
Linear Algorithms to Recognize Interval Graphs and

Test for the Consecutive Ones Property

Kellogg S. Booth t

Department of Electrical Engineering
and Computer sciences

university of california, Berkeley
and

Lawrence Livermore Laboratory

by

George S. Lueker %

Department of Electrical Engineering
and Program in Applied Mathematics

Princeton University

Abstract

A matrix of zeroes and ones is said to

have the consecutive ones property if there
is a permutation of its rows such that the
ones in each column appear consecutively.
This paper develops a data structure which
may be used to test a matrix for the con-
secutive ones property, and produce the
desired permutation of the rows, in linear
time. One application of the consecutive
ones property is in recognizing interval
graphs. A graph is an interval graph if
there exists a i-i correspondence between
its vertices and a set of intervals on
the real line such that two vertices are

adjacent if and only if the corresponding
intervals have a nonempty intersection.

Fulkerson and Gross have characterized
interval graphs as those for which the
clique versus vertex incidence matrix has

the consecutive ones property. In test-
ing this particular matrix for the consec-
utive ones property we may process the
columns in a special order to simDlifv

% Research performed under the auspices
of the Atomic Energy Commission/Energy
Resources Development Agency.

Research supported by a National Science
Foundation Graduate Fellowship and by NSF
Grant GJ-1052.

the algorithm. This yields the interval
graph recognition algorithm which is pre-

sented in section 2; section 3 indicates

how this algorithm may be extended to the
general consecutive ones problem°

A final section of the paper gives a
number of further applications of the ideas
developed in the earlier sections. These
applications include linear algorithms to

a) recognize unit interval graphs,

b) test for the circular ones property,

c) recognize planar graphs,

d) count the number of distinct models
of an interval graph (assuming that

an arithmetic operation can be done
in constant time), and

e) determine whether two interval
graphs are isomorphic.

i. Introduction.

Let A be a matrix all of whose elements
are zeroes and ones. Let n be the larger
dimension of A, and let f be the number
of ones in A. Assume that the matrix is
represented by a set of lists, one for each
column~ specifying which rows contain ones.
Note that the size of such a representation
is 0(n + f); we will say an algorithm which
takes A as input is linear if it runs in
0(n+ f) time. The matrix A is said to
have the consecutive ones property if its
rows may be permuted in such a way as to

255

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800116.803776&domain=pdf&date_stamp=1975-05-05

make the ones in each column consecutive
[FG]. Such matrices are related to prob-
lems in a number of areas, including
archaeology [Ke] and information retrieval
[G]. Tucker [T72] has presented a struc-
ture theorem for these matrices.

One of the most interesting applica-
tions of the consecutive ones property,
however, is in characterizing interval
graphs. A graph G is an ordered pair
(V,E), where V is a set whose elements are
called vertices, and E is a set of unorder-
ed pairs of distinct elements of V , called
edges. Vertices v and w are adjacent if
[v~w] is an element of E. The statement
that v is adjacent to w will sometimes
be abbreviated as

v adj w.

Let n = IVI and e = IEI. G is assumed to
be represented by a set of n lists, one
for each vertex, with the list for a ver-
tex v containing all vertices adjacent to
v. The size of such a representation is
0(n +e); a graph algorithm will be called
~inear if it requires 0(n +e) time. A
graph is said to be an interval graph if
there exists a i-i correspondence between
its vertices and a set of intervals on the
real line such that two vertices are ad-
jacent if and only if the corresponding
intervals have a nonempty intersection.
The set of intervals will be called a model
for G. It appears that Hajos [H] was the
first to introduce interval graphs into the
literature. Since then interval graphs
have been related to problems in various
fields, including biology [B], psychology
[R68, R69], traffic light sequencing [St]~
and ecology [C]; a summary of various
applications is given in [R].

A graph is said to be chordal if every
cycle of length greater than or equal tO
four has a chord; it is known that all in-
terval graphs are chordal [LB]. If we know
that a graph G is chordal, various
authors have provided additional conditions
which make it an interval graph. [LB] show
that G is an interwll graph if and only if
G is chordal and not asteroidal; they
present a test to determine whether G is
asteroidal, and give an 0(n 3) time bound
for this test. From the results of [GH],
we know that G is an interval graph if and
only if in addition to being chordal, it
has a transitively orientable complement G;
they present an algorithm to test whether G
is transitively orientable~ but give no
time bound. (We know of no linear imple-
mentation of their test.) Another algorithm
to test whether a graph is transitively

orientable is given :in [PLE]; again, no

bound is given. The characterization of
greatest value for this paper is due to
Fulkerson and Gross [FG]. A set of vertices
is complete if all of its elements are ad-
jacent to each other; a clique is a maximal
complete set of vertices. Form a 0-i ma-
trix A with a row for each clique and a
column for each vertex; put a one (respec-
tively zero) in each position for which
the corresponding vertex is (respectively,
is not) in the corresponding clique. This
is called the clique versus vertex incidence
matrix of the graph. [FG] show that G is
an interval graph if and only if A has the
consecutive ones property. Equivalently,
G is an interval graph iff its cliques may
be written down in an order such that for
each v, elements of C(v) appear consecu-
tively, where C(v) is the set of all cliques
that contain v. They give a test for this
property which involves the formation of
0(n z) inner products. Although this char-
acterization is sufficient without the
additional restriction that G be chordal,
[FG] found it useful to exploit the chord-
ality of G to find the cliques in poly-
nomial time. Since then [RTL], [BT], and
[L] have shown how to use a technique
called lexicographic breadth first search
(LBFS) to recognize chordal graphs and
determine their cliques in linear time.
(LBFS is closely related to an ordering
scheme used in [CG] and [Se].) Thus all
that remains necessary for the construction
of a linear interval graph recognition algo-
rithm is a linear algorithm to test for the
consecutive ones property of the clique
versus vertex incidence matrix. In the
following section we present such an algo-
rithm. This algorithm processes the columns
of the matrix in a special order which
simplifies matters. In section 3 we indi-
cate how the algorithm may be extended to
handle the general consecutive ones problem.

2. Interval graph recognition.

The method used here to recognize inter-
val graphs is closely related to the method
used in [LEC] to recognize planar graphs;
more will be said about this later. Our
algorithm centers around a structure called
a PQ-tree. This is an ordered tree whose
nodes fall into three classes, namely the
P-nodes, Q-nodes, and C-nodes, such that
the leaves are precisely the c-nodes. The
c-nodes will be in one-to-one correspondence
with the cliques of G, and will henceforth
be identified with them. A lower case
letter p (respectively q), possibly with
superscripts or subscripts, will be used to
refer to a p-node (respectively Q-node);
when the class of a node is not known, a
lower case t is used. The PQ-trees used

256

during the recognition algorithm will sat-
isfy certain additional properties, namely,

that

(2.1) The root is a Q-node.

(2.2) All children of Q-nodes are
P-nodes, and all children of

P-nodes are Q-nodes or C-nodes.

In order to illustrate PQ-trees, certain
conventions will be useful. C-nodes will
be denoted by small dots, P-nodes will be
denoted by circles, and Q-nodes will be de-
noted by squares. Trees will always be

drawn with the root at the top. An ex-
ample of a PQ-tree is shown in Figure 2.1.

Two nodes are said to be siblings if they
have the same parent. Two P-nodes are
immediate siblings if they have the same
parent and are next to each other. A P-
node is endmost if it is leftmost or right-
most among its siblings; otherwise it is
interior. If p and p' are siblings, p-p'
denotes the sequence of siblings beginning
with p and ending with p'

The frontier of a PQ-tree T, written
F(T), is obtained by reading its leaves
from left to right; this coincides with
the usualdefinition of frontier. The
frontier of a node t in a tree, written
F(t), is the frontier of the subtree rooted
at t. Two trees T and T' are said to
be equivalent if one may be obtained from
the other by applying any combination
(possibly none) of the following two class-
es of transformations, called equivalence
transformations:

a) arbitrarily reordering the children

of a P-node.

b) reversing the children of a Q-node.

Since we will often refer to strings of
cliques, it will be convenient to use

capital letters near the end of the alpha-

bet to represent such strings. A clique

order Z is said to be consistent with T
if there is a tree T' such that T' is
equivalent to T and Z = F(T'). The set of
all orders consistent with T is called the
consistent set of T and denoted cs(T).

The universal PQ-tree for a set of k

cliques CI,C2,...,C k is the tree with a

root q which has one child p which in
turn has all k cliques as children. It
follows directly from the definition that
all clique orders are consistent with this

tree. See Figure 2.2.

The recognition algorithm to be
described here works by initially setting
up the universal PQ-tree for all the

cliques and then enforcing, for each v ,

the condition that those cliques which

contain v be consecutive in all elements
of cs(T). This condition is imposed by
executing a routine REDUCE(C(~) which modi-
fies T. Assume the call REDUCE(S) is made,
where S is the set of cliques to be made

consecutive. Node t is said to be empty
if its frontier contains no elements of S
and pertinent if its frontier contains at
least one element of S. Pertinent nodes
are further classified as full or partial,
according as their frontier is composed

entirely or only partly of elements of S.

Several primitive operations will be
useful in describing the transformation

REDUCE. The first primitive operation to
be defined is the function SCAN(p), which
returns a P-node, say p' . First it is
determined whether p has a pertinent
immediate sibling. If it has none, p' is
set equal to p. If p has a pertinent
immediate sibling on its left (respectively
right), the routine sets p' equal to the
leftmost (respectively rightmost) pertin-
ent sibling of p such that all siblings
between p and p' are full. The routine
derives its name from the fact that this

can be done by a simple scan. Note that
if p has two pertinent immediate siblings,
p' is not uniquely determined. This routine

is illustrated in Figure 2.3.

A second primitive operation is
SPLIT(p,p*). Node p is input to this
routine; p* is a new node created by the
routine, which is made an immediate sibling
of p. All full children of p are moved
to p* . It must be determined on which
side of p to place p*; this is done as
follows. If p has a pertinent immediate
sibling on one side, p* is inserted on
that side; otherwise, if p is leftmost
(respectively rightmost), then p* is in-

serted on the left (respectively right) of

p; whenever SPLIT is called, at least one
of these condftions will hold. This
routine is illustrated in Figure 2.4.

TRIM(p) deletes a P-node p from the
tree; it is used to eliminate nodes with
no children, to enforce the condition that
the leaves are c-nodes.

COLLAPSE(p,q,p*) is another primitive
transformation. Whenever this routine is
called, q will have one full endmost child
and one empty endmost child. Node q is
deleted from the tree and its children are
made children of the parent of p; they
are inserted between p and p* in the same
order they appeared as children of q, ex-
cept that they are reversed if necessary
so that the new immediate sibling of p*

257

is full. This is illustrated in Figure 2.5.

The final primitive operation to be
introduced is EXTEND(p,q,p*). Here p and
q are input and p* is the name of a new
node which may be created by the routine.
If p has no full children, the routine
simply returns. Otherwise all full child-
ren of p are taken from p and made child-
ren of a newly created node p*. When this
routine is called, qwill either be null or

have a unique full endmost , say leftmost
(respectively rightmost), child; in the
latter case, p* is made an immediate sib-
ling of this child, on its left (respec-

tively right). If q has the value null
instead of the name of a Q-node, a new Q-

node is created, named q, and made the
child of p; p* becomes the only child of q.
Figure 2.6 illustrates this.

Before actually stating the algorithm,
we need to introduce the idea of a
descending de~ree lexicographic breadth
first search order (DDLBFS-order) of V.
(This is a restricted form of the order
used in [RTL, BT, and[L].) Two vertices

and w are said to agree on a vertex x
if

v adj x ~. w adj x;

otherwise, they disagree on x. If we write
the vertices of V down in some left to

right order, we say it is a DDLBFS-order
if for v and w in V, with v to the left
of w, either

a) v and w agree on all vertices to
the left of v and v has degree
greater than or equal to the degree
of w, or

b) the leftmost vertex to the left
of v on which v and w disagree
is adjacent to 'v.

The statement v is to the left of w will
sometimes be written v < w. It will be
explained later why it is useful to process

the vertices in a DDLBFS-order.

The complete algorithm is given on the
following page. Fi~Jre 2.7 illustrates the
REDUCE routine.

Lemma 2.1. The modifications to T by
REDUCE never add any new consistent orders.

Proof. One easily sees that SPLIT,

COLLAPSE, and EXTEND add no new orders. []

Lemma 2.2. If a call to REDUCE(S) does
not reject, then after the call any order
in cs(T) has all elements of S consecutive.

Proof sketch. One can show that after

the call some node q in T has a consecu-

tive sequence of children whose children in
turn comprise precisely S.

Lemma 2.3. Each time the call
REDUCE(S) is executed, the following two
conditions are satisfied:

(2.3) S does not properly contain the
frontier of any Q-node.

(2.4) There exists a node t such that
all partial Q-nodes are ances-
tors of t.

Proof sketch. If (2.3) were violated,
we could show that there were two vertices
v and w such that v < w in the DDLBFS-
order, but C(v) cC(w). This is easily
shown to contradict the definition of a
DDLBFS-order.

If (2.4) were violated, we could produce
a contradiction of the chordality of G,
using a theorem in [RTL, BT, and L];
the details are omitted.

Lemma 2.4. Suppose that before some

call to REDUCE(S) in step 34, cs(T) con-
tains some clique order Z which has ele-

ments of S consecutive. Then the call
does not reject, and after the call Z is
still in cs(T).

Proof sketch. If there is a Q-node
whose frontier contains precisely S, one
sees by inspection that REDUCE does not
change cs!T) ; thus Z is not eliminated.
Now assume there is no Q-node whose frontier
contains precisely S. Then condition
(2.3) shows that the labelling of "full"
P-nodes is correct. Condition (2.4), to-
gether with the fact that S may be made
consecutive in the frontier of a tree
equivalent to T, may be used to show that

COUNT eventually equals IS[and the routine
terminates successfully.

To see that Z is not eliminated from

cs(T), we can examine each SPLIT, COLLAPSE,
and EXTEND and conclude that they eliminate
only orders in which not all elements of S
are consecutive.

Theorem 2.1. Algorithm 1 correctly
recognizes interval graphs, and can be
implemented to run in 0(n+e) time.

Proof sketch. Correctness follows from
Lemmas 2.1 through 2.4. To implement the
test to run in linear time, note that the
test for chordality and determination of
the sets C(V) can be done in linear time
using the methods of [RTL, BT, and L];

2 5 8

Algorithm 1. Interval Graph Recognition.

REDUCE : pr_oc~ (S) ;

i. for each P-node p with all of its children in S, label p "full";
2. if any endmost P-node has a child in S
3. then

4. q ~ the mos t recently created Q-node which is a parent
of an endmost P-node with a child in S;

5. if q has a full endmost child
6. then let p' be a full endmost child of q
7. else let p' be an endmost child of q such that p' has

a child in S;
end

8. else p' ~ any P-node with a child in S;
9. p ~ SCAN(p'); COUNT e 0; q ~ null;

i0. do forever

LOOP:
ii. set p' ~ SCAN(p) and add to COUNT the number of children

in S of the nodes in the sequence p-p';
12. ~if COUNT = ISI th~en .~ --t° OUT;
13. if p' is not endmost then reject;

' then reject 14. -~-if p is not full and not equal to p ~ ;
15. SPLIT (p,p*) ;
16. if q ~ null th~en COLLAPSE(p,q,p*);
17. q ~ parent(p') ;
18. if q is the root then reject;
19. if p has no children then TRIM(p);
20. if p* has no children then. TRIM(p*);
21. p ~ parent(q);

end;

22. OUT: if p = p'
23. then EXTEND(p,q,p*)

else

24. SPLIT (p,p*) ;
25. if q ~ null then COLLAPSE(p,q,p*);
26. SPLIT(p',p'*) ;
27. if p has no chl-Uren th~en T'RIM(p);
28. ~ p* has no children th~en TRIM(p*);
29. i ff p' has no children then TRIM(p');
30. if p'* has no children thegn TRIM(p'*);

end;
enid pr~ocedure~ REDUCE;

31. place the vertices of G into a DDLBFS-order Vl,V2,...,Vn;
32. if G is not chordal then reject;
33. f~rm the universal PQ-tree for the cliques of G;
34. fo_~r i.~ 1 to n ~ REDUCE(C(vi));
35. ~ rejection ever occurred in steps 32 or 34
36. then write("G is not an interval graph")
37. else ~ (" G is an inter~al graph");

end.

259

the DDLBFS-order can be obtained by a
slight modification of the techniques used

there.

The linear implementation of REDUCE is
mainly a matter of deciding on a good data
structure for T. In step 4 we need to
decide which of several Q-nodes was most
recently created. This can be done by
keeping a count of the number of Q-nodes

created. When a new Q-node q is created
we attach to q an inteqer telling the
total number of Q-nodes created so far;
this number is called the creation number
of q. To find which of several Q-nodes
was most recently created, we merely pick
the one with the highest creation number.

The main difficulties, however, arise
in COLLAPSE. This operation may cause the
children of the deleted Q-node to be re-
versed; moreover, it changes the parent of
each. To make these changes easy to
handle, we keep the children of Q-nodes in
a modified form of doubly-linked list in
which each node has a link to the sibling
on its left and right, but the issue of

Which is which is left open; also, we
only require the parent field of a P-node
to be valid when the node is endmost. This
data structure contains all the information

that Algorithm 1 needs, and permits easy
modification to reflect the changes made
during a call to REDUCE. In fact, the
time for a single call is 0(l+k+ Ic(vi)I) ,
where k is the number of Q-nodes destroyed

in the call. Then since the total number
of Q-nodes ever created is 0(n), the total
time in all calls is 0(n + e).

3. The general consecutive ones problem.

When constructing a PQ-tree to test a
clique versus vertex matrix for the con-
secutive ones property, we were able to
process the vertices in a special order
which guaranteed certain conditions about
how the elements of C(V) could be distri-
buted over the frontier of T, as indicat-
ed in Lemma 2.3. To solve the general
consecutive ones problem, we wish to
eliminate the need for such conditions,
by developing a more general REDUCE algo-
rithm. In this section we sketch the
methods whereby this can be done.

Suppose we are trying to perform the

operation REDUCE(S)~ that i@, to modify T
in such a way as to eliminate from cs(T)

orders in which elements of S do not
appear consecutively. Condition (2.3) can

be violated since some Q-node may have a
frontier which is properly contained in S.
Therefore the simple technique used in
Algorithm 1 to find full nodes is no longer

adequate. However, we can determine which
nodes are full by first labelling all leaves

in S "full" and then propagating the full
labels up the tree whenever some node has
all of its children full. This could be
quite time-consuming if the labels had to
be propagated up a long path of nodes, each
of which had only a single child. It is
easy to eliminate this possibility, however.
We simply enforce the condition that each
Q-node must have at least two grandchildren.

The tree is then close enough to being
binary that the work involved in finding

all full nodes can be 0(IS1).

A more difficult problem arises out of
the fact that condition (2.4) may not be
satisfied. Let us say a node is critical
if it is partial but has no partial
children. It is not hard to see that if S
can be made consecutive in the frontier of
T, then T has zero, one, or two critical
nodes. The rest of this discussion treats
the case in which there are two critical

nodes, say t I and t2; this is the hardest

case. Unfortunately it is not eBsy to

determine which nodes are t I and t 2.

Creation numbers were used to solve the
corresponding problem in Algorithm i, but
this trick is no longer useful here, at

least partly because a Q-node is not
necessarily generated after its ancestors.
One step towards a solution is the observa-

tion that t I and t 2 have some but not all

of their children full. Other nodes will
share this property, so the following algo-
rithm maybe used to eliminate these other

nodes as candidates.

i. Place all nodes with some but not
all children full on a queue. Also
place them on a list L.

2. Repeat step 3 until the queue con-
tains only one element.

3. Remove a node t from the queue.
If its parent t' is in L, remove t'
from L. If t' has never been on
the queue, add t' to the queue.

If S can be made consecutive, the above
algorithm terminates with two elements left

in L. These are t I and t 2.

Once t. and t 2 are known, we modify T
I

by performlng two sets of iterations simi-
lar to the LOOP of Algorithm i, one begin-

ning at t I and one beginning at t 2. We

must know, however, when to stop these
iterations and possibly perform an opera-
tion similar to the EXTEND of Algorithm I.

260

This is determined by propagating counts of
descendants in S up the partial nodes
until some single node, or consecutive
sequence of P-node siblings, is found which
accounts for all of S. If all'the ideas
sketched here are implemented carefully,
we obtain the following.

Theorem 3.1. The general consecutive
ones problem may be answered in 0(n + f)

time.

4. Further applications of PQ-trees.

PQ-trees have applications to a number

of other problems, which will be briefly
described here. First, we will discuss
three fast recognition algorithms.

A graph G is a unit inverval graph if
there is a model for G in which all inter-
vals have unit length. The class of unit
interval graphs is the same as the class of
indifference graph~; they are discussed in
[R68 and R69]. Let A be the matrix formed

by taking the adjacency matrix of G
and making all entries along the main
diagonal one. It is shown in [R68] that G
is a unit interval graph if and only if A
has the consecutive ones property. Thus
we immediately obtain

Theorem 4.1. Unit interval graphs may
be recognized in linear time°

A matrix is said to have the circular
ones property if the rows can be permuted
so that the ones in each column appear con-
secutively if we allow them to wrap around
from the bottom to the top. Tucker IT71]
discusses these in connection with circu-
lar-arc graphs; he proposes the following
method for testing a matrix A for the
circular ones property. Complement (i.e.,
interchange zeroes and ones) all columns

in A which have a one in the first row;
call the result A' Then A has the cir-
cular ones property if and only if A' has
the consecutive ones property. Let f' be
the number of ones in A' . using the
0(n + f') test for the consecutive ones
property, we obtain an 0(n 2) test for the
circular ones property. We can do better,
however.

Theorem 4.2. The circular ones proper-
ty can be decided in 0(n + f) time.

Proof. In the above complementing
process, instead of using the first row,
we use a row which has a minimum number of
ones. Then one easily sees that f' < 2f,
so that we have an 0(n + f) tesL for ~he
circular ones property.

A third application is a linear test

for planarity of a graph.

Theorem 4.3. The planarity test of
[LEC] may be implemented to run in linear
time.

Proof sketch. The heart of the algori-
thm is the REDUCE operation. The fast
techniques for performing this operation,
as sketched in section 3, can~be used in

&~inear implementation.

It should be noted that another linear

algorithm to recognize planar graphs has
been published by Hopcroft and Tarjan [HT].
Tarjan [Ta] has also given an 0(n 2) imple-
mentation of the [LEC] algorithm; Even [E]
has claimed that the [LEC] algorithm could
be implemented to run in linear time, but
this has not been published to our
knowledge.

PQ-trees also have application to a
number of problems other than recognition

algorithms. The first of these is an
efficient answer to a question discussed in
~e]. Once a matrix is known to have the

consecutive ones property, we may wish to
count the number of permutations of its
rows which cause the ones in each column to
be consecutive. The following theorem
gives the answer.

Theorem 4.4. Suppose A has the con-
secutive ones property and'the PQ-tree T
is constructed by the recognition algorithm.
Then the number of permutations of the rows
which make the ones of A consecutive in all
columns may be found by taking the product
of the following factors over all the P-and

Q-nodes t of T:

a) If t is a P-node, let the
corresponding factor be the factor-

ial of the number of its children.

b) If t is a Q-node, let the corres-
ponding factor be one if it has
only one child, and two otherwise.

The proof is easy and is omitted.

If A is the clique versus vertex in~

cidence matrix of G, then the product
calculated in the above theorem is also the
number of models of G which differ on
strict following, in the sense of [R].

A final application of PQ-trees to be
given here is in determining isomorphism
of interval graphs. First suppose we drop
conditions (2.1) and (2.2) and instead
require that all P-nodes have at least two
children and all Q-nodes have at least

261

three children. Call such a tree proper.
Given a PQ-tree, it is easy to find a prop-
er tree with the same consistent set. If
T and T' are proper~ it may be shown that
cs(T) =cs(T') holds if and only if T and
T' are equivalent. Now suppose T is the
PQ-tree constructed for the graph G.
Place T into proper form. Let the charac-
teristic node of a set S be the node of
minimum height whose frontier contains S,
where the height of a node t is the maxi-
mum distance from t to a leaf in the
frontier of t. Associate each vertex of
G with the characteristic node of C(v).
It is possible to assign a label to each
node t which gives sufficient information
about the sets C(v), for all vertices
associated with t~ that the graph could
be reconstructed. An algorithm similar
to Example 3.2 of [AH~] may then be used
to decide whether two such labelled trees
are equivalent. This gives the following.

Theorem 4.5. Interval graph isomorph-
ism may be decided in linear time.

This is particularly interesting since
for two of the best known classes of graphs
which contain the interval graphs, namely
the chordal graphs [LB] and the graphs
whose complement is transitively orient-
able [GH], isomorphism is not much easier
than for arbitrary graphs~ as we can show.

Theorem 4.6. Arbitrary graph isomor-
phism is polynomially reducible to chordal
graph isomorphism~ and to transitively
orientable graph isomorphism. (Note that
the latter implies that arbitrary graph
isomorphism is polynomially reducible to
isomorphism of graphs whose complement is
transitively orientable. For more infor-
mation about the notion of polynomial
reducibility~ see [Ka].)

Proof sketch. We construct a polynomial
mapping M from a graph G to a graph M(G)
such that M(G) is chordal (respectively
transitively orientable) ~ and G can be
recovered from M(G) up to isomorphism.
Then the question of whether G 1 is isomor-

phic to G 2 is reduced to the question of

whether M(G I) is isomorphic to M(G2).

For the reduction to chordal graph
isomorphism, let M(G) = (V'~E')~ where

V' = VU E, and

E' = {[v,w}Iv~w and v,w~ V } U

[[v,u]Iv ¢ V, u ~ E, and v is

incident: to u}.

M(G) is readily seen to be chordal~ and if
G has at least four vertices~ we can re-
cover G from M(G) up to isomorphism.

For the reduction to transitively
orientable graph isomorphism~ create two
new vertices x and y ~ and let

V' = VU E U [x,y}, and

E' = {[v)u]Iv e V, u ¢ E~ and v is

incident to u] U

{[y,v}Iv~ v} u {{x,y}]

M(G) is transitively orientable. Also~ G
can be reconstructed from M(G) up to
isomorphism.

5. Conclusion.

This paper gives a variety of applica-
tions of a data structure called a PQ-tree;
it also presents a new application of lexi-
cographic breadth first search. These
applications include linear algorithms to
recognize interval graphs, test for the
consecutive ones property, and perform a
number of related tasks. The results are
presented here in capsule form; later
papers will give more details.

Acknowledgement.

The authors are very grateful to
Richard Karp~ Robert Tarjan~ and Jeffrey
Ullman for their many helpful comments and
suggestions.

References.

[ANN]

tB]

[BT]

[c]

[CG]

[E]

Aho, A.V., Hopcroft, J.E. , and
Ullman, J.D. , Th___~e Design and AnalysiS,
o~f Computer Algorithms~ Addison-
Wesley, Reading~ Mass., 1974.

Benzer~ S., "On the Topology of the
Genetic Fine Structure," Proc. Nat.
Acad. Sci. U.S.A. ~ 45 (1959), pp.
1607-1620.

Booth~ K.S. ~ and Tarjan, R.E.
"Layered Breadth-First Search and
Chordal Graphs~" draft.

Cohen, J. , "Interval Graphs and Food
Webs," The RAND corporation~
D-17696-PR.

coffman, E.G. , Jr. ~ and Graham~ R.L.
"optimal Scheduling for Two-Process-
or Systems~" Acta Informatica~
1 (1972)) pp. 200-213.

Even, S., private communication to
R. Tarjan.

262

[FG]

[G]

[GH]

[HI

[HT]

[Ka]

[Ke]

[L]

[LB]

[LEC]

Fulkerson, D.R., and Gross, O.A., [PLE]
"Incidence Matrices and Interval
Graphs," Pac. J. Math., 15 (1965),
pp. 835-855.

Ghosh, S.P., "On the Theory of con-
secutive Storage of Relevant JR]
Records," Information Sciences, 6
(1973), pp. 1-9.

Gilmore, P.C. ~ and Hoffman, A.J. ~
"A Characterization of Comparability
Graphs and of Interval Graphs," [R68]
Can. J. Math., 16 (1964), pp. 539-
548.

Hajos, G., "~ber eine Art von [R69]
Graphen," Internationale Math.
Nachrichten, ii (1957), p. 65.

Hopcroft, J.E., and Tarjan, R.E.,
"Efficient Planarity Testing," [RTL]
~. ACM, 21 (1974), pp. 549-568.

Karp, RoM., "Reducibility among
Combinatorial Problems," in ComDlex- [Se]
ity o__ff Computer Computations, R. E.
Miller and J.W. Thatcher, eds.,
Plenum Press, New York, 1972,
pp. 85-103.

Kendall, D.G., "Some Problems and [St]
Methods in Statistical Archaeology,"
World Archaeology, 1 (1969), pp.
68-76.

Lueker, G.S., "structured Breadth [Ta]
First Search and Chordal Graphs,"
Technical Report 158, Dept. of Elec.
Eng., Computer Science Lab., Prince-
ton University, August 1974.

[T71]
Lekkerkerker, C.G., and Boland, J.
Ch., "Representation of a'Finite
Graph by a Set of Intervals on the
Real Line," Fund. Math., 51 (1962), [T72]
pp. 45-64.

Lempel, A., Even, S., and Cederbaum,
I., "An Algorithm for Planarity Test-
ing of Graphs," Theory o_~f Graphs:
International Symposium: Rome, July~
1966, P. Rosenstiehl, ed., Gordon
and Breach, New York, 1967, pp.
215-232.

Pnueli, A., Lempel, A., and Even, S.,
"Transitive Orientation of Graphs
and Identification of Permutation
Graphs," Can. J. Math., 23 (1971),
pp. 160-175.

Roberts, F.S., Discrete Mathematical
Models, with Application s to Social,
Biological and Environmental
Problems, Prentice-Hall, Englewood
cliffs, N.J., to appear.

Roberts, F.S., Representations o__ff
Indifference Relations) Ph.D. Thesis~
Stanford University, 1968.

Roberts, F.S., "Indifference Graphs,"
in Proof Techniques i__nn Graph Theory,
F. Harary, ed., Academic Press~ New
York, 1969, pp. 139-146.

Rose, D.J., Tarjan, R.E. ~ and Lueker~
G.S., "Algorithmic Aspects of Vertex
Elimination on Graphs," draft.

Sethi, R. ~ "Algorithms for Nonpre-
emptive Scheduling on TWO Processors,"
Computer Science Department,
Pennsylvania State University, un-
published manuscript, 1974.

Stoffers, K.E., "Scheduling of
Traffic Lights--a New Approach,"
Transportation Research , 2 (1968),
pp. 199-234.

Tarjan, R.E., "Implementation of an
Efficient Algorithm for Planarity
Testing of Graphs," Dec. 1969,
unphblished manuscript.

Tucker, A., "Matrix Characterizations
of Circular-Arc Graphs," Pa____c. ~.
Math., 39 (1971), pp. 535-545.

Tucker, A., "A Structure Theorem for
the Consecutive l's Property," ~.
Comb. Theory, 12(B) (1972), pp.
153-162.

263

Figure 2.1. A PQ-tree.

Figure 2.3. Illustration of the function

SCAN. SCAN(P3) returns the value P2 or P5"
Figure 2.2. A
universal PQ-tree. In this and subsequent figures, elements of

S are circled.

C 1 C 2 C 3 C 4 C 5 C 6 C 7

Before

C 1 C 3 C 5 C 2 C 4 C 6 C 7

After

Figure 2.4. Example of the effect of SPLIT(p,p*).

C 2 C 3 C 4 C 5 C 6 C 7

C 1 C 8 C 5 C 6 C 7 C 4 C 2 C 3 C 9

Before After

Figure 2.5. Example of the effect of COLLAPSE(p~q~p*).

C 3 C 4 C 5 C 3 C 4 C 5 C 1 C 6

C 1 C 2 C 3 C 4

(q=nu~!ll }

C 2 C 4

C 1 C 3

Before After Before

Figure 2.6. Two examples of the effect of EXTEND(p,q~p*).

After

264

56 Cl C2 C3 ~ C14 C15 C16

U C6 C7 ~ C13

C 4 C 5 C 8 C 9 CI0 CII

a) Before the call to REDUCE.

C 1 C 2 C 3

A
C12 C 4 C 5 C 8 C 9 Cll Cl0 C12

b) After one pass through LOOP.

C 6 C 7 C13 C12 C10 CII C 8 C 9

C14 C15 C16

E C

i
C 4 C 5 C 4 C 5

c) After two passes through LOOP. d) At the end of REDUCE.

Figure 2.7° Illustration of REDUCE(S)o A tree is shown at various times during the
execution of the routine.

265

