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0. Summary 
We discuss the problem of generating code 

for a wide class of machines, restricting our- 
selves to the computation of expression trees. 
After defining a broad class of machines and dis- 
cussing the properties of optimal programs on 
these machines, we derive a necessary and 
sufficient condition which can be used to prove 
the optimality of any code generation algorithm 
for expression trees on this class. We then 
present a dynamic programming algorithm which 
produces optimal code for any machine in the 
class; this algorithm runs in time which is linear- 
ly proportional to the number of vertices in an 
expression tree. 

1. Introduction 

Code generation is an area of compiler 
design that has received relatively little theoreti- 
cal attention. Bruno and Sethi [BS] show that 
generating optimal code is difiqcult, even if the 
target machine has only one register; specifically, 
they show that the problem of generating op- 
timal code for straight-line sequences of assign- 
ment statements is NP-complete [C, Ka]. 

On the other hand, if we restrict the class 
of inputs to straight line programs with no com- 
mon subexpressions, optimal code. generation 
becomes considerably easier. Sethi and Ullman 
[SU], extending the work of Nakata [N] and 
Redziejowski [R], present an emcient code gen- 
eration algorithm for a class of machines having 
n "general purpose" registers, symmetric 
register-to-register operations, but no complex 
addressing features such as indirection. They 
prove the optimality of their algorithm on ex- 
pression trees using a variety of cost criteria, in- 
cluding output code length. 

In generating code, the major issues are de- 
ciding what instructions to use, in what order to 
execute them, and which intermediate results to 
store in temporary memory locations. In gen- 
eral, there are an infinite number of programs 
which compute a given expression; even restrict- 
ing ourselves to "reasonable" programs, the 
number of possible programs may grow ex- 
ponentially with the size of the expression. 
WasiIew [W] has suggested an erkumerative code 
generation algorithm which produces good code 

for expression trees not requiring temporary 
stores for their evaluation but' which can take 
exponential time. W e  show that, by using 
dynamic programming, optimal code can always 
be generated for expression trees in linear time 
over a wide class of machine models, including 
the machines studied by Sethi and Ullman. The 
code produced has the interesting property that, 
unlike the Sethi-UIIman algorithm, it is not pro- 
duced by a simple tree walk of the expression 
tree. 

Additionally, we prove a theorem which 
characterizes any optimal code generation algor- 
ithm for a machine in our class. We also derive 
a number of results which characterize optimal 
programs, and prove that optimal programs can 
be written in a "normal form." This normal form 
theorem forms the basis of our dynamic pro- 
gramming algorithm. 

2. Basic Definitions 

In this section, we define expression trees, 
the machine model, and programs for the model 
machines. 

2.1 Dags and Expression Trees 
The sequence of assignment statements 

X ' - - A - C  

X ' -  X * X  

Y ' - B - C  

y . - -  y * y  

Z ' - X + Y  

may be represented by the following labeled 
directed acyclic graph ("dag" for short). 

+ 
/ \  

ig ill 

() () 

,4 B C 

Fig. 1. A dag. 
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See [AU] for a formal correspondence between 
straight line programs and dags. 

We assume the sequence of  assignment 
statements represems a basic block of  a source 
program. Our objective is to find algorithms that 
generate good code for dags. Unfortunately,  the 
optimal code generation problem for dags is 
NP-complete ,  even for very simple machine  
models [BS]. 

For this reason, we shall consider only the 
special case where the dag is a tree; this occurs 
when there are no identified c o m m o n  subexpres-  
sions or operands. We shall see that, unlike for 
dags, optimal code generation is relatively easy 
for this class of  inputs over a broad class of  
machine models. 

In particular, we assume a countable  set of  
operands E and a finite set of  operators 19. We 
define an expression tree as follows: 

1. A single vertex labeled by a name from 7_, 
is an expression tree. 

2. I f  T 1, T 2 . . . . .  T k are expression trees 
whose leaves all have distinct labels, and 0 
is a k-ary operator in 19, then 

0 

T! T 2 . . "  T1¢ 

is an expression tree. For example, 

/ \  
a ind 

I 
+ 

/ \  
b c 

Fig. 2. An expression tree. 

is an expression tree, assuming that + and 
* are binary operators, and ind is a unary 
operator. 

If  T is an expression tree and S is a subtree 
o f  T, then we define T / S  as an expression, tree 
which is obtained from T by. replacing S by a 
single leaf labeled by a distinct name from ,E. 

2.2 The Machine  Model  

We assume that we are generating code for 
a machine with n general purpose registers, and 
a countable  sequence of  memory  locations. All 
memory  locations are assumed interchangeable,  
as are all registers. 

The actual machine  operations are of  two 
types: 

(a) r *-  E 

(b) m ' - -  r 

The r in (a) and (b) refers to any of  the n 
registers o f  the machine;  the m refers to any 
memory  location. The  E is a dag containing 
operators f rom O, and leaves which are either 
registers or memory  locations. It is assumed that 
if E contains an operator 0, then all operands o f  
0 are also present. In addition, if E contains any 
registers, then the register on the left is assumed 
to be one o f  the registers in E. 

A typical example o f  this type o f  instruc- 
tion is 

+ 

r - -  / \  
r ind 

I 
rn  

in which the contents  of  the memory  location 
pointed to by m is added to register r. To avoid 
writing trees, we will usually write this in infix 
notation: r ~-- r + ( ind  m) .  We assume that 
in each instruction of  this type the dag E has a 
root that dominates  all vertices in E. This root 
will be used to define the value o f  an instruction 
in a program. 

For convenience,  we also assume that 
every machine  h a s  a simple " load" instruction: 
r ' - - m .  This instruction assigns the value 
currently in memory  location m to the register r. 
The type (b) instruction is the inverse "s tore"  
instruction; it assigns the value currently in re- 
gister r to memory  location m. 

We also assume that no instruction has any 
side effects; in particular, the only instruction to 
after the state of  memory  is the store instruction. 

In the type (a) instruction r "-- E we say r 
is set by the instruction. If  z is a register or 
memory  location in E, then the instruction is 
said to use z. In a type (b) instruction m ~-- r, 
m is set and r is used. 

If  I is an instruction, we shall use the nota- 
tion use (I)  and set ( I )  for the set o f  things used 
and the thing set, respectively. 
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2.3 Programs 

A mach ine  program consis ts  of  a set ~ !  o f  
input  m e m o r y  locat ions and a finite sequence  o f  
ins t ruct ions  P = I 1 12 - - -  lq. Each inst ruct ion 
I t is of  the  form r '--- E or m '--- r. 

W e  def ine v t ( z ) ,  the  value o f  z a t  t ime t, 
0 ~< t <~ q, as a rooted dag. z is e i ther  a register  
or  m e m o r y  location. Initially, v 0 (z)  is a single 
ver tex  labeled z if z E Et ;  o therwise  v 0 (z) is 
undefined.  For  t > 0 we def ine v t ( z )  as fol- 
lows: 

a. I f  I t is r ' - - E ,  then  v t ( r )  is the  dag ob-  
ta ined by taking the dag represen t ing  E and 
subs t i tu t ing  for each leaf  ! in E the  root o f  
the dag represen t ing  v t _  1 ( ! ) .  The  result-  
ing dag becomes  the value o f  register r at 
t ime t. The  root o f  E becomes  the  root of  
the  new dag. W e  shall  refer  to the  new dag 
as the  value o f  instruction I t . If  the  value o f  
any leaf of  E is undef ined  at t ime t - I ,  
then  v t ( r )  is undefined.  

b. If  I t is m , -  r, then  v t (m) is v t _  l (r) .  The  
dag v t ( m )  is said to be the  value of  I t. 

c. Otherwise,  v t ( z )  = v t _  l ( z ) .  

v ( P ) ,  the  value o f  program P ffi I l l  ~ . . .  lq,  
is defined to be the  value of  ins t ruct ion I¢. 

For  example ,  the  program 

r I ' - -  b 
r I * - -  r I - 4 - c  

r2.---  a 
r 2 '--- r 2 * ( i n d r  I ) 

(where  ind is the  indirect ion,  or  "con ten t s  of"  
operator)  has as its value the  tree of  Fig. 2. 

A program P is said to compu te  a dag D if 
v ( P )  = D. Two programs that  compu te  the  
same dag are said to be equivalent .  

Notice  that  we do not  specify  a part icular  
register or m e m o r y  location to hold the  final 
value o f  a program. Since registers are assumed  
to be comple te ly  in te rchangeable ,  we can get a 
des i red  value into any register  s imply by renam-  
ing the registers th roughou t  a program. Thus  
the  issue of  which register holds the  answer  is 
immater ia l  in oor  model.  

Since the  inputs  to our  code genera t ion  al- 
gor i thms will always be express ion  trees,  we will 
be interested only in mach ine  programs that  
compute  trees. As a consequence ,  no such pro- 
gram can use a mach ine  ins t ruct ion in which the 
same register or m e m o r y  locat ion is used more  
than once.  In the  next  sect ion we shall  der ive  
general  condi t ions  under  which a mach ine  pro- 
gram computes  a t ree ra ther  than  a dag. 

3. Properties of Programs which Compute Ex- 
pression Trees 

In this sect ion we give a s imple  character i -  
zation o f  programs which compu te  express ion  
trees with no wasted instruct ions,  and state some  
s imple  l emmas  about  the  rearrangeabi l i ty  of  
these  programs.  

3.1 Useless Instructions 

An instruct ion I t in a program 
P = 1112 • • • lq is said to be useless  in P if the  
program I! 12 • • • I t _  l It+ 1 " " " l q  is equ iva len t  to 
P Not ice  that  the  uselessness  of  an instruct ion 
depends  on its context .  

A n y  program can be reduced to an 
equivalent  shor te r  program by e l iminat ing  some 
useless instruct ion.  Repea t ing  this finally yields 
an equivalent  program with no useless instruc-  
tions. Thus ,  we can freely assume that:~programs 
conta in  no useless instruct ions.  

3.2 Scope of Instructions 

Fol lowing [AU], we define the scope of  an 
ins t ruct ion I t in a program 
P • 1 1 1 2 . . . 1  q, l ~ < t < q ,  as the  sequence  of  
s ta tements  It+ 1 • • • I s, where  s is the largest in- 
dex t < s<~q, such that  

a. set ( I  t ) E use ( I  s ) 

b. set (It ) ~ set (/y ), t < j < s .  

W e  call s ~the use of  t, and write s ---- U ( t ) .  

If  there  is no such s, the scope of  I t is 
undefined,  and we write U ( t )  - - ~ .  Since U 
depends  on the contex t  P, we somet imes  write 
Up. If" the  scope of  I t is undefined,  then  I t is 
useless. If  the  scope of  I t is def ined,  then we 
say that  s e t ( I  t ) .is act ive  immedia te ly  before  
every  s t a t emen t  in its scope. W e  shall  see that  
the m a x i m u m  n u m b e r  o f  registers that  a te  active 
at any one  t ime in a program de te rmines  the  
n u m b e r  of  registers needed  to execute  that  pro- 
gram. 

3.3 Programs which Compute Expression Trees 

W e  may character ize  programs which com-  
pute express ion  trees as follows. 

I f  P ffi 11 • • • lq is a program With no use- 
less instruct ions,  then  v ( P )  is an express ion tree 
if and only if 

a. For  all l ~ < t <  q, there  is exact ly one in- 
s t ruct ion in the scope of  I t which uses 
set ( I  t ). 
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b. For all X in I; t, there is at most  one in- 
struction which uses X before it is set. 

3.4 Rearrangeability of Programs 
One of  the main problems in code genera- 

tion is deciding the order in which an expression 
tree should be evaluated. Thus,  it makes sense 
to ask which rearrangements  o f  the instructions 
in a program produce an equivalent program. 

For example, suppose P is a program in 
which s ta tement  I t is r 3 " -  r 3 + X. We can 
move I t in front o f  s ta tement  l t _  l if I t _  t does 
riot use r 3, or set r 3 or X. Similarly, we can 
move I t after s ta tement  It+ I if I t+ t does not use 
r 3, or set r 3 or X. If  P computes  an expression 
tree, there is a particularly simple characteriza- 
tion o f  what rearrangements  o f  P are possible 
without changing the value o f  P. 

Theorem 3.1. (Rearrangement  Theorem)  
Let P = I 1 1 2 . . . 1  q be a program which com- 
putes an expression tree and has no useless in- 
structions. Let ,r be a permutat ion on {1 . . . . .  q} 
with ~r (q) -- q. Then  the program 
Q = l , ~ ( l ) . . . l , ~ { #  ) is equivalent to P if and 
only if 

* r ( U p ( t )  ) = Uo . ( z r ( t )  ), 

for al l t ,  1 ~< t < q. 

Proof. The proof  is a straightforward induction 
on t, based on the definition o f  value. The de- 
tails are left to the reader. [ ]  

Another  important  aspect o f  code genera- 
tion is determining the n u m b e r  o f  registers 
needed to compute  an expression tree. We shall 
see that certain rearrangements  o f  a program 
may require more registers to be used than other  
equivalent rearrangements.  

Let P = ! 1 . . . 1  q be a program with no 
useless instructions; for each I t we define the 
width of  I t to be the number  o f  distinct j, 1 < ~ < t ,  
with U( / )  > t and lj not a store instruction. We 
define the width o f  P to be the max imum over t, 
1 ~< t < q, of  t he  width o f  I t. 

Intuitively, the width o f  a program is the 
max imum number  o f  registers that are active at 
any one time. It should be clear that eliminating 
useless instructions from a program can never 
increase its width. 

In our machine model, any one register is 
indistinguishable from any other. Thus,  if at 
most  w registers are active at any time, by 
renaming registers we can cause any specified 
set o f  w registers to be the only ones used. 

Lemma 3.2. Let P be a program of  width 
w, and let R be a set o f  w distinct registers. 
Then,  by renaming the registers used by the in- 
structions o f  P, we may construct  an equivalent 
program P ,  with the same number  o f  instruc- 
tions as P, which uses only registers in R. 

Proof. Let P = I I I 2 . . . I  q. We shall rewrite P 
into an equivalent program Q = J I  J2 "" " Jq, such 
that Q uses only registers in R. Each instruction 
• It will be equal to I t with relabeled registers. 
Provided that the relabeling is consistent,  i. e., 
when a set variable is relabeled its use is also re- 
labeled, P and Q will be equivalent if and only if 
Ut, ( t )  = U 0 ( t ) ,  for all t. For a relabeling o f  P 
to have this property, it is enough to specify the 
relabeling on those instructions of  the form 
r ' -  E (including load instructions) where E con-  
tains no register leaves; in the other  cases, the 
register which is set is forced to be one o f  the 
(relabeled) registers o f  E, by consistency. If  I t is 
an instruction which uses no registers, then the 
relabeled register which is set by Jt should not 
be active in Q right after time t - 1 ,  since other-  
wise U O will be different from Up. But, there 
are at most  w--1 active registers in P immediate-  
ly prior to time t (since the width o f  I t in P is at 
most  w), and thus this is so in Q; this implies 
that there is some register in R which is not ac- 
tive immediately prior to time t. We can choose  
some such register as the register set by Jr. 
Cont inuing in this way, we may relabei P using 
only registers from R, and thus get an equivalent 
program Q [] 

Lemma 3.2 justifies calling a program of  
width w a program which uses w registers. 

The following theorem identifies a class o f  
equivalent rearrangements  o f  a program with no 
useless instructions. At least one o f  these rear- 
rangements  uses the fewest n u m b e r  o f  registers 
of  any equivalent rearrangement.  

Theorem 3.2. (Rear rangement  Theorem)  
Let  P ---- I I • • • lq be a program of  width w with 
no stores and no useless instructions. Suppose 
lq uses k registers whose values at time q - - I  are 
A . I , . . . , A  k. Then,  there exists an equivalent 
program Q = Jl " "" Jq and a permutat ion ,r on 
{1 . . . . .  k} such that: 

1. Q has width at most  w, 

2. Q can be written as PIP2 . . . P k J q ,  where 
v ( P  i )  = A,r(i  ) for l <~i~k, and the width 
o f  Pi, by itself, is at most  w - - i +  1. 

Proof. Since P has width w, we may assume that 
P uses at most  w registers, say 1, 2 . . . . .  w. Ex- 
amine the value computed  by I i. Since P has no 
useless instructions, this value mus t  be a subtree 
of  a unique Aj; thus ,r (1)  ---- j. Let Pl be made 
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up of  the set of  instructions whose values are 
subtrees of A j, in the order in which they appear 
in P It is easy to see that v(P 1) =Aj .  Since 
the instructions in Pt use at most w registers, 
the width of Pl is at most w. By relabeling the. 
registers of Pl we may assume that it computes 
its value in register w. 

Now, consider the remaining instructions 
in P, not in Pl. These, taken in order, compute 
the other A values, and then execute lq. How- 
ever, the width of this sequence is at most w--1, 
since at each stage in the program there is at 
least one register devoted to a value which is a 
subtree of  Aj. Thus, we may relabei these in- 
structions to use only the registers 
1, 2 . . . . .  w--1. We may then repeat the above 
construction to obtain P2, of  width at most 
w - - l ,  which computes some A,r(2 ), and so on. 
We are left with the single instruction lq, and 
A,r (1) . . . . .  A,r (k) computed in registers 
w, w--1 . . . . .  w - k +  1, respectively. The final 
instruction Jq is the obvious relabeling of lq to 
reflect the relabeling of the registers. The job of 
proving that this relabeled program is equivalent 
to P is left to the reader. 17 

A program is said to be strongly cont{guous 
if it satisfies Theorem 3.2 and each Pi is itself 
strongly contiguous. Using the transformation in 
the proof of Theorem 3.2 recursively, we can 
easily prove: 

Theorem 3.3. (Strong Rearrangment 
Theorem) Every program without stores can be 
transformed into an equivalent strongly contigu- 
ous program. 

4. Optimal Code Generation Algorithms 

This section defines our criterion of pro- 
gram optimality and shows that every optimal 
program can be put into a normal form. This 
normal form theorem forms the foundation of 
our dynamic programming algorithm. A neces- 
sary and sufficient condition for an algorithm to 
generate optimal code follows. 

A code generation algorithm A is a map- 
ping from expression trees to programs. We 
shall usually denote the program produced by al- 
gorithm A for expression tree T as A(T) .  A 
code generation algorithm is correct if 
v (A ( T ) )  --- T for all T. 

We shall judge programs by their length. 
A program P is optimal for T if P is as short as 
any program that computes T. Clearly, an op- 
timal program for T has no useless instructions. 

A code generation algorithm is said to be 
optimal if A (T) is an optimal program for every 
input T. Our goal is a necessary and sufficient 

condition for a correct code generation algorithm 
to be optimal. 

4.1 Normal Forms 
We begin by showing that every program 

can be transformed into an equivalent, normal 
form, program that first; computes an expression 
tree T l, stores it into a memory location m l, 
then computes an expression tree T 2, stores it 
into a memory location m 2, and so on, and final- 
ly combines these expression trees into a result- 
ing expression tree T. The final computation of 
T proceeds without stores, using the memory lo- 
cations ml, m 2, etc., as input variables. 

Let P = I I . . . l q  be a machine program 
with no useless instructions. We say P is in nor- 
malform if it can be written as 

p -- PIJIP2J2 . . . P s _ l J s _ l P s  

such that 

1. Each Ji is a store instruction, and no Pi 
contains a store instruction. 

2. No registers are active immediately after 
each store instruction. 

Lemma 4.1. Let P be an optimal program 
which computes an expression tree. Then there 
exists a permutation of P which computes the 
same value and is in normal form. 

Proof. We can assume, without loss of  generali- 
ty, that each Store instruction in P refers to a 
distinct memory location. Let If be the first 
store instruction in P We can determine all 
statements in 11 • • • If that are not used in com- 
puting any part of  v(lf).  We can move these 
statements en masse immediately after statement 
If. We now have a program of the form P1 J1 Ql 
such that Jl = If and the scope of every state- 
ment in PI does not extend beyond If. Since If 
sets a unique memory location, no statement in 
Qt can reset that memory location. Thus, 
v(Oi ) = v(P). 

We may repeat this same process on Ql; 
continuing in this way we obtain the normal 
form. [] 

We combine the concepts o f  strong con- 
tiguity and normal form in the following 
definition and theorem. 

Let P = P i J l . . . P s _ l J s _ l P s  be a pro- 
gram in normal form. We say that it is in strong 
normal form if each Pi is strongly contiguous. 

Theorem 4.1. (Strong Normal Form 
Theorem) Let P be an optimal program of width 
w. We can transform P into an equivalent pro- 
gram Q such that 
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1. P and Q have the same length, 

2. Q has width at most w, and 

3. Q is in strong normal form. 

Proof. We can apply Lemma 4.1 to P to 
transform it into normal form. We can then ap- 
ply Theorem 3.2 recursively to each Pi in the 
resulting program to make each Pi strongly con- 
tiguous. This satisfies; condition (3). Conditions 
(1) and (2) follow since these two transforma- 
tions do not change tlhe length of a program and 
never increase the width. I-I 

4.2 The Optimality Theorem 

We can now derive a theorem which gives 
a necessary and sufficient condition that a code 
generation algorithm be optimal. 

Let A be a correct code generation algor- 
ithm. Let c(T)  be the cost (number  of  instruc- 
tions) of A (T) for any expression tree T. Let 
~(T)  be the cost of' an optimal program that 
computes T. Then, clearly, A is optimal if and 
only if c (T) -- ~ (T) for all T. 

Theorem 4.2. A is an optimal code genera- 
tion algorithm if and only if 

1. c(T)  = ~(T) for all trees T for which 
there exists an optimal program with no 
stores, and 

2. c(T)  <~ c(S) + c(T/S)  + 1, for each T 
and every subtree S of T. 

Proof. Let T be a tree which has an optimal pi'o- 
gram with k stores. We shall show by induction 
on k that if A is a code generation algorithm that 
satisfies conditions (1) and (2), then A (T) is an 
optimal program. 

Basis. k = O. By condition (1), 
c(T) = ~(T). 

Inductive Step. Suppose the inductive state- 
ment  is true for all trees for which there exists 
an optimal program computing the tree with 
k - 1  or fewer stores. Let T be a tree for which 
an optimal program P exists with k stores. We 
may assume that P is in strong normal form. 

Let P - -  PllP2, w h e r e /  -- m i . - r j i s t h e  
first store instruction in P We may consider P1 
as computing a subtree S of T into register rj, 1 
as storing this value, and P2 as then computing a 
value equivalent to T/S. 

Since P is optimal, we can conclude that PI 
is an optimal program for S and P2 is an optimal 
program for T/S. Therefore, 
~ ( T )  = ~ ( S )  + 1 + ~ ( T / S ) ,  the 1 taking into 
account the cost of the store instruction /. 

Let us now consider A (T),  the program 
produced by A. Since S can be evaluated op- 
timally with no stores (e.g., by P1), condition (1) 
implies that A evaluates S optimally. Since T/S 
can be evaluated optimally with k - - I  stores (e.g., 
by P2), the inductive hypothesis implies that A 
evaluates T/S optimally. From condition (2) we 
have 

c(T)  ~ c(S) + c(T/S)  + 1 
- -O(S)  + ~(T/S) + 1 
= ~ ( r )  

Therefore A evaluates Toptimally. 

Conversely, suppose A is optimal; then (1) 
is immediate. To prove (2), we note that, given 
any program PI for S and any program P2 for 
T/S, we may construct a program Pl IP2 which 

computes  T, where I stores the result of  PI into 
the added memory cell in T/S. Thus, we obtain 
from A(S)  and A(T/S)  a program of cost 
c(S) + c(T/S)  + 1 which computes T; since A 
is optimal, this is no better than c(T),  i.e., 
c(T)  <<, c(S) + c(T/S)  + 1. [] 

5. The Dynamic Programming Algorithm 

This section presents a dynamic program- 
ming algorithm which produces an optimal pro- 
gram to compute a given expressio n tree; the al- 
gorithm can be applied to produce programs for 
any machine, in the class described in Section 2. 
The running time of the algorithm is linear in 
the number  of  vertices in the expression tree be- 
ing compiled. Before stating the algorithm, we 
will need some preliminary results. 

5.1 Covering 

Suppose P - - - - I i . . . l  q is a program with 
no useless instructions that computes an expres- 
s ion tree T, and suppose the last instruction is of  
the form r "-- E. Then the roots of  T a n d  E 
must correspond. In fact, all of the non-leaf ver- 
tices of  E must match corresponding vertices in 
T. Moreover, for each leaf of E which is a regis- 
ter, there is a subtree of  T computed into that 
register. For each leaf of  E which is a memory 
location, there is either a leaf of  T or another 
subtree of  T which has been computed and 
stored in that memory location. 

For example, consider the following pro- 
gram P. 
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r I *-- d 
r I ~ r I + e 

m I , - -  r I 

r I ~ - -  b 

r 1 * -  r I 4 - c  

r I "-- r I * ( ind  m I ) 
m 2 * - -  r 1 

r I *""  a 

r I * -  r I - -  m 2 

P computes  the expression tree in Fig. 4. 

/ 7 \  
° +/\ 

ind  / . \  
b c + / \  

d e 

Fig. 4. Expression tree. 

The last instruction uses register r I and memory  
location m 2. At that time, register r I contains as 
value a subtree consisting of  the single operand 
a; memory  location m 2 contains the subtree 
dominated by the vertex labeled * We say that 
the instruction r*--- r -- m covers the expression 
tree in Fig. 4. Given an instruction covering a 
tree S, we can identify subtrees of  S which must  
be computed  into registers, or into memory,  in 
order that the instruction produce S as its value. 

More formally, we shall define an algor- 
ithm cover(E, S)  which will return true or false 
depending as E covers S. S is taken to be an ex- 
pression tree, and E a tree on the right side of  an 
instruction (see Section 2.2). If  E covers S, cover 
will place into two (initially empty)  sets, regset 
and memset, the subtrees which need to be com- 
puted in registers and memory,  respectively. 

algorithm cover(E, S):  

1. If  E is a single register vertex, add S to reg- 
set and return true. 

2. If  E is a single memory  vertex, add S to 
memset and return true. 

3. If  E has the form 

0 

/ \  
E l  . . .  e s  

then, if the root o f  S is not 0, return false. 
Otherwise, write S as 

0 

/ \  
- . .  s s  

Then,  for all i from 1 to s, recursively in- 
voke cover(El, S i). ; I f  any such invocation 
returns false, then return false. Otherwise, 
return true. [] 

If  E covers S, we shall denote  the resulting 
sets regset and memset by { S  1 . . . . .  S k } and 
{ T l . . . . .  T t }, respectively. 

We say that an instruction r '--  E covers an 
expression tree S if cover(E, S) is true. Note, as 
a boundary condition, that the load instruction 
covers all trees, with k = 0 ,  I = 1 ,  and T I = $. 
By comparison, the store instruction covers all 
trees with k ffi 1, I •0, and S 1 -- $. 

Lemma 5.1. If  P is a progra m that com- 
putes an expression tree T, the last ifistruction of  
P c o v e r s  T. 

Proof Straightforward, from the definition of  
value. [] 

5.2 The Algori thm 

We shall associate with the root of  each 
subtree S of  T an array of  costs c j (S)  for 
0 < ~ < n .  Here, as before, n is the number  of  re- 
gisters in the machine. For all such j and S, 
c j (S)  is an integer or oo; c j (S)  gives the 
minimal num, ber of  instructions needed to com-  
pute S by a program in strong normal form 

Q = QIJI . . . Q s _ l J s _ l Q s  

in which the width of  Qs is at mos t j .  I f j  -- 0, 
we shall interpret this to mean the minimal cost 
of  comput ing  S into a memory  location. Thus, if 
S is a leaf of  T, we set c 0 ( S )  = 0 .  Clearly, 
c j (S )  is a nonincreasing function o f  j for 
1 <~<n .  

The dynamic programming algorithm con- 
sists o f  three phases. In the first phase, we com- 
pute the cj (S) values for all subtrees S and all 
values o f  j, 0 < ~ < n .  In the second phase, we use 
the values of  the cj arrays to traverse T and 
mark a sequence o f  vertices. These vertices 
represent subtrees of  T that must  be computed 
into memory  locations either because there are 
not enough registers available or because certain 
machine instructions require some operands to 
be in memory.  Thus,  after the second phase the 
required number  o f  stores is known, as well as 
which subcomputat ions  o f  T will be stored in 
temporary variables. In the final phase, we gen- 
erate code for the each of  the subcomputat ions.  
The result of  the third phase is a program of  op- 
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t imal length comput ing  T. 

We shall now descr ibe  the  algori thm for a 
part icular  mach ine  with n registers and a fixed 
set of  instruct ions.  As input,  we are given an 
express ion tree T for which we are to cons t ruc t  
an opt imal  program. 

Phase  1. Comput ing  cj (S )  for each sub t ree  S 
of  T. 

Initially, we set cj (S)  - -  ~ for all sub t rees  
S of  T, and all j with 0 ~< j~< n. We then  visit 
e a c h , v e r t e x  o f  T in postorder.* At  each vertex,  
we compu te  the  c j ( S )  array for the  sub t ree  
domina ted  by that  ver tex  as follows: 

a. If  S consists  of  a leaf, set  c o (S)  = 0. 

b. Loop over  all ins t ruct ions  r ' - E  which 
cover  S. For  each such ins t ruct ion qbtain 
from cover(E,  S )  the  sub t rees  S! . . . . .  Sg 
which mus t  be c o m p u t e d  into registers,  
and the subtree, s T t . . . . .  T t which mus t  
be c o m p u t e d  into memory .  Then ,  for each 
pe rmuta t ion  7r o f  {1, 2 ..... k} and for all j ,  
k <~<<, n, compute. 

cj (S )  = m i n ( ~ ) ( S ) ,  i 

~.dCj_i+l (S,r(i) ) + ~.dCo(T i ) + 1 )  
i - I  i=l 

C. 

In the last express ion  the first te rm 
represents  the  ,cost o f  compu t ing  the S i 
sub t rees  into registers in the  order  
S , r ( I ) ' " S , ~ ( g  ), using j registers for the  
first, j - - I  for the  second,  etc. The  second  
term is the  cost  o f  compu t ing  the  subt rees  
o f  S which mus t  be in memory .  The  third 
term,  1, represents  the  cost  o f  execut ing  
the ins t ruct ion r ' - -  E. 

Having done  s~tep b for all ins t ruct ions  
which cover  S, set 

c 0 ( S )  = m i n ( c  0 ( S ) , c  n ( S )  + 1 )  

and,  for 1 ~ j ~ n  

cj (S)  --  rain (c) . (S) ,  c o (S)  + 1 ) 

The  first equat ion represents  a computa t ion  
o f  S into m e m o r y  by initially compu t ing  S 
into a register  r and then  s tor ing it with a 

* A postorder traversal of a tree Twith root r hav- 
ing subtrees T I, T 2, • • • , T k is defined recursive- 
ly as follows: 
!. Traverse each of T l, 7½, ' '  • T k in postorder. 
2. Traverse r. 
See [Kn] or [AHU] for more details. 

s tore instruct ion.  The  second  equat ion 
represents  the  possibil i ty that  we can com-  
pute  S when  j registers are avai lable by 
comput ing  it at some  earl ier  t ime into 
memory ,  and then s imply loading it. []  

By using a pos torder  traversal  the  cj arrays  
are c o m p u t e d  for all sub t rees  of  S before  cj is 
compu ted  for S itself. Af ter  f inishing Phase 1, 
we have cj defined over  the  ent i re  tree T. As is 
usual in dynamic  programming ,  we may  e i ther  
save at each ver tex  a choice  o f  an ins t ruct ion  
and a pe rmuta t ion  ~r which  attain the m i n i m u m  
cost  for each j ,  or make  ano the r  pass over  the  
tree and find an inst ruct ion and pe rmuta t ion  ~r 
which attain the  m i n i m u m  cost  when  we need it. 
In any case, we shall  a s sume  that  an opt imal  in- 
s t ruct ion and pe rmuta t ion  ~r are known for each 
cj (S ) .  In part icular ,  the  opt imal  ins t ruct ions  as- 
sociated with the  two equat ions  in s tep (c), 
above,  are the  store and load ins t ruct ions ,  
respect ively.  Note  that  t h e  opt imal  ins t ruct ion 
associated with cj (S )  covers  S, for all j .  

Phase  2. De te rmin ing  the Subtrees  to be Stored. 

Phase  2 walks over  the  tree T, making  use 
o f  the  c j ( S )  ai rays  c o m p u t e d  in Phase  1 to 
create  a sequence  of  vert ices x I . . . . .  x s of  T. 
These  vert ices are ~be roots o f  those  sub t rees  of  
T which mus t  be c o m p u t e d  into me mory ;  x s is 
the  root of  T. These  sub t rees  are so ordered  that  
for all i, x i never  domina te s  any xj  for j > i. 
Thus  if one  sub t ree  S requires some  o f  its sub -  
trees to be c o m p u t e d  into memory ,  these  sub-  
trees will be evalua ted  before  S is evaluated.  

Phase 2 consis ts  o f  call ing the  a lgor i thm 
mark ( T, n ), def ined  below, to mark  
x l ,  x 2, • • • , Xs_  I. The variable  s, r epresen t ing  
the n u m b e r  o f  vert ices marked ,  is initially set  to 
0. Upon re tu rn ing  from mark,  we inc remen t  s 
and set x s to the root of  T, comple t ing  Phase 2. 

a lgor i thm mark  (S, j ) :  

a. Let  z " -  E be the  opt imal  ins t ruct ion as- 
sociated with cj ( S ) ,  and rr the  opt imal  per-  
mutat ion.  Invoke  cover(E,  S )  to obta in  the  
sub t rees  S I . . . . .  S k and T l . . . . .  T t o f  S. 

b. For  all i f rom 1 to k, recurs ively  invoke  
mark  (S~r(i), j - i +  1 ). 

c. For  "all i f rom 1 to /, r e c u r s i v e l y ' i n v o k e  
mark ( T i, 0 ) .  

d. If  j is 0, and  the ins t ruct ion z " -  E is a 
store,  i nc remen t  s and set x s equal to the  
root o f  S. 

e. Return .  

Not ice  that  the  mark ing  is done  after  all 
the de sc e nde n t  sub t rees  have been  visi ted;  this 
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will ensure that when we compute  a subtree 
starting at one o f  the x i vertices, all subcomputa-  
tions which must  be stored into memory  will 
have been completed. 

Phase 3. Code Generat ion.  

This phase makes a series o f  walks over 
subtrees o f  T, generating code. These walks 
start at the vertices x I . . . . .  x s computed  in 
Phase 2. After each walk except the last, we 
generate a store into a distinct temporary 
memory  location mi, and rewrite vertex x i to 
make it behave like an input variable m i in later 
walks that might encounte r  it. 

The walking and code generation is is done 
by a routine code(S, j ) ,  which generates code for 
a subtree S using the integer parameter  j to con-  
trol the walk. The unspecified routine alloc allo- 
cates registers from the set of  registers which are 
available (initially, all n of  . them),  and the 

rou t ine  free puts a register back in to  the allocat- 
able set. code (S , j )  never requires more than j 
free registers and returns a register a whose 
value upon return is v(S) .  

Thus,  the outermost  flow o f  control in 
Phase 3 is: 

a. Set i = l  and invoke code(x i, n). Let ~ be 
the register returned by this invocation. 
Then,  generate the instruction m i *" ~, in- 
voke f r e e ( a ) ,  and rewrite the vertex x i to 
make it represent memory  location m i. Re- 
peat this step for i = 2 . . . . .  s - -1 .  

b. Finally, invoke code(x s, n);  the register re- 
turned contains the value o f  T. (Recall 
that x s is the root o f  T.) []  

It remains only to describe the algorithm 
code: 

algorithm code (S, j ) :  

a. Let z - -  E be the optimal instruction for 
cj (S), and ~r the optimal permutation. In- 
voke code(E, S )  to obtain the subtrees 
S t . . . . .  S k which must  be computed  into 
registers. 

b. For i from 1 to k, recursively invoke 
code(S~r.(i) , j- i- t-  1 ). Let 61, a 2, • • • , c~ 
be the registers returned. 

c. I f  k is nonzero,  the register  a returned by 
c o d e ( S , j )  must  be one o f  the registers ot i. 
If  k is zero, call the procedure alloc to ob- 
tain an unused register to return. 

d. Issue the instruction a .--- E with registers 
a l ,  a2,  " ' "  , a~ substi tuted for the regis- 
ters used by E. Any memory  locations 
used by E either will b e  leaves o f  T, or will 
have been precomputed by earlier calls to 

e. 

code; in either case, they can be immedi- 
ately substi tuted into E. 

Finally, call free 'on c~ 1 , a 2, , • • • , a~ ex- 
cept a. Return a a s '  the value o f  
code(S , j ) ,  l-q 

5.3 Properties of the Algorithm 
We now address ourselves to the correct- 

ness, optimality, and time complexity of  the 
dynamic programming algorithm. Our proofs are 
necessarily sketchy,  but hopefully suggestive 
enough to enable the mathematically fastidious 
reader to fill in the details. 

It is relatively simple to establish the 
correctness of  the algorithm. To begin, we must  
show that each phase terminates and produces 
the appropriate answer. Showing that the value 
of  the program P produced by Phase 3 is T has 
two major aspects. We must  show that all 
memory  locations used by each instruction in P 
have their values previously computed  and that 
the register allocation routine alloc never runs 
out o f  registers. This last fact can be established 
by showing that code (S , j )  never requires more 
than j nonactive registers, an easy inductive ar- 
gument.  We can then show by induction on T 
that P actually computes  T as its value and has 

-c n ( T) instructions in it. 

Proving that c n (T )  instructions is optimal 
is more subtle, and resembles the proof of  
Theorem 4.2. As is frequently the case in 
mathematics,  it is easier to prove something 
somewhat  stronger. 

Theorem 5.1. c j ( T )  is the minimal cost 
over all strong normal form programs 

P1JI " "  P s _ l J s - l V s  

which compute  T s u c h  that the widila o f  Ps is at 
most  j. 

Proof. By Theorem 2.2 the optimality o f  cn (T)  
over programs in strong normal form implies op- 
timality over all programs. The proof will be by 
induction on the number  of  vertices o f  T. The 
basis is trivial. For the inductive step suppose T 
is some tree such that the theorem is true for all 
trees with a smaller number  o f  vertices. Let P, 
as above, be an optimal strong normal form pro- 
gram comput ing  T, with the width of  Ps less 
than or equal to j. 

W h e n  j > 0, we argue as follows. Since 
Ps is strongly contiguous,  we may write it as 

t ' s  -- . . .  

where Psi through Psk are strongly contiguous 
programs comput ing  into registers the values 
S~r (1) . . . . .  S~r (k) needed by /. Moreover,  each 
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Psi, by itself, has width at most j - - i +  1. 

Each of the earlier code segments Ptlt is 
involved in the computation of some value, ei- 
ther for' use by some Psi or use as one of the 
values T I . . . . .  T t required in memory by in- 
struction L We associate all of the segments ei- 
ther with the associated S,t(i) or with the associ- 
ated T/. This yields k strong normal form pro- 
grams which compute the S,r(i); by induction, 
the cost of  each is at least, cj_i+ I (S~(i)). 
Moreover, there are up to I nontrivial strong nor- 
mal form programs which compute those T i 
values which are not leaves of T. The cost of 
each of these is, again by induction, at least 
co ( Ti ). 

Thus, we have established that the cost of  
this optimal program !is at least 

k / 

1 + ~_,cj_i4. l (S~( i ) )  + ~,,c o (T  i ) 
i=1  i=1  

which, by Phase l, is always greater than or 
equal to cj (T). Thus, cj (T) is minimal. 

The argument when j is 0 is similar. We 
remove the final instruction of P, which must be 
a store in6truction; we then argue as above. [] 

The time complexity of the dynamic pro- 
gramming algorithm is easy to calculate. Phase 1 
requires am time, where m is the number  of  ver- 
tices in T. The constant a depends on the size 
of  the instruction set of the machine, the "ary- 
hess" of the instructions, and the number  of re- 
gisters in the machine. If  a machine has a large 
number  of identical registers, then it may be 
more economical to store only the distinct en- 
tries of the cj arrays at each vertex of T using 
linked lists. Phases 2 and 3 each require time 
proportional to the number  of  vertices in T; the 
time taken to process each vertex is bounded  by 
a constant. Thus, the entire algorithm is O(m) 
in time complexity. 

6. Conclusions 

We have given an algorithm to compile op- 
timal code for expression trees over a broad class 
of  machines. For simple machine architectures 
it is possible (and desirable) to specialize the al- 
gorithm to the specific machine to reduce the 
amount of information that needs to be collected 
by Phase 1 at each vertex of the expression tree 
being compiled. F o r  example, for the register 
machines studied by Sethi and UIIman a single 
integer is sufficient to characterize the difficulty 
of  computing a subtree [SU]. Bruno and Las- 
sagne give a similar characterization for a class 
of stack machines [BL]. We can derive a similar 
algorithm for machines with an indirection 

operator but no register to register operations, 
such as the Honeywell 6000 or IBM 7090 
machines. 

There are a number  of  directions in which 
the dynamic programming algorithm can be gen- 
eralized. Throughout this paper we have used 
program length as the criterion of optimality. 
However, the algorithm will work with any addi- 
tive cost function (i.e., for a program PQ, 
c(PQ) >1 c(P) + c(Q) ), such as execution 
time or number  of stores. The algorithm can 
also be extended to handle instructions which 
compute values directly into memory.  The al- 
gorithm is capable of  taking into account certain 
algebraic properties of operators, e.g., commuta-  
tivity; however, it is not obvious how to extend 
the algorithm efficiently to all common algebraic 
properties, except for particular machine models 
as in [B, BL, SU]. 

We now have a s i t ua t i on  where, over a 
wide range of machines, code generation for 
trees is linear in difficulty, while for even very 
simple machines code generation for dags is 
NP-complete. The question of how many su- 
bexpressions can be tolerated and in what form 
they can appear before the problem becomes 
hard merits further study. The results in [BS, S, 
and WS] are useful in this regard. 
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