) + 1)
i - I i=l

C.

In the last express ion the first te rm
represents the ,cost o f compu t ing the S i
sub t rees into registers in the order
S , r (I) ' " S , ~ (g), using j registers for the
first, j - - I for the second, etc. The second
term is the cost o f compu t ing the subt rees
o f S which mus t be in memory . The third
term, 1, represents the cost o f execut ing
the ins t ruct ion r ' - - E.

Having done s~tep b for all ins t ruct ions
which cover S, set

c 0 (S) = m i n (c 0 (S) , c n (S) + 1)

and, for 1 ~ j ~ n

cj (S) -- rain (c) . (S) , c o (S) + 1)

The first equat ion represents a computa t ion
o f S into m e m o r y by initially compu t ing S
into a register r and then s tor ing it with a

* A postorder traversal of a tree Twith root r hav-
ing subtrees T I, T 2, • • • , T k is defined recursive-
ly as follows:
!. Traverse each of T l, 7½, ' ' • T k in postorder.
2. Traverse r.
See [Kn] or [AHU] for more details.

s tore instruct ion. The second equat ion
represents the possibil i ty that we can com-
pute S when j registers are avai lable by
comput ing it at some earl ier t ime into
memory , and then s imply loading it. []

By using a pos torder traversal the cj arrays
are c o m p u t e d for all sub t rees of S before cj is
compu ted for S itself. Af ter f inishing Phase 1,
we have cj defined over the ent i re tree T. As is
usual in dynamic programming , we may e i ther
save at each ver tex a choice o f an ins t ruct ion
and a pe rmuta t ion ~r which attain the m i n i m u m
cost for each j , or make ano the r pass over the
tree and find an inst ruct ion and pe rmuta t ion ~r
which attain the m i n i m u m cost when we need it.
In any case, we shall a s sume that an opt imal in-
s t ruct ion and pe rmuta t ion ~r are known for each
cj (S) . In part icular , the opt imal ins t ruct ions as-
sociated with the two equat ions in s tep (c),
above, are the store and load ins t ruct ions ,
respect ively. Note that t h e opt imal ins t ruct ion
associated with cj (S) covers S, for all j .

Phase 2. De te rmin ing the Subtrees to be Stored.

Phase 2 walks over the tree T, making use
o f the c j (S) ai rays c o m p u t e d in Phase 1 to
create a sequence of vert ices x I x s of T.
These vert ices are ~be roots o f those sub t rees of
T which mus t be c o m p u t e d into me mory ; x s is
the root of T. These sub t rees are so ordered that
for all i, x i never domina te s any xj for j > i.
Thus if one sub t ree S requires some o f its sub -
trees to be c o m p u t e d into memory , these sub-
trees will be evalua ted before S is evaluated.

Phase 2 consis ts o f call ing the a lgor i thm
mark (T, n), def ined below, to mark
x l , x 2, • • • , Xs_ I. The variable s, r epresen t ing
the n u m b e r o f vert ices marked , is initially set to
0. Upon re tu rn ing from mark, we inc remen t s
and set x s to the root of T, comple t ing Phase 2.

a lgor i thm mark (S, j) :

a. Let z " - E be the opt imal ins t ruct ion as-
sociated with cj (S) , and rr the opt imal per-
mutat ion. Invoke cover(E, S) to obta in the
sub t rees S I S k and T l T t o f S.

b. For all i f rom 1 to k, recurs ively invoke
mark (S~r(i), j - i + 1).

c. For "all i f rom 1 to /, r e c u r s i v e l y ' i n v o k e
mark (T i, 0) .

d. If j is 0, and the ins t ruct ion z " - E is a
store, i nc remen t s and set x s equal to the
root o f S.

e. Return .

Not ice that the mark ing is done after all
the de sc e nde n t sub t rees have been visi ted; this

214

will ensure that when we compute a subtree
starting at one o f the x i vertices, all subcomputa-
tions which must be stored into memory will
have been completed.

Phase 3. Code Generat ion.

This phase makes a series o f walks over
subtrees o f T, generating code. These walks
start at the vertices x I x s computed in
Phase 2. After each walk except the last, we
generate a store into a distinct temporary
memory location mi, and rewrite vertex x i to
make it behave like an input variable m i in later
walks that might encounte r it.

The walking and code generation is is done
by a routine code(S, j) , which generates code for
a subtree S using the integer parameter j to con-
trol the walk. The unspecified routine alloc allo-
cates registers from the set of registers which are
available (initially, all n of . them), and the

rou t ine free puts a register back in to the allocat-
able set. code (S , j) never requires more than j
free registers and returns a register a whose
value upon return is v(S) .

Thus, the outermost flow o f control in
Phase 3 is:

a. Set i = l and invoke code(x i, n). Let ~ be
the register returned by this invocation.
Then, generate the instruction m i *" ~, in-
voke f r e e (a) , and rewrite the vertex x i to
make it represent memory location m i. Re-
peat this step for i = 2 s - -1 .

b. Finally, invoke code(x s, n); the register re-
turned contains the value o f T. (Recall
that x s is the root o f T.) []

It remains only to describe the algorithm
code:

algorithm code (S, j) :

a. Let z - - E be the optimal instruction for
cj (S), and ~r the optimal permutation. In-
voke code(E, S) to obtain the subtrees
S t S k which must be computed into
registers.

b. For i from 1 to k, recursively invoke
code(S~r.(i) , j- i- t- 1). Let 61, a 2, • • • , c~
be the registers returned.

c. I f k is nonzero, the register a returned by
c o d e (S , j) must be one o f the registers ot i.
If k is zero, call the procedure alloc to ob-
tain an unused register to return.

d. Issue the instruction a .--- E with registers
a l , a2, " ' " , a~ substi tuted for the regis-
ters used by E. Any memory locations
used by E either will b e leaves o f T, or will
have been precomputed by earlier calls to

e.

code; in either case, they can be immedi-
ately substi tuted into E.

Finally, call free 'on c~ 1 , a 2, , • • • , a~ ex-
cept a. Return a a s ' the value o f
code(S , j) , l-q

5.3 Properties of the Algorithm
We now address ourselves to the correct-

ness, optimality, and time complexity of the
dynamic programming algorithm. Our proofs are
necessarily sketchy, but hopefully suggestive
enough to enable the mathematically fastidious
reader to fill in the details.

It is relatively simple to establish the
correctness of the algorithm. To begin, we must
show that each phase terminates and produces
the appropriate answer. Showing that the value
of the program P produced by Phase 3 is T has
two major aspects. We must show that all
memory locations used by each instruction in P
have their values previously computed and that
the register allocation routine alloc never runs
out o f registers. This last fact can be established
by showing that code (S , j) never requires more
than j nonactive registers, an easy inductive ar-
gument. We can then show by induction on T
that P actually computes T as its value and has

-c n (T) instructions in it.

Proving that c n (T) instructions is optimal
is more subtle, and resembles the proof of
Theorem 4.2. As is frequently the case in
mathematics, it is easier to prove something
somewhat stronger.

Theorem 5.1. c j (T) is the minimal cost
over all strong normal form programs

P1JI " " P s _ l J s - l V s

which compute T s u c h that the widila o f Ps is at
most j.

Proof. By Theorem 2.2 the optimality o f cn (T)
over programs in strong normal form implies op-
timality over all programs. The proof will be by
induction on the number of vertices o f T. The
basis is trivial. For the inductive step suppose T
is some tree such that the theorem is true for all
trees with a smaller number o f vertices. Let P,
as above, be an optimal strong normal form pro-
gram comput ing T, with the width of Ps less
than or equal to j.

W h e n j > 0, we argue as follows. Since
Ps is strongly contiguous, we may write it as

t ' s -- . . .

where Psi through Psk are strongly contiguous
programs comput ing into registers the values
S~r (1) S~r (k) needed by /. Moreover, each

215

Psi, by itself, has width at most j - - i + 1.

Each of the earlier code segments Ptlt is
involved in the computation of some value, ei-
ther for' use by some Psi or use as one of the
values T I T t required in memory by in-
struction L We associate all of the segments ei-
ther with the associated S,t(i) or with the associ-
ated T/. This yields k strong normal form pro-
grams which compute the S,r(i); by induction,
the cost of each is at least, cj_i+ I (S~(i)).
Moreover, there are up to I nontrivial strong nor-
mal form programs which compute those T i
values which are not leaves of T. The cost of
each of these is, again by induction, at least
co (Ti).

Thus, we have established that the cost of
this optimal program !is at least

k /

1 + ~_,cj_i4. l (S~(i)) + ~,,c o (T i)
i=1 i=1

which, by Phase l, is always greater than or
equal to cj (T). Thus, cj (T) is minimal.

The argument when j is 0 is similar. We
remove the final instruction of P, which must be
a store in6truction; we then argue as above. []

The time complexity of the dynamic pro-
gramming algorithm is easy to calculate. Phase 1
requires am time, where m is the number of ver-
tices in T. The constant a depends on the size
of the instruction set of the machine, the "ary-
hess" of the instructions, and the number of re-
gisters in the machine. If a machine has a large
number of identical registers, then it may be
more economical to store only the distinct en-
tries of the cj arrays at each vertex of T using
linked lists. Phases 2 and 3 each require time
proportional to the number of vertices in T; the
time taken to process each vertex is bounded by
a constant. Thus, the entire algorithm is O(m)
in time complexity.

6. Conclusions

We have given an algorithm to compile op-
timal code for expression trees over a broad class
of machines. For simple machine architectures
it is possible (and desirable) to specialize the al-
gorithm to the specific machine to reduce the
amount of information that needs to be collected
by Phase 1 at each vertex of the expression tree
being compiled. F o r example, for the register
machines studied by Sethi and UIIman a single
integer is sufficient to characterize the difficulty
of computing a subtree [SU]. Bruno and Las-
sagne give a similar characterization for a class
of stack machines [BL]. We can derive a similar
algorithm for machines with an indirection

operator but no register to register operations,
such as the Honeywell 6000 or IBM 7090
machines.

There are a number of directions in which
the dynamic programming algorithm can be gen-
eralized. Throughout this paper we have used
program length as the criterion of optimality.
However, the algorithm will work with any addi-
tive cost function (i.e., for a program PQ,
c(PQ) >1 c(P) + c(Q)), such as execution
time or number of stores. The algorithm can
also be extended to handle instructions which
compute values directly into memory. The al-
gorithm is capable of taking into account certain
algebraic properties of operators, e.g., commuta-
tivity; however, it is not obvious how to extend
the algorithm efficiently to all common algebraic
properties, except for particular machine models
as in [B, BL, SU].

We now have a s i t ua t i on where, over a
wide range of machines, code generation for
trees is linear in difficulty, while for even very
simple machines code generation for dags is
NP-complete. The question of how many su-
bexpressions can be tolerated and in what form
they can appear before the problem becomes
hard merits further study. The results in [BS, S,
and WS] are useful in this regard.

References

[AHU]

[AU]

[B]

[BL]

[BSl

ICl

Aho, A. V., Hopcroft, J. E., and Ullman,
J. D., The Design and Analysis of Comput-
er Algorithms, Addison-Wesley, Reading,
Mass., 1974.

Aho, A. V., and UIIman, J. D., "Optimi-
zation of Straight Line Code," SlAM J.
Computing 1:1 (1972), 1-19.

Beatty, J. C., "An Axiomatic Approach
to Code Optimization for Expressions,"
J. ACM19:4 (1972), 613-640.

Bruno, J., and Lassagne, T., "The Gen-
eration of Optimal Code for Stack
Machines," To appear, J. ACM.

Bruno, J., and Sethi, R., "Register Allo-
cation for a One-Register Machine,"
Technical Report No. 157, Computer Sci-
ence Dept., Pennsylvania State Univer-
sity, October 3, 1974.

Cook, S. A., "The Complexity of
Theorem Proving Procedures," Proc. 3rd
Annual ACM Symposium on Theory of
Computing (May 1971), 151-158.

216

[Ka]

[Kn]

[NI

[R]

Is1

[su]

[w]

[ws]

Karp, R. M., "Reducibility among Com-
binatorial Problems," in Complexity of
Computer Computations, R. E. Miller and
J. W. Thatcher (eds.), Plenum Press,
New York (1972), 85-103.

Knuth, D. E., Fundamental Algorith'ms,
second edition, The Art of Computer
Programming 1, Addison-Wesley, Read-
ing, Mass., 1973.

Nakata, I., "On Compiling Algorithms
for Arithmetic Expressions," Comm.
ACM 10:8 (1967), 492-494.

Redziejowski, R. R., "On Arithmetic
Expressions and Trees," Comm. ACM
12:2 (1969), 81-84.

Sethi, R., "Complete Register Allocation
Problems," Technical Report No. 134,
Computer Science Dept., Pennsylvania
State University, May, 1974.

Sethi, R., and UIIman, J. D., "The Gen-
eration of Optimal Code for Arithmetic
Expressions," J. ACM 17:4 (1970),
715-728.

Wasilew, S. G., "A compiler writing sys-
tem with optimization capabilities for
complex order structures," Ph. D.
thesis, Northwestern University, Evans-
ton, Illinois, 1971.

Walker, S. A., and Strong, H. R., "Char-
acterizations of Flowchartable Recur-
sions," Proc. 4th Annual ACM Symposium
on Theory of Computing, (May 1972),
18-34.

217

