
Teachinq Data Base Concepts Usinq AP~

J. Klebanoff, F. Lochovsky, D. Tsichritzis

Department of Computer Science
University of Toronto

Toronto, Canada
M5S IA7

tel. (416) 928-5184

This work was supported in part by IBM Zanada Ltd.

221

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800117.803807&domain=pdf&date_stamp=1975-06-11

Abstract

Rapid growth in the use of data base
management systems has caused a shortage
of personnel trained in data base
concepts. Experience with a data base
management system must be provided for
students in %his area.

Methods for teaching data base
concepts using APL are discussed. The
Educational Data Base System (EDBS), an
APL based data base management system, is
described. The design of exercises and
games to be used with EDBS is discussed.
It is concluded that FDBS used with
suitable exercises is an effective tool
for teaching data base concepts.

Introduction

In recent years the use of data base
management systems (DBMS's) has increased
at a phenomenal rate. There is a large
number and wide variety of such systems on
the market. A large proportion of business
data processing is already being done
using DBMS's and an even larger proportion
will probably use a DBMS in the future.
Consequently, there is a shortage of
personnel trained in the use of data base
management systems.

At the University of Toronto we are
concerned with this problem. We are
currently offering a course, Data
Management Systems, which is designed to
acquaint students in Computer Science or
the Business School with data base
management systems and concepts. An
important component of such a course is
experience with a data base management
system. We have tried using a commercial
DBMS (VANDL, an !MS-compatible system
offered by IBM) but we found that it ran
our small student jobs inefficiently and
generally was not suited for our purposes.
Therefore we have designed and implemented
the Educational Pata 9ase System (EDBS)
specifically as an educational tool.

There are a number of requirements for
such a system. It should be easily
accesible. It should give quick turnaround
or response time. The system must handle
small volumes of data efficiently. It
should offer a full and consistent range
of high level data manipulation commands.

APL PLUS was chosen as the
implementation and host language for a
number of reasons. APL's primary
attraction is that it provides good
terminal support, we wanted EDBS to be
online and APL allows us to provide such a
system at a moderate cost. An important
consideration too was APL's reliability
and stability. We found that the powerful
APL operators aided us in the

implementation effort and were quite
compatible with the high level data
manipulation operators provided by EDBS.
Since EDBS is to be used to train people
to use a data base management system it is
essential that they will not have trouble
learning the host language. APL satisfies
~his requirement quite well. In short, we
have found APL to be a very suitable host
and implementation language for our
Educational Data Base System.

EDBS Description

Data base ~anagement systems c-an
generally be classified as one of three
types -- hierarchic, relational or
network. The difference is largely in the
logical data structure presented to the
user, which of course has its
ramifications on the data manipulation
language.

EDBS incorporates two systems: one is
hierarchic and the other is relational.
At the implementation level these two
systems are quite similar and compatible.
In fact, under EDBS, hierarchically
structured data b~ses may also be viewed
relationally so that a direct comparison
of the two approaches can be made. A
network system is also currently being
designed as part of EDBS.

The EDBS hierarchic system is
patterned after IMS [IMS 1971] and VANDL/I
[VANDL/I 1973]. The data is viewed as
"segments" arranged in a tree structure,
or "hierarchy". Each segment, except root
segments, has a parent segment and ma~
have any number of son segments. A segment
is divided into a fixed number of fields.

To illustrate how EDBS is used we will
use the traditional parts-suppliers data
base in our examples. This is a data base
used by a company which buys parts from
various suppliers. Information in the
data base indicates what parts are bought
from which suppliers. The data base is
kept simple for expository purposes and
will only contain the names of the parts
and the suppliers.

This data base can be modelled
hierarchically as consisting of the
following tree of segment types:

222

figure 1
Hierarchic model of part-supplier

data base

T~he actual data base contains a number of
RT segments, each of which may be the

parent of any number of SUPPLIER segments.

The DML is procedural; only one
segment may be manipulated at a time. Two
pointers are maintained by EDBS for each
user. The position pointer points to the
segment last retrieve@. The pointer-to-
parent points to the current parent
segment and is updated by the GET UNIQUE
and GET NEXT commands.

combination of conditions on the fields of
that segment type. For example, the APL
statement GU 'PART: (NA~E = NUT) O~ (NAME
= BOLT)' will get the next part segment
for a nut or bolt. (Actually, the data is
not retrieved directly but is placed into
a buffer.)

For each of the retrieval commands
there is a corresponding GET HOLD command
(APL functions GHU, GHN and GHNP) that, in
addition to performing the retrieval and
updating the pointers, prepares the data
base so that a modification can be made.

The three hierarchic modification
commands are REPLACE, DELRTE and INSERT.
The REPLACE command replaces the old value
of the segment retrieved by a GET HOLD
command with a new value supplied by the
user. The DELETE command deletes the
segment retrieved by the GET HOLD from the
data base. The INSERT command inserts a
new segment as a child segment of the
segment retrieved in a GET HOLD.

There are three commands used for
retrieving information. The G~T UNIQUF
(APL function G~ command is used to
retrieve the next root segment of a given
type. The GET NEXT (APL function GN)
command retrieves the next segment. The
GET NEXT WITHIN PAPENT (APL function GNP)
command gets the next segment under the
parent pointed to by the pointer-to-
parent. Each of these three commands may
be qualified by specifying the segment
type to be retrieved and a Boolean

Figure 2 shows two programs that
perform simple manipulations of the
hierarchic part-supplier data base.

Our relational system is based on
Codd's ALPHA language [todd 1971]. The
data base is viewed as consisting of
several relations. Each relation, like
relations in the mathematical sense, can
be thought of as a table or matrix. The
rows of the table are called "tuples" and

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[l o]
[11] NOTFOUND:PARTNAME,

V

V FINDSUPPLIER PARTNAME
FIND ALL SUPPLIERS OF A PART

GU 'PART; (NAME =',PARTNAME, I) '
÷(STATUS~O)/NOTFOUND

n GET THE FIRST OR NEXT SUPPLIER SEGMENT UNDER THIS PART SEGMENT
CYCLE:GNP 'SUPPLIER'
R IF THERE ARE NO MORE SUPPLIER SEGMENTS UNDER THE PART SEGMENT THEN RETURN
÷(STATUS=4)/O

R ELSE READ THE NAME FIELD OUT FROM THE BUFFER
READ 'NAME'
÷CYCLE

' IS NOT A PART IN THE DATA BASE'

[i]
[2]
[3]
[4]
[s]
[s]
[?]
[8]
[9]
[10]
[11]
[12]
[13] NOTFOUND:'PART ',PARTNAME,

V

V PARTNAME INSERTSUPPLIER SUPPLIERNAME
A INSERT A NEW SUPPLIER FOR A PART IN THE HIERARCHIC DATA BASE
R

A GET THE PARENT OF THE NEW SEGMENT TO INDICATE TO EDBS WHERE THE NEW SEGMENT
A SHOULD BE PLACED.
A PLACE THE DATA BASE IN HOLD STATUS, THAT IS LOCK IT, WHILE THE INSERTION IS
s TAKING PLACE.
GHU 'PART; (NAME =',PARTNAME,')'
÷(STATUS~O)/NOTFOUND

R WRITE THE NEW SUPPLIER SEGMENT INTO THE BUFFER
SUPPLIERNAME WRITE 'SUPPLIER'
INSERT 'SUPPLIER'
÷0

' WAS NOT FOUND IN THE DATA BASE'

figure 4

223

the columns "domains". Our DML is non-
procedural but more restricted than ALPHA.

The example parts-suppliers data base
can be stored in one relation, which we
will call PARTSUPPL!ER, as pairs of the
form: (part-name, supplier-name).
Represented relationally, the data base
looks like an n by 2 matrix.

There is one retrieval command, GET.
The arguments of this function are a
target list in which the domains to be
retrieved are specified, an optional limit
to the number of tuples to be retrieved
and an optional qualification expression.
The qualification expression contains a
Boolean combination of natural joins and
conditions to be satisfied by the domains
of the relations. At most two different
relations may be used in one GET command.
A GETHOLD command is used to retrieve
tuples, or selected domains of tuples, and
prepare the data base so that these tuples
can be updated.

There are three modification commands.
Tuples retrieved by a GETHOLD command are
actually updated with the UPDATE command.
The INSERT command is used to insert a
number of tuples into a relation. The
DELETE command deletes from a relation all
tup!es satisfying a qualification
expression.

Two typical programs that manipulate
the data base using the relational
commands are shown in figure 3.

I_mplementat ion

The EDBS hierarchic implementation is
based on the use of "traces" [Lowenthal
1971]. A trace can be thought of as an
address associated with a segment in a
hierachical data base which allows acces
to the data in the segment and provides
some information on the ancestry of the
segment.

EDBS orders the root segments and the
sons of each segment. Therefore, at the
implementation level, one can refer to the
i'th root segment or the i'th son of a
given segment. Furthermore, EDBS assigns a
numeric encoding, called a "type code", to
each segment type. Thus, a segment at
level n in the hierarchy is uniquely
identified by a trace consisting of n+1
integers. The first component of a trace
specifies the segment type and the rest of
the components specify the path to be
followed down the t/ee to reach the
segment. Therefore, the trace 2.1
specifies the first (root) segment of type
2 and the trace 3.1.2 specifies the second
type 3 son segment of the first root
segment.

EDBS requires the data base
administrator to specify a limit to the
number of instances of each segment type
which can occur under one parent segment.
This allows us to map traces into actual
file components via a "position matrix".
The position matrix for a segment at level
n is an n-dimensional array that is
indexed by the last n components of the
traces for that segment. For example, if
Ps is the position matrix for segments of
type s then the segment specified by trace
s.nl.n2.n3 is found in file component
Ps[nl;n2;n3]. This puts a limit on the
size and flexibility of EDBS data bases
but we feel that this limit is not overly
restrictive for pedagogical purposes.

There are a number of other data
structures used in the EDBS
implementation. Inverted lists are used
to speed up searches. There is a
field/domain table used to hold the names,
data types, lengths etc. of each fiel~ or
domain in the data base. A
segment/relation table holds such
information as a pointer to the position
matrix, the maximum number of instances,
the hierarchic level, the type codes of
the parent and son segments, and
identification of the fields or domains of
each segment or relation in the data base.
Finally, there is a translation table
giving all the segment or relation names
and their corresponding type codes.

V FINDSUPPLIER PARTNAME
[1] R FIND ALL SUPPLIERS OF A PART IN THE RELATIONAL DATA BASE
[2] GET 'PARTSUPPLIER;(PARTSUPPLIER.PARTNAME =t,PARTNAME, t) t
IS] R READ THE SUPPLIER NAMES FROM THE BUFFER
[W] READ 'PARTSUPPLIER.SUPPLIERNAME'

V

v PARTNAME REMOVEPAIR SUPPLIERNAME~EXPRESSION
[I] A REMOVE A (PART, SUPPLIER) PAIR FROM THE RELATIONAL DATA BASE
[2] EXPRESSION÷'(PARTSUPPLIER.PARTNAME =,,PARTNAME, t) AND '

IS] EXPRESSION÷EXPRESSION,'(PARTSUPPLIER.SUPPLIERNAME =',SUPPLIERNAME,')'
[W] DELETE 'PARTSUPPLIER~',EXPRESSION

V

figure 3

224

The data structures used to implement
relational data bases are the same as
those used to implement hierarchic data
bases: at the implementation level, a
relational data base looks like a
hierarchic data base with a number of one
level hierarchies. Each relation looks
like a root segment and each domain like a
field in a hierarchic data base.

A student environment is considerably
different than the environment that a
commercial DBMS is designed for. When used
for training purposes, the data bases will
typically be small. Only small volumes of
data will be transferred. The application
programs will only be run a few times
after they are debugged. These conditions
are exactly opposite to those found in
most "real" commercial data base usage.

EDBS was tailored specifically for
this training environment. The FDBS
implementation does not make the
optimizations necessary to handle large
volumes of data efficiently. However, EDBS
is quite suitable for small volumes of
data. Furthermore, students will find i%
both easy and economical %o debug their
programs in APL.

We believe that, as a training
facility, EDBS is a distinct improvement
on commercial DBMS's. As can be seen,
EDBS has a full range of data manipulation
commands and is representative of both
hierarchic and relational systems.
Therefore it can give students a wide
range of experience. Students should find
EDBS both easy and convenient to use.

Data Base Exercises and Games

In order for EDBS, or any other data
base system, to be used as an effective
educational facility the students must be
given a number of effective programming
exercises for the students.

The first aim of programming exercises
should be just ±o teach the data
manipulation language (DML). Therefore the
first exercises should involve only simple
queries and some simple modification
commands with as little interaction
between users as possible. In these first
data base modification exercises a student
should only insert, change and delete
pieces of data which "belong" to him,
perhaps identified by his student number.
These first exercises should be designed
to give a comprehensive view of the DML
and yet not be so numerous or lengthy as
to burden or bore the student.

Further exercises should require more
complex actions with involved interactions
between the students. The exercises
should be varied and interesting. We also

need a protocol for interaction between
the students. We feel that data base
games can be used as programming exercises
to solve these problems.

In the type of game needed the data
base contains the current state of the
game. A player must guery the data base
to discover the state of the game in order
to plan his play. He must modify the data
base to actually participate in the game.
The rules of the game will constrain the
players in the actions they may perform.
Therefore, in playing the game the student
will gain experience at both retrieving
information and modifying the data base
using a DPMS. The game should also
illustrate what a DBMS can and cannot do
for its users.

For practical purposes we recommend
that the games be designed to be played in
an intermittent mode. The game should be
scheduled to be played over a period of
time on the order of one or two weeks.
~ach player should be allowed to make his
moves intermittently at times convenient
to him: there should be no requirement to
play in turn. This mode of play should
alleviate the problem of scheduling times
when both terminals and the students are
available.

We have develcped two data base games.
One game simulates the stock market. An
EDBS hierarchic @ata base is used to store
bids, asks, the most recent prices,
dividend notices and the players' holdings
and cash resources. A person plays the
game by looking at the offers and
accepting one or postinghis own offer. He
then must make the appropriate
modifications to the data base.

A program that browses through the
bids for a company's shares is shewn in
figure ~. A student may use simple
programs, such as the one in figure ~, to
browse through the da+a base and then
select bids and asks himself, or he may
write more intelligent programs which make
the selections for him. in either case he
will learn how to manipulate the data
base.

The second game is an inventory
control game which uses a relational data
base. Each student plays the part of a
company which has a number of projects to
complete. Each project requires some
materials and produces others. Each player
must buy the materials needed for his
projects from the other players and sell
his products to them. A player may also
speculate in the commodities. The students
must maniplulate the data base to do their
buying selling and completing of their
projects. A more complete description of
the games can be found in [Klebanoff et al
197Q].

225

V LOOKATBIDS COMPANYNAME
[1] GU 'COMPANY, (NAME = ',COMPANZNAME,')'
[2] ÷(STATUS~O)/NOTFOUND
[3] (15p' '),'COMPANY ',COMPANYNAME
[4] ''
[5] (READ 'OUTSTANDING');' SHARES OUTSTANDING'
[6] 'LAST PRICE:#'IREAD 'PRICE'
[7] "
[8] 'CURRENT BIDS ARE:'
[9] ' PLAYER AMOUNT PRICE'
[10] CYCLE:GNP 'BID'
[11] 8 RETURN IF THERE ARE NO MORE BIDS FOR SHARES OF THIS COMPANY
[12] ÷(STATUS~O)/O
[13] ~ READ THE PLAYER NUMBER, GUANTITY, AND PRICE FIELDS FROM THE BUFFER
[14] ((READ 'PLAYER'),(READ '~UANTITY'));'$';READ 'PRICE'
[153 ÷CYCLE
[16] NOTFOUND:COMPANYNAME,' IS NOT A COMPANY IN THE DATA BASE'

V

FIGURe 4

Conclusion

We believe that EDBS is an excellent
training facility for data base management
system application programmers. EDBS is
implemented in API and its commands are
accessed as APL functions. Therefore, the
system is interactive and easily
accessible. EDBS is useful because it is
representative of a wide range of data
base management systems and because it is
designed to be efficient in a student
environment.

APL, with the APL PLUS file system,
has proven to be a very suitable host and
implementation language for EDBS. It has
provided us with good terminal support, a
powerful file system and an easily learned
host language.

A good set of exercises is as
important in teaching data base management
concepts as a suitable data base
management system. The exercises must be
instructive and interesting but should not
place an undue burden on the student. We
recommend the use of standard programming
exercises to acquaint the students with
the DML and recommend the use of data base
games to train the students in using a
DRMS to perform more complex data
manipulations. Used with the recommended
type of exercises, EDBS can be a very
effective tool for teaching data base
concepts.

[CODASYL 1971]
CODASYL Systems Committee, Data Base
~!~ ~R~R R-~eRor---! t, April 1971

[Codd 1970]
E. F. Codd, "A Relational Model of
Data for Large Shared Data Banks",
C ACM, Vol. 13, No. 6 (June 1970), pp.
377-381

[Codd 1971]
E. F. Codd, "A Data Base Sublanguage
Founded on the Relational Calculus",
5~ SYGF!DET Worksho~ -- D a~
Description Access and Con_~t~, 1971,
pp. 35-68

[!MS 1971]
Information Management System TMS/360,
A~!ic~!!e a Description Manual, GH20-
0765-1TBM, white Plains New York,
1971

[Klebanoff et all
J. Klebanoff, F. Lochovsky, A.
Rozitis, D. Tsichritzis, EDBS User's
Manual, CSRG Technical Report #~0,
University of Toronto, 197~

[Lochovsky 1973]
F. Lochovsky, An Educational Data Base
Manaqeme~ Sxs+_~_em, MSc thesis,
Department of Computer Science,
University of Toronto, 1973

[Lowenthal 1971]
E. I. Lowenthal, A Functional A~r__qo~Eh
~o ~hee ~!S~ of Storaqe Structures
[~ Generalized Data Manao~m~
S~s_!tem~, PhD dissertion, University of
Texas at Austin, August 1971

[VANDL/I 1973]
VANDL/I -- Vancouver Data Language
One, ?.R.P.Q. Description and
~peration Manual (Second Edition),
SC09-0007-01 IBM, February 1973

226

