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ABSTRACT 

This paper is a continuation of the work of Kellerman and 
Rodgers [ 1 ] ,  who covered some basic techniques of solving 
combinatorics problems using several features of the APL 
language. Thls paper presents a powerful additional tech- 
nique: the use of generating functions. 

INTRODUCTION 

In the solution of combinatorics problems, APL is often 
appropriately used to evaluate functions that have been de- 
fined for specific values of the function arguments. In using 
generating functions, the modus operandi is such that the 
coefficients of the generating functions themselves contain 
the desired solutions to the combinatorial problems of in- 
terest. The coefficients are usually obtained after functions 
are multiplied, added, or divided symbolically. Although 
the necessary APL primitive functions do not exist for sym- 
bolic manipulation, a set of "primit ive" APL functions has 
been developed [2 ]  that can handle the necessary symbolic 
manipulation that is needed. 

As an example of a generating function consider the one that 
represents the possible combinations of 3 objects a, b, and 
c. The generating function for 

is: 

Ca(T) = (1 +aT)(1 +bT)(1 +cT) 

or generaliz!ng for n objects: 

Cn(T) = (1 +a lT) (1  +a2T) . . . (1  +anT ) 

1 + b i T  + b2T 2 T n = + . . . +  b n 

where the coefficients (b i ) contain, after multiplication, 
an exhibit of the combinations. 

PARTITIONS 

Let a, b, c, d, e, and f be unequal positive integers. Then 

the coefficient of x n in the expansion, of 

(1 +x a +x ;a + ...)(I +x b +x 2b + ...)... 

f 2f 
( l + x  +x + . . . )  (1) 

equals the number of partitions of n with summands restricted 
to a, b, c, d, e, and f. In each factor terms must be in- 
cluded up to all coefficients not exceeding n. 

8 +xl0 x12 Example: (1 +x2  + x  ¢ + x  6 + x  + ) • 

(1 + x  4 + x  8 +x12)(1 + x  8 + x  12 )(1 +xS)(1 +xl°)(1 + x  12) 

wil l  yield as the coefficient of x 12 the number of ways to 
sum up to 12 with even numbers. Here, a i s2 ,  b i sd ,  c 
is6, d is 8, e is 10, and f i s12 .  

A polynomial can be represented symbolically in APL by a 
two-row matrix whose first row contains the exponents and 
whose second row contains the coefficients. Functions for 
symbolic operations such as multiplication, addition', sub- 
traction, and division on such polynomials (described in 
[2 ] ) are listed.in the Appendix. 

Using the function for multiplication, the number of part- 
itions of N with distinct summands in VC can be obtained 
from the function PARTITION as shown below: 

[I] 
[2] 

[3] 
[4] 
[5] 

[63 
[7] 

VPARTITION[D]V 
R÷VC PARTITION N 
I÷oVC÷VC[$VC] 
R÷(O,(REI;]IN)-I)¢R÷((((0,1 
LN÷VC[I-I])×VC[I-I])),[0.5] 1 
) M((((O,tLN÷VC[I])xVC[I])), 
[0.5] I) 
I÷I-I 
REP:÷((I÷I-I)=O)/END 
R÷(O,(R[I;]tN)-I)+R÷(((,ILN÷VC 
[I])×VC[I]),[O.S] I) M R 
÷REP 
END:R÷R[2;(R[I;]~N)] 

Example 2.1 : S I0 15 PARTITION 20 

4 different ways to add to 20 using 5, 10 
and 15. 
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Example 2.2: I 5 10 25 50 100 PARTITION I00 

g2 different ways to partition a dollar (make 
change). 

Example 2.3: In Reference [ 1 ] ,  a function SOLVE was 
developed to list the solutions of X 1 +X  2 +X 3 = 6. What 
i f  only the number of solutions isndeslred? Another inter- 
pretation of the coefficient of X in Eq. (1) is that of giving 
the number of solutions to aX 1 + bX 2 + cX 3 +dX¢ + eX~ + 
fX 6 = n. For each solution there corresponds a partition of 
n with summands a, b, c, d, e, and f. This idea can be ex- 
tended to any number of unknowns Xj  with accompanying 
coefficients a, b, c, d, e, f, g, h, . . . .  

Example 2.4: How many solutions are6there of X 1 + X 2 + 
X 3 = 6? Look at thecoef f ic len l 'o fX in Eq. 1, i .e . :  

(I + . . .  +X6)(1 . . .  +X6)(1 + . . .  +X6).  Us~ngAM B 
M C, where A, B, and C represent (1 + . . .  + XV), the co- 
efficient is determined to be 10. If desired, we can tabu- 
late these solutions using L SOLVE M from [1 ] : 

3 SOLVE 6 

:114 
123 
132 
/41 
213 
222 
231 
312 
321 
411 

POLYA'S COUNTING THEORY 

A dominant position in combinatorics is held by Polya who 
combined the aspects of using generating functions, count- 
ing equivalence classes (rather than the objects themselves), 
and using weights, into a fundamental theorem. His theory 
enables one to answer in a completely systematic and com- 
plete way such questions as: 

Given a cube with faces of two colors, red and 
blue, how many distinct patterns show four red 
faces and two blue faces? 

To consider another somewhat more practical problem: 

In determining the routing for the interconnections 
of digital circuitry it is necessary to examine sev- 
eral different placements of the building units 
(modules) on cards. How many "different" place- 
ments are there ? 

This is the combinatorial problem of determining the number 
of equivalence classes of module-on-card placements. 
Polya's theorem says that i f  we wish to determine the num- 
ber of equivalence classes (i. e., the number of inequlvalent 
configurations), given a figure counting series F(x 1" x2, 
• . . ,  xk)  , and a permutation group G with cycle index 

ZG( f l '  f2 '  " ' "  fs )' the following theorem allows us to 
do this. 

Polya's Theorem: The (;nequivalent) configuration-count- 
ing series is 

2 
C(x l ,  x2'  " ' " x k )  =ZG(F(x l  . . . .  ' xk  )' F(x~ . . . .  , x  k), 

F(x , . . . .  • . . , x  k )  ) 
J l  J2 Jk 

where the coefficient of x x . .. x in C is the num- 
1 2 ber of equivalence classes under G whkose members have 

weight vector (J l '  J2 . . . .  ' Jk )" 

It is outside the scope of this paper to go into the details 
of this theorem. It is hoped that the examples wi l l  i l lus- 
trate its usefulness in solving combinatorial problems. For 
further information, the reader is encouraged to consult 
References [3-5 ] . It might be pointed out here that not 
only have APL and APL graphics been applicable in cal- 
culating the final result, but in originally understanding 
what is real ly a very complex theory, APL has been used 
extensively. Also to generate more complex permutation 
groups, and check for closure, APL is also now being used. 
In the fair ly simple examples given here, it is unnecessary 
to use APL in this way. 

Example 2.5: Consider a 6-sided cube with 8 vertices 
(corners). Let G be the group of all the permutations of S 
that can be produced by rotations of the cube. In the 
three cases shown in Table I, the first S is the set of all 
faces, then the set of all vertices! and f inal ly the set of 

1 all edges. The entries, coeff, x . y . ,  are the contributions 
J to the cycle index from each category of rotation. 

Table I 

Tabulation of the Components of the Cycle Index for Ro- 
tations of a Cube 

All possible rotations 
of the cube 
(24 total rotations) 

Identity 

3 rotations of 180 degrees 
along lines connecting 2 
faces 

6 rotations of 90 degrees 
(3 clockwise, 3 ¢ounterc|ack- 
wise) 

6 rotations of 180 degrees along 
lines connect ing oppo~ite 
vertices 

8 rotations of 120 degrees along 
lines conneat;ng opposite 
vertices (4 cw, 4 ccw) 

S: set of S: set of S: set of 
all faces all vertices all edges 

yB ]2 
Yl 1 Y 1 

2 2 4 6 
3y; y~ 3y 2 3y 2 

6y s 6y 4 6y2y b 
g l 2 

8 2 
Y3 

2 ~  
8YlY 3 

4 
8y 8 

For example, consider one of the 3 rotations of 180 degrees 
along lines connecting 2 faces, as shown in Fig. 1 (note 
that S is the set of all vertices). 
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I ~ l  A ~ ~  1 7 - - 8 \ 3  C 4 / I  1.~.~3 Cycle 1 {1,3} 

IDIEIBI @ IBI~'IDI 2:4 Cycle 2 {2,4} 
/ / E 3 \ I  Cyc,e3 16, } 
8 " 7(about on =isO 5 5 = 7  Cycle 4 15, 7} 

through the center 
of E and F) 

Fig. 1 -- One of the Three Possible Rotations of a Cube 
along an Axis Connecting Faces 

The entry shown in Fig. 1 is 4 cycles of length 2 (the 
length is the number of elements in eachccycle) and thus 
the entry in Table I for 3 rotations is 3y 2. The three ro- 
tations are about an axis through E and F, about an axis 
through B and D, and through C and A, as shown in Fig. 2. 

Rotation Axis (C:A) 
I 
I / ,  
I 

. . . .  ~ ~ - - -  Rotation Axis (B:D) 

/ /  I 
/ I 

I 
Rotation AXls (E:F) 

Fig. 2 -- Rotations of the Cube about Axls through Faces 

The cycle indices for the sets S from Table I are as follows: 

Faces 

1 6 2 2 2 3 2 
ZG= ~-~(Yl + 3 y l y  2 +6yzy  ¢ +6Y 2 +8Y3) 

Edges 

1 12 6 3 2 5 4 
ZG= " ~ ( Y l  +3Y2 +6Y4 +6YlY2 +8Y3) 

Vertices 

(2) 

zG= ~-~(yl + 9y +6y +8YlY3) 

Now, to answer the originc~l question posed. That i% if the 
cube has either red or blue faces, how many distinct color 
patterns show 4 red faces and 2 blue faces. We can give 
weight x 1 to red and x 2 to blue. Then, the figure counting 
series F is x z +x  2 and the configuration counting series is 
obtained by substituting the following: 

Yl~l-l~ x + x  1 2 

Y2~l-~. x 2 + x  2 
1 2 
3 

y3~-~ x i + x3 2 

4 4 
yd~l-I~ x 1 + x  2 

into the cycle index ZG, for faces (Eq. 2) or: 

1 6 2 2 2 2  

C : ~ ' (x  I +x  2) + 3(x z + x  2) (x I +x  2) + 

2 4 4 2 2 3  3 3 2  
6(x I +x 2) (x I +x 2) + 6(x I +x 2) + 8(x I +x 2) 

Multiplying out in APL, we obtain: 

600 501 (402 ", 303 204 105 
1 1 \ 2 ~,.. 2 2 1 

' 
\\ \% 

"% I . 1 2 / 

where the top row contains the exponent% and the second 
row the coefficients. 

4 2 
The coefficient of x ix  is 2. There are thus 2 color pat- .2 terns. The APL techmque for obtaining this result will be 
illustrated in detail in example 2.6. 

Example 2.6: Let us consider a 2 by 3 rectangle in a 2- 
dimensional space on which we are to place objects with 
the following properties: 

(a) Round and red 
(b) Square and red 
(c) Round and blue 
(d) Square and blue. 

Assign the following numbers to each of the possible prop- 
erties: 1-red, 2-blue, 3-round, 4-square. In determining 
the figure-counting series, the following procedure is per- 
formed: if a figure has property i then place a one in the 
i-th position of the weight vector for that figure, other- 
wise place a zero. Thus the figure-counting series is: 

F(x , x , x , x ) = x x + x  x + x  x + x  x 
1 2 3 4 1 3 1 4 2 8 2 4 

= (X I +X2)(X 3 +%) 
Let G be the group of the permutations resulting from all 
possible rotations and reflections. The six numbered squares 
are the set S (see Table II). 

Table II 

Permutation Group for 2 by 3 Rectangle 

Permutation Resulting 
Configuration 

(a) Identity 

(b) Right and left 
exchange 1615141 

Cycles 

I~ 2'~ 39 

4"_) s~ 69 

1~3 2~ 

4~6 5~ 

(c) Top and bottom ~ I_~4 2~-~5 
exchange 1~12131 

3~6 

(d) Permutation (b) ~ 1~6 2~5 
followed by (c) l~T21 q 

3 ~ 4  

Type 

d 

3 
I' 2 

It is easy to verify that the permutations in Table II form a 
group. Using the contributions YJi from Table II, the cycle 
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index of G is: 

] 6 2 2 3 
z : "(Yl + + G 4 Yl Y2 2Y2 ) (3) 

Using Eq. 3 for the cycle index and Polya's theorem, we 
obtain for the configuration-counting series: 

C ~ ( x  + x  )8(x + x  )6 (x l  ~ 2 = + + x  ) (x + x  ) 
1 2 3 4 2 3 4 

 ,x3 + + x2 23 +x: 3 

The expansion of the above expression is done by the 
fol lowing function: 

^FOR APL CONF 8 /20 /74  
[2] Xl÷ 2 1 p 1 1 
[3]  X2÷ 2 1 p 100 1 
[4]  2(3*- 2 1 p 10000 1 
[5]  X4÷ 2 I p 1000000 1 
[6 ]  XIX22÷TEMP M T~'#P÷Z1 ,4 X2 
[7] XIX26÷XIX22 M XIX22 M XIX22 
[8] X3X42÷T~4P M TEMP~X3 A_ X4 
[9] X3X46+X3X42 M X3X42 M X3X~2 
[10] X12÷X1 M X1 
[11] X22÷X2 ,q X2 
[12] X32÷X3 M X3 
[13] XI2X222÷TEMP M T~4P÷XI2 ,4 X22 
[14] X42+X4 M X4 
[15] X32X422÷TEMP M TEMP+X32 ,4 X42 
[16] X12X223÷X12X222 tl X12 A_ X22 
[17] X32X423÷X32J[422 M X32 A__ X42 
[18] P1÷XIX26 M X3X46 
[19] P2÷XlX22 M X3X42 M XI2X222 M X32X422 
[20] P3÷(K 2) M XI2X223 M X32X423 
[21] Z÷(K 0.25) M P1 .4 P2 A_ P3 

v 

The exponents of the term Xil "J ..k .,1 ^ ^ _ ^ ¢  are represented by 
the power 1000000i + 10000j +~06dk + 1. This trick mini- 
mizes cpu time and storage requirements and can be used 
when i, j, k, I wi l l  not exceed 99. 

Given a weight vector from the configuratlorj-counting 
series we can obtain the number of equivalence classes of 
configurations with that weight vector. For instance to 
find the number of configurations having 5 red objects, 1 
blue object, 1 round object and 5 square objects ( i .e . ,  the 
number of configurations with weight vector (5, 1, 1, 5), we 
compute the coefficient of 

5 1 1 5 x x x x 
1 2 3 4 

in the conflguratlon-countlng series. It is seen to be equal 
to 10. The 10 configurations are shown in Figure 3 with 
the blue object being crosshatched. 

OTHER EXAMPLES OF GENERATING FUNCTIONS USING 
SYMBOLIC DIVISION 

Table IV contains some examples of generating functions 
that are useful in counting binary patterns. The coefficient 
of x n in each case is obtained by the use of the APL sym- 
bolic functions for division A OVER B TO N. Here the 
Polynomial A is to be divided by B and the answer returned 
is to have N terms. The remainder is contained in REM. 
The function N COEFF MATRIX then selects the coefficient 
of the Nth power. If there is no Nth power, a zero is 
returned. 

Fig. 3 - -  Configurations of a 2 by 3 rectangle with 6 
objects, 5 of which are red, 1 is blue (shown 
crosshatched), | is round, and 5 are square. 

The final answer, Z, is formatted with the PRINT funcHon 
(Appendix) and shown in Table III. 

Table III 

Formatted Answer Z 

7 PRINT Z 
6000600 6000501 6000402 6000303 6000204 6000105 6000006 

1 2 6 6 6 2 1 

5010600 5010501 5010402 5010303 5010204 5010105 5010006 
2 10 24 32 24 10 2 

4020600 4020501 4020402 4020303 4020204 4020105 4020006 
6 24 63 78 63 24 6 

3030600 3030501 3030402 3030303 3030204 3030105 3030006 
6 32 78 104 78 32 6 

2040600 2040501 2040402 2040303 2040204 2040105 2040006 
6 24 63 78 63 24 6 

1050600 1050501 1050402 1050303 1050204 1050105 1050006 
2 10 24 32 24 10 2 

60600 60501 60402 60303 60204 60105 60006 
1 2 6 6 6 2 1 
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Table IV 

Examples of Generating Functions for Counting Binary Patterns 

N digit binary sequences 
that have the pattern 010 
occurring at The Nth digit 

Number of N digit binary 
sequences that have pattern 
010 occurring for the first 
time art the Nth digit 

Number of N digit binary 
sequences in which an 
occurrence of the pattern 
010 is followed by an 
occurrence of the pattern 
010 

Generating Function 

2 3 
I - 2 x  + x - x 

1-2x + x 2 - 2x s 

3 
X 

2 3 
1 - 2 x  + x - x 

6 
X 

2 3 4 5 6 
1 - 6 x + 1 3 x  - 1 2 x  + 4 x  + x  - 3 x  + 2 x  

Specific Case 

5 digit binary 
sequence 

4 digit binary 
sequence 

8 digit binary 
sequence 

APL Answer 

23 

e.g., Details of the third case in the table: 

C D 
6 0 
1 1 

1 2 3 4 5 6 7 
-6 13 -12 4 1 -3 2 

C OVER D TO 5 
10 g 8 7 

6 

201 72 23 6 
1 

23 
8 COEFF C OVER D TO 5 
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APPENDIX 

FUNCTION LISTINGS 

A A M B MULTIPLIES SYMBOLICALLY TWO POLYNOMIALS A AND B 
VM[[]]V 

V C÷A M B;I;P;N;T 
[I] N÷pI÷~P÷,A[I;]o.+B[I;] 
[2] P÷P[I] 
[3] C÷(2,pT)pT,,((T~(P~(-I+I~P),P[pP]+I)/P),.=P)+.x(N,I)~(,A[ 

2;],.xB[2;])[l] 
[4] C÷(2,(rl1,(pC)[2]))÷C÷(C[2;]~O)/C 

V 

A ~ B ADDS TWO POLYNOMIALS A AND B 
V&[U]V 

V C÷A ~ B;I;P;N;T 
[I] N÷pI÷~P÷A[1;],B[1;] 
[2] P÷P[I] 
[3] C÷(2,pT)pT,,((T~(P~(-I+I~P),P[pP]+I)/P)o.=P)+.x(N,1)n(A[ 

2;],B[2;])[I] 
[4] C÷(2,([/I,(pC)[2]))÷C÷(C[2;]~O)/C 

V 

[ 1 ]  

A K GENERATES A CONSTANT POLYNOMIAL 
W[~]V 

V Z÷K N 
Z÷ 2 I pO,N 

V 

A B OVER A DIVIDES A INTO B 
VOVER[[]]V 

V Z÷B OVER A;Y;I 
[I] Z÷ 2 I pO 
[2] Y+B 
[3] I÷0 
[4] LP:÷(~<I÷I+I)/OUT 
[5] X÷Y D A 
[6] Z÷Z~& 2 I ÷X 
[7] Y÷ 0 ~ +X 
[8] ~LP 
[9] OUT:~U÷Y 

V 

[1] 
[2] 

A TO IS USED WITH OVER WHERE A OVER B TO N, N IS THE NUMBER OF TERMS 
vTO[U]v 

V Z~A TO H 
~÷N 
Z÷A 

[I] 
[2] 
[3] 
[4] 
Is] 

AB ~ A WHERE A IS IN ASCENDING ORDER IS CALLED BY OVER FOR 
ADIVISION 
v~[0]v 

V Z~B ~ A;R;S 
Q÷ 2 1 p(B[I;I]-A[1;I]),B[2;1]÷A[2;I] 
S÷A M Q 
S [ 2 ; ] ÷ - S [ 2 ; ]  
R÷B ~ S 
Z÷Q AND~R 

V 
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[I] 

[I] 
[2] 
[3] 

nP AT N EVALUATES POLYNOMIAL P FOR ARGUMENT N 
VAT[~]V 
Z÷P AT N 
Z÷+/P[2;]xN,P[I;] 

N COEFF MATRIX PICKS COEFFICIENT OF N POWER IN POLYNOMIAL.MATRIX 
VCOEFF[~]V 
Z÷N COEFF MATRIX 
Z÷( Z ~ ( pMATRIX ) [ 2 ] ) x Z÷tM TRIX[ 1 ; ] t N 
÷0 IF Z=O 
Z÷MATRIX[2;Z] 

VPRINT[~!V 
v K PRINT POL;N;I;LEN 

[I] A PRINTS K TEP~ OF POL PER LINE USING NNFOR FIELD WIDTH 
[2] N~[(LEN÷I+pPOL)÷K 
[3] I÷O 
[~] LOOP:~LAST IF N=I÷I+I 
[5] (~N_,O)w(2,K)÷(O,KxI-1)+t~OL 
[ 6 ]  ' ' 
[7] ~LOOP 
[8] LAST:÷LAST2 IF O=KILEN 
[9] (NN.O)~(-2.KILEN)÷POL 
[ lO ]  -,.o 
[11] LAST2:(NN.O)v(-2.K)÷POL 

V 
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