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Abstract 

A matrix of zeroes and ones is said to 

have the consecutive ones property if there 
is a permutation of its rows such that the 
ones in each column appear consecutively. 
This paper develops a data structure which 
may be used to test a matrix for the con- 
secutive ones property, and produce the 
desired permutation of the rows, in linear 
time. One application of the consecutive 
ones property is in recognizing interval 
graphs. A graph is an interval graph if 
there exists a i-i correspondence between 
its vertices and a set of intervals on 
the real line such that two vertices are 

adjacent if and only if the corresponding 
intervals have a nonempty intersection. 

Fulkerson and Gross have characterized 
interval graphs as those for which the 
clique versus vertex incidence matrix has 

the consecutive ones property. In test- 
ing this particular matrix for the consec- 
utive ones property we may process the 
columns in a special order to simDlifv 
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the algorithm. This yields the interval 
graph recognition algorithm which is pre- 

sented in section 2; section 3 indicates 

how this algorithm may be extended to the 
general consecutive ones problem° 

A final section of the paper gives a 
number of further applications of the ideas 
developed in the earlier sections. These 
applications include linear algorithms to 

a) recognize unit interval graphs, 

b) test for the circular ones property, 

c) recognize planar graphs, 

d) count the number of distinct models 
of an interval graph (assuming that 

an arithmetic operation can be done 
in constant time), and 

e) determine whether two interval 
graphs are isomorphic. 

i. Introduction. 

Let A be a matrix all of whose elements 
are zeroes and ones. Let n be the larger 
dimension of A, and let f be the number 
of ones in A. Assume that the matrix is 
represented by a set of lists, one for each 
column~ specifying which rows contain ones. 
Note that the size of such a representation 
is 0(n + f); we will say an algorithm which 
takes A as input is linear if it runs in 
0(n+ f) time. The matrix A is said to 
have the consecutive ones property if its 
rows may be permuted in such a way as to 
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make the ones in each column consecutive 
[FG]. Such matrices are related to prob- 
lems in a number of areas, including 
archaeology [Ke] and information retrieval 
[G]. Tucker [T72] has presented a struc- 
ture theorem for these matrices. 

One of the most interesting applica- 
tions of the consecutive ones property, 
however, is in characterizing interval 
graphs. A graph G is an ordered pair 
(V,E), where V is a set whose elements are 
called vertices, and E is a set of unorder- 
ed pairs of distinct elements of V , called 
edges. Vertices v and w are adjacent if 
[v~w] is an element of E. The statement 
that v is adjacent to w will sometimes 
be abbreviated as 

v adj w. 

Let n = IVI and e = IEI. G is assumed to 
be represented by a set of n lists, one 
for each vertex, with the list for a ver- 
tex v containing all vertices adjacent to 
v. The size of such a representation is 
0(n +e); a graph algorithm will be called 
~inear if it requires 0(n +e) time. A 
graph is said to be an interval graph if 
there exists a i-i correspondence between 
its vertices and a set of intervals on the 
real line such that two vertices are ad- 
jacent if and only if the corresponding 
intervals have a nonempty intersection. 
The set of intervals will be called a model 
for G. It appears that Hajos [H] was the 
first to introduce interval graphs into the 
literature. Since then interval graphs 
have been related to problems in various 
fields, including biology [B], psychology 
[R68, R69], traffic light sequencing [St]~ 
and ecology [C]; a summary of various 
applications is given in [R]. 

A graph is said to be chordal if every 
cycle of length greater than or equal tO 
four has a chord; it is known that all in- 
terval graphs are chordal [LB]. If we know 
that a graph G is chordal, various 
authors have provided additional conditions 
which make it an interval graph. [LB] show 
that G is an interwll graph if and only if 
G is chordal and not asteroidal; they 
present a test to determine whether G is 
asteroidal, and give an 0(n 3) time bound 
for this test. From the results of [GH], 
we know that G is an interval graph if and 
only if in addition to being chordal, it 
has a transitively orientable complement G; 
they present an algorithm to test whether G 
is transitively orientable~ but give no 
time bound. (We know of no linear imple- 
mentation of their test.) Another algorithm 
to test whether a graph is transitively 

orientable is given :in [PLE]; again, no 

bound is given. The characterization of 
greatest value for this paper is due to 
Fulkerson and Gross [FG]. A set of vertices 
is complete if all of its elements are ad- 
jacent to each other; a clique is a maximal 
complete set of vertices. Form a 0-i ma- 
trix A with a row for each clique and a 
column for each vertex; put a one (respec- 
tively zero) in each position for which 
the corresponding vertex is (respectively, 
is not) in the corresponding clique. This 
is called the clique versus vertex incidence 
matrix of the graph. [FG] show that G is 
an interval graph if and only if A has the 
consecutive ones property. Equivalently, 
G is an interval graph iff its cliques may 
be written down in an order such that for 
each v, elements of C(v) appear consecu- 
tively, where C(v) is the set of all cliques 
that contain v. They give a test for this 
property which involves the formation of 
0(n z) inner products. Although this char- 
acterization is sufficient without the 
additional restriction that G be chordal, 
[FG] found it useful to exploit the chord- 
ality of G to find the cliques in poly- 
nomial time. Since then [RTL], [BT], and 
[L] have shown how to use a technique 
called lexicographic breadth first search 
(LBFS) to recognize chordal graphs and 
determine their cliques in linear time. 
(LBFS is closely related to an ordering 
scheme used in [CG] and [Se].) Thus all 
that remains necessary for the construction 
of a linear interval graph recognition algo- 
rithm is a linear algorithm to test for the 
consecutive ones property of the clique 
versus vertex incidence matrix. In the 
following section we present such an algo- 
rithm. This algorithm processes the columns 
of the matrix in a special order which 
simplifies matters. In section 3 we indi- 
cate how the algorithm may be extended to 
handle the general consecutive ones problem. 

2. Interval graph recognition. 

The method used here to recognize inter- 
val graphs is closely related to the method 
used in [LEC] to recognize planar graphs; 
more will be said about this later. Our 
algorithm centers around a structure called 
a PQ-tree. This is an ordered tree whose 
nodes fall into three classes, namely the 
P-nodes, Q-nodes, and C-nodes, such that 
the leaves are precisely the c-nodes. The 
c-nodes will be in one-to-one correspondence 
with the cliques of G, and will henceforth 
be identified with them. A lower case 
letter p (respectively q), possibly with 
superscripts or subscripts, will be used to 
refer to a p-node (respectively Q-node); 
when the class of a node is not known, a 
lower case t is used. The PQ-trees used 
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during the recognition algorithm will sat- 
isfy certain additional properties, namely, 

that 

(2.1) The root is a Q-node. 

(2.2) All children of Q-nodes are 
P-nodes, and all children of 

P-nodes are Q-nodes or C-nodes. 

In order to illustrate PQ-trees, certain 
conventions will be useful. C-nodes will 
be denoted by small dots, P-nodes will be 
denoted by circles, and Q-nodes will be de- 
noted by squares. Trees will always be 

drawn with the root at the top. An ex- 
ample of a PQ-tree is shown in Figure 2.1. 

Two nodes are said to be siblings if they 
have the same parent. Two P-nodes are 
immediate siblings if they have the same 
parent and are next to each other. A P- 
node is endmost if it is leftmost or right- 
most among its siblings; otherwise it is 
interior. If p and p' are siblings, p-p' 
denotes the sequence of siblings beginning 
with p and ending with p' 

The frontier of a PQ-tree T, written 
F(T), is obtained by reading its leaves 
from left to right; this coincides with 
the usualdefinition of frontier. The 
frontier of a node t in a tree, written 
F(t), is the frontier of the subtree rooted 
at t. Two trees T and T' are said to 
be equivalent if one may be obtained from 
the other by applying any combination 
(possibly none) of the following two class- 
es of transformations, called equivalence 
transformations: 

a) arbitrarily reordering the children 

of a P-node. 

b) reversing the children of a Q-node. 

Since we will often refer to strings of 
cliques, it will be convenient to use 

capital letters near the end of the alpha- 

bet to represent such strings. A clique 

order Z is said to be consistent with T 
if there is a tree T' such that T' is 
equivalent to T and Z = F(T'). The set of 
all orders consistent with T is called the 
consistent set of T and denoted cs(T). 

The universal PQ-tree for a set of k 

cliques CI,C2,...,C k is the tree with a 

root q which has one child p which in 
turn has all k cliques as children. It 
follows directly from the definition that 
all clique orders are consistent with this 

tree. See Figure 2.2. 

The recognition algorithm to be 
described here works by initially setting 
up the universal PQ-tree for all the 

cliques and then enforcing, for each v , 

the condition that those cliques which 

contain v be consecutive in all elements 
of cs(T). This condition is imposed by 
executing a routine REDUCE(C(~) which modi- 
fies T. Assume the call REDUCE(S) is made, 
where S is the set of cliques to be made 

consecutive. Node t is said to be empty 
if its frontier contains no elements of S 
and pertinent if its frontier contains at 
least one element of S. Pertinent nodes 
are further classified as full or partial, 
according as their frontier is composed 

entirely or only partly of elements of S. 

Several primitive operations will be 
useful in describing the transformation 

REDUCE. The first primitive operation to 
be defined is the function SCAN(p), which 
returns a P-node, say p' . First it is 
determined whether p has a pertinent 
immediate sibling. If it has none, p' is 
set equal to p. If p has a pertinent 
immediate sibling on its left (respectively 
right), the routine sets p' equal to the 
leftmost (respectively rightmost) pertin- 
ent sibling of p such that all siblings 
between p and p' are full. The routine 
derives its name from the fact that this 

can be done by a simple scan. Note that 
if p has two pertinent immediate siblings, 
p' is not uniquely determined. This routine 

is illustrated in Figure 2.3. 

A second primitive operation is 
SPLIT(p,p*). Node p is input to this 
routine; p* is a new node created by the 
routine, which is made an immediate sibling 
of p. All full children of p are moved 
to p* . It must be determined on which 
side of p to place p*; this is done as 
follows. If p has a pertinent immediate 
sibling on one side, p* is inserted on 
that side; otherwise, if p is leftmost 
(respectively rightmost), then p* is in- 

serted on the left (respectively right) of 

p; whenever SPLIT is called, at least one 
of these condftions will hold. This 
routine is illustrated in Figure 2.4. 

TRIM(p) deletes a P-node p from the 
tree; it is used to eliminate nodes with 
no children, to enforce the condition that 
the leaves are c-nodes. 

COLLAPSE(p,q,p*) is another primitive 
transformation. Whenever this routine is 
called, q will have one full endmost child 
and one empty endmost child. Node q is 
deleted from the tree and its children are 
made children of the parent of p; they 
are inserted between p and p* in the same 
order they appeared as children of q, ex- 
cept that they are reversed if necessary 
so that the new immediate sibling of p* 
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is full. This is illustrated in Figure 2.5. 

The final primitive operation to be 
introduced is EXTEND(p,q,p*). Here p and 
q are input and p* is the name of a new 
node which may be created by the routine. 
If p has no full children, the routine 
simply returns. Otherwise all full child- 
ren of p are taken from p and made child- 
ren of a newly created node p*. When this 
routine is called, qwill either be null or 

have a unique full endmost , say leftmost 
(respectively rightmost), child; in the 
latter case, p* is made an immediate sib- 
ling of this child, on its left (respec- 

tively right). If q has the value null 
instead of the name of a Q-node, a new Q- 

node is created, named q, and made the 
child of p; p* becomes the only child of q. 
Figure 2.6 illustrates this. 

Before actually stating the algorithm, 
we need to introduce the idea of a 
descending de~ree lexicographic breadth 
first search order (DDLBFS-order) of V. 
(This is a restricted form of the order 
used in [RTL, BT, and[ L].) Two vertices 

and w are said to agree on a vertex x 
if 

v adj x ~. w adj x; 

otherwise, they disagree on x. If we write 
the vertices of V down in some left to 

right order, we say it is a DDLBFS-order 
if for v and w in V, with v to the left 
of w, either 

a) v and w agree on all vertices to 
the left of v and v has degree 
greater than or equal to the degree 
of w, or 

b) the leftmost vertex to the left 
of v on which v and w disagree 
is adjacent to 'v. 

The statement v is to the left of w will 
sometimes be written v < w. It will be 
explained later why it is useful to process 

the vertices in a DDLBFS-order. 

The complete algorithm is given on the 
following page. Fi~Jre 2.7 illustrates the 
REDUCE routine. 

Lemma 2.1. The modifications to T by 
REDUCE never add any new consistent orders. 

Proof. One easily sees that SPLIT, 

COLLAPSE, and EXTEND add no new orders. [] 

Lemma 2.2. If a call to REDUCE(S) does 
not reject, then after the call any order 
in cs(T) has all elements of S consecutive. 

Proof sketch. One can show that after 

the call some node q in T has a consecu- 

tive sequence of children whose children in 
turn comprise precisely S. 

Lemma 2.3. Each time the call 
REDUCE(S) is executed, the following two 
conditions are satisfied: 

(2.3) S does not properly contain the 
frontier of any Q-node. 

(2.4) There exists a node t such that 
all partial Q-nodes are ances- 
tors of t. 

Proof sketch. If (2.3) were violated, 
we could show that there were two vertices 
v and w such that v < w in the DDLBFS- 
order, but C(v) cC(w). This is easily 
shown to contradict the definition of a 
DDLBFS-order. 

If (2.4) were violated, we could produce 
a contradiction of the chordality of G, 
using a theorem in [RTL, BT, and L]; 
the details are omitted. 

Lemma 2.4. Suppose that before some 

call to REDUCE(S) in step 34, cs(T) con- 
tains some clique order Z which has ele- 

ments of S consecutive. Then the call 
does not reject, and after the call Z is 
still in cs(T). 

Proof sketch. If there is a Q-node 
whose frontier contains precisely S, one 
sees by inspection that REDUCE does not 
change cs!T) ; thus Z is not eliminated. 
Now assume there is no Q-node whose frontier 
contains precisely S. Then condition 
(2.3) shows that the labelling of "full" 
P-nodes is correct. Condition (2.4), to- 
gether with the fact that S may be made 
consecutive in the frontier of a tree 
equivalent to T, may be used to show that 

COUNT eventually equals IS[ and the routine 
terminates successfully. 

To see that Z is not eliminated from 

cs(T), we can examine each SPLIT, COLLAPSE, 
and EXTEND and conclude that they eliminate 
only orders in which not all elements of S 
are consecutive. 

Theorem 2.1. Algorithm 1 correctly 
recognizes interval graphs, and can be 
implemented to run in 0(n+e) time. 

Proof sketch. Correctness follows from 
Lemmas 2.1 through 2.4. To implement the 
test to run in linear time, note that the 
test for chordality and determination of 
the sets C(V) can be done in linear time 
using the methods of [RTL, BT, and L]; 
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Algorithm 1. Interval Graph Recognition. 

REDUCE : pr_oc~ (S) ; 

i. for each P-node p with all of its children in S, label p "full"; 
2. if any endmost P-node has a child in S 
3. then 

4. q ~ the mos t recently created Q-node which is a parent 
of an endmost P-node with a child in S; 

5. if q has a full endmost child 
6. then let p' be a full endmost child of q 
7. else let p' be an endmost child of q such that p' has 

a child in S; 
end 

8. else p' ~ any P-node with a child in S; 
9. p ~ SCAN(p'); COUNT e 0; q ~ null; 

i0. do forever 

LOOP: 
ii. set p' ~ SCAN(p) and add to COUNT the number of children 

in S of the nodes in the sequence p-p'; 
12. ~if COUNT = ISI th~en .~ --t° OUT; 
13. if p' is not endmost then reject; 

' then reject 14. -~-if p is not full and not equal to p ~ ; 
15. SPLIT (p,p*) ; 
16. if q ~ null th~en COLLAPSE(p,q,p*); 
17. q ~ parent(p') ; 
18. if q is the root then reject; 
19. if p has no children then TRIM(p); 
20. if p* has no children then. TRIM(p*); 
21. p ~ parent(q); 

end; 

22. OUT: if p = p' 
23. then EXTEND(p,q,p*) 

else 

24. SPLIT (p,p*) ; 
25. if q ~ null then COLLAPSE(p,q,p*); 
26. SPLIT(p',p'*) ; 
27. if p has no chl-Uren th~en T'RIM(p); 
28. ~ p* has no children th~en TRIM(p*); 
29. i ff p' has no children then TRIM(p'); 
30. if p'* has no children thegn TRIM(p'*); 

end; 
enid pr~ocedure~ REDUCE; 

31. place the vertices of G into a DDLBFS-order Vl,V2,...,Vn; 
32. if G is not chordal then reject; 
33. f~rm the universal PQ-tree for the cliques of G; 
34. fo_~r i.~ 1 to n ~ REDUCE(C(vi)); 
35. ~ rejection ever occurred in steps 32 or 34 
36. then write("G is not an interval graph") 
37. else ~ ( " G  is an inter~al graph"); 

end. 
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the DDLBFS-order can be obtained by a 
slight modification of the techniques used 

there. 

The linear implementation of REDUCE is 
mainly a matter of deciding on a good data 
structure for T. In step 4 we need to 
decide which of several Q-nodes was most 
recently created. This can be done by 
keeping a count of the number of Q-nodes 

created. When a new Q-node q is created 
we attach to q an inteqer telling the 
total number of Q-nodes created so far; 
this number is called the creation number 
of q. To find which of several Q-nodes 
was most recently created, we merely pick 
the one with the highest creation number. 

The main difficulties, however, arise 
in COLLAPSE. This operation may cause the 
children of the deleted Q-node to be re- 
versed; moreover, it changes the parent of 
each. To make these changes easy to 
handle, we keep the children of Q-nodes in 
a modified form of doubly-linked list in 
which each node has a link to the sibling 
on its left and right, but the issue of 

Which is which is left open; also, we 
only require the parent field of a P-node 
to be valid when the node is endmost. This 
data structure contains all the information 

that Algorithm 1 needs, and permits easy 
modification to reflect the changes made 
during a call to REDUCE. In fact, the 
time for a single call is 0(l+k+ Ic(vi)I) , 
where k is the number of Q-nodes destroyed 

in the call. Then since the total number 
of Q-nodes ever created is 0(n), the total 
time in all calls is 0(n + e). 

3. The general consecutive ones problem. 

When constructing a PQ-tree to test a 
clique versus vertex matrix for the con- 
secutive ones property, we were able to 
process the vertices in a special order 
which guaranteed certain conditions about 
how the elements of C(V) could be distri- 
buted over the frontier of T, as indicat- 
ed in Lemma 2.3. To solve the general 
consecutive ones problem, we wish to 
eliminate the need for such conditions, 
by developing a more general REDUCE algo- 
rithm. In this section we sketch the 
methods whereby this can be done. 

Suppose we are trying to perform the 

operation REDUCE(S)~ that i@, to modify T 
in such a way as to eliminate from cs(T) 

orders in which elements of S do not 
appear consecutively. Condition (2.3) can 

be violated since some Q-node may have a 
frontier which is properly contained in S. 
Therefore the simple technique used in 
Algorithm 1 to find full nodes is no longer 

adequate. However, we can determine which 
nodes are full by first labelling all leaves 

in S "full" and then propagating the full 
labels up the tree whenever some node has 
all of its children full. This could be 
quite time-consuming if the labels had to 
be propagated up a long path of nodes, each 
of which had only a single child. It is 
easy to eliminate this possibility, however. 
We simply enforce the condition that each 
Q-node must have at least two grandchildren. 

The tree is then close enough to being 
binary that the work involved in finding 

all full nodes can be 0(IS1). 

A more difficult problem arises out of 
the fact that condition (2.4) may not be 
satisfied. Let us say a node is critical 
if it is partial but has no partial 
children. It is not hard to see that if S 
can be made consecutive in the frontier of 
T, then T has zero, one, or two critical 
nodes. The rest of this discussion treats 
the case in which there are two critical 

nodes, say t I and t2; this is the hardest 

case. Unfortunately it is not eBsy to 

determine which nodes are t I and t 2. 

Creation numbers were used to solve the 
corresponding problem in Algorithm i, but 
this trick is no longer useful here, at 

least partly because a Q-node is not 
necessarily generated after its ancestors. 
One step towards a solution is the observa- 

tion that t I and t 2 have some but not all 

of their children full. Other nodes will 
share this property, so the following algo- 
rithm maybe used to eliminate these other 

nodes as candidates. 

i. Place all nodes with some but not 
all children full on a queue. Also 
place them on a list L. 

2. Repeat step 3 until the queue con- 
tains only one element. 

3. Remove a node t from the queue. 
If its parent t' is in L, remove t' 
from L. If t' has never been on 
the queue, add t' to the queue. 

If S can be made consecutive, the above 
algorithm terminates with two elements left 

in L. These are t I and t 2. 

Once t. and t 2 are known, we modify T 
I 

by performlng two sets of iterations simi- 
lar to the LOOP of Algorithm i, one begin- 

ning at t I and one beginning at t 2. We 

must know, however, when to stop these 
iterations and possibly perform an opera- 
tion similar to the EXTEND of Algorithm I. 
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This is determined by propagating counts of 
descendants in S up the partial nodes 
until some single node, or consecutive 
sequence of P-node siblings, is found which 
accounts for all of S. If all'the ideas 
sketched here are implemented carefully, 
we obtain the following. 

Theorem 3.1. The general consecutive 
ones problem may be answered in 0(n + f) 

time. 

4. Further applications of PQ-trees. 

PQ-trees have applications to a number 

of other problems, which will be briefly 
described here. First, we will discuss 
three fast recognition algorithms. 

A graph G is a unit inverval graph if 
there is a model for G in which all inter- 
vals have unit length. The class of unit 
interval graphs is the same as the class of 
indifference graph~; they are discussed in 
[R68 and R69]. Let A be the matrix formed 

by taking the adjacency matrix of G 
and making all entries along the main 
diagonal one. It is shown in [R68] that G 
is a unit interval graph if and only if A 
has the consecutive ones property. Thus 
we immediately obtain 

Theorem 4.1. Unit interval graphs may 
be recognized in linear time° 

A matrix is said to have the circular 
ones property if the rows can be permuted 
so that the ones in each column appear con- 
secutively if we allow them to wrap around 
from the bottom to the top. Tucker IT71] 
discusses these in connection with circu- 
lar-arc graphs; he proposes the following 
method for testing a matrix A for the 
circular ones property. Complement (i.e., 
interchange zeroes and ones) all columns 

in A which have a one in the first row; 
call the result A' Then A has the cir- 
cular ones property if and only if A' has 
the consecutive ones property. Let f' be 
the number of ones in A' . using the 
0(n + f') test for the consecutive ones 
property, we obtain an 0(n 2) test for the 
circular ones property. We can do better, 
however. 

Theorem 4.2. The circular ones proper- 
ty can be decided in 0(n + f) time. 

Proof. In the above complementing 
process, instead of using the first row, 
we use a row which has a minimum number of 
ones. Then one easily sees that f' < 2f, 
so that we have an 0(n + f) tesL for ~he 
circular ones property. 

A third application is a linear test 

for planarity of a graph. 

Theorem 4.3. The planarity test of 
[LEC] may be implemented to run in linear 
time. 

Proof sketch. The heart of the algori- 
thm is the REDUCE operation. The fast 
techniques for performing this operation, 
as sketched in section 3, can~be used in 

&~inear implementation. 

It should be noted that another linear 

algorithm to recognize planar graphs has 
been published by Hopcroft and Tarjan [HT]. 
Tarjan [Ta] has also given an 0(n 2) imple- 
mentation of the [LEC] algorithm; Even [E] 
has claimed that the [LEC] algorithm could 
be implemented to run in linear time, but 
this has not been published to our 
knowledge. 

PQ-trees also have application to a 
number of problems other than recognition 

algorithms. The first of these is an 
efficient answer to a question discussed in 
~e]. Once a matrix is known to have the 

consecutive ones property, we may wish to 
count the number of permutations of its 
rows which cause the ones in each column to 
be consecutive. The following theorem 
gives the answer. 

Theorem 4.4. Suppose A has the con- 
secutive ones property and'the PQ-tree T 
is constructed by the recognition algorithm. 
Then the number of permutations of the rows 
which make the ones of A consecutive in all 
columns may be found by taking the product 
of the following factors over all the P-and 

Q-nodes t of T: 

a) If t is a P-node, let the 
corresponding factor be the factor- 

ial of the number of its children. 

b) If t is a Q-node, let the corres- 
ponding factor be one if it has 
only one child, and two otherwise. 

The proof is easy and is omitted. 

If A is the clique versus vertex in~ 

cidence matrix of G, then the product 
calculated in the above theorem is also the 
number of models of G which differ on 
strict following, in the sense of [R]. 

A final application of PQ-trees to be 
given here is in determining isomorphism 
of interval graphs. First suppose we drop 
conditions (2.1) and (2.2) and instead 
require that all P-nodes have at least two 
children and all Q-nodes have at least 
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three children. Call such a tree proper. 
Given a PQ-tree, it is easy to find a prop- 
er tree with the same consistent set. If 
T and T' are proper~ it may be shown that 
cs(T) =cs(T') holds if and only if T and 
T' are equivalent. Now suppose T is the 
PQ-tree constructed for the graph G. 
Place T into proper form. Let the charac- 
teristic node of a set S be the node of 
minimum height whose frontier contains S, 
where the height of a node t is the maxi- 
mum distance from t to a leaf in the 
frontier of t. Associate each vertex of 
G with the characteristic node of C(v). 
It is possible to assign a label to each 
node t which gives sufficient information 
about the sets C(v), for all vertices 
associated with t~ that the graph could 
be reconstructed. An algorithm similar 
to Example 3.2 of [AH~] may then be used 
to decide whether two such labelled trees 
are equivalent. This gives the following. 

Theorem 4.5. Interval graph isomorph- 
ism may be decided in linear time. 

This is particularly interesting since 
for two of the best known classes of graphs 
which contain the interval graphs, namely 
the chordal graphs [LB] and the graphs 
whose complement is transitively orient- 
able [GH], isomorphism is not much easier 
than for arbitrary graphs~ as we can show. 

Theorem 4.6. Arbitrary graph isomor- 
phism is polynomially reducible to chordal 
graph isomorphism~ and to transitively 
orientable graph isomorphism. (Note that 
the latter implies that arbitrary graph 
isomorphism is polynomially reducible to 
isomorphism of graphs whose complement is 
transitively orientable. For more infor- 
mation about the notion of polynomial 
reducibility~ see [Ka].) 

Proof sketch. We construct a polynomial 
mapping M from a graph G to a graph M(G) 
such that M(G) is chordal (respectively 
transitively orientable) ~ and G can be 
recovered from M(G) up to isomorphism. 
Then the question of whether G 1 is isomor- 

phic to G 2 is reduced to the question of 

whether M(G I) is isomorphic to M(G2). 

For the reduction to chordal graph 
isomorphism, let M(G) = (V'~E')~ where 

V' = VU E, and 

E' = {[v,w}Iv~w and v,w~ V } U 

[[v,u]Iv ¢ V, u ~ E, and v is 

incident: to u}. 

M(G) is readily seen to be chordal~ and if 
G has at least four vertices~ we can re- 
cover G from M(G) up to isomorphism. 

For the reduction to transitively 
orientable graph isomorphism~ create two 
new vertices x and y ~ and let 

V' = VU E U [x,y}, and 

E' = {[v)u]Iv e V, u ¢ E~ and v is 

incident to u] U 

{[y,v}Iv~ v} u {{x,y}] 

M(G) is transitively orientable. Also~ G 
can be reconstructed from M(G) up to 
isomorphism. 

5. Conclusion. 

This paper gives a variety of applica- 
tions of a data structure called a PQ-tree; 
it also presents a new application of lexi- 
cographic breadth first search. These 
applications include linear algorithms to 
recognize interval graphs, test for the 
consecutive ones property, and perform a 
number of related tasks. The results are 
presented here in capsule form; later 
papers will give more details. 
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Figure 2.1. A PQ-tree. 

Figure 2.3. Illustration of the function 

SCAN. SCAN(P3) returns the value P2 or P5" 
Figure 2.2. A 
universal PQ-tree. In this and subsequent figures, elements of 

S are circled. 

C 1 C 2 C 3 C 4 C 5 C 6 C 7 

Before 

C 1 C 3 C 5 C 2 C 4 C 6 C 7 

After 

Figure 2.4. Example of the effect of SPLIT(p,p*). 

C 2 C 3 C 4 C 5 C 6 C 7 

C 1 C 8 C 5 C 6 C 7 C 4 C 2 C 3 C 9 

Before After 

Figure 2.5. Example of the effect of COLLAPSE(p~q~p*). 

C 3 C 4 C 5 C 3 C 4 C 5 C 1 C 6 

C 1 C 2 C 3 C 4 

(q=nu~!ll } 

C 2 C 4 

C 1 C 3 

Before After Before 

Figure 2.6. Two examples of the effect of EXTEND(p,q~p*). 

After 
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56 Cl C2 C3 ~ C14 C15 C16 

U C6 C7 ~ C13 

C 4 C 5 C 8 C 9 CI0 CII 

a) Before the call to REDUCE. 

C 1 C 2 C 3 

A 
C12 C 4 C 5 C 8 C 9 Cll Cl0 C12 

b) After one pass through LOOP. 

C 6 C 7 C13 C12 C10 CII C 8 C 9 

C14 C15 C16 

E C 

i 
C 4 C 5 C 4 C 5 

c) After two passes through LOOP. d) At the end of REDUCE. 

Figure 2.7° Illustration of REDUCE(S)o A tree is shown at various times during the 
execution of the routine. 
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