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A SURVEY OF TECHNIQUES TO REDUCE/MINIMIZE THE CONTROL PART/ROM OF A MICRO-

PROGRAMMED DIGITAL COMPUTER

Introduction

In this report a survey of the research to date in microprogram
minimizetion is presented. We discuss the works of Glushkov, Casaglia, -
et. al., Flynn and Rosin, Misehenko, Schwartz, Grasselli and Montanari and
Das et. al. The techniques are classified into three broad categories:
the Glushkov Approach, the Ad Hoc or Engineering Approach_and the Schwertz
tApproachf ‘The authors' views are summarized in tne conclusion buf the survey

preeents more than sufficient detail for the reader to draw his own.

II. The Glushkov Approach

Glushkov's main aim 1; to construct an abstract model‘of an’electronic.
compuﬁer based on an enlarged concept of an automaton [6,7]; This abstract
model enablee nim to formalize a whole series of problems important from
the point of view of logical design. One of these problems is the,minimizae

tion of the control unit.

Glushkovlviens afdigital systen‘as a eompésifien of two autqmata,
called respectively, the opefational and control automata. (These are also
called "operation part" (OP) and "control pért"'(CP) in the literature [ 1]:)
The -OP“ 15 generally a finite Moore eutomatonl. All the combinatérial and
‘andvsequential networks needed to perform the logical and arithmetic fnnctions
of the computer can be included in the OP. The number of states of the OP is

thus enormous and Glushkov feels that it may be better to replace the finite

1. A finite state automaton M is a quintuple M = (I1,0,S,56,A) where 1,0 and
S are finite, nonempty sets of input states respectively; §: I xS+ S is the

state transition function, A is the output function such that A :I x s +0
for Mealy machines A: S0 for Moore machlnes.
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OP by an infinite, multiregister automaton of the type described in [4].
The output signals of the OP are the strings of values of logical condi-
X

tions X , +o+, X formed during certain elementary operations. Each logical
_ 2 m

1°
condition Xi is associated with a subset Ui of the set of states of the OP.
Xi = 1 if and onlyAif the current state belongg to Ui' Thus the output depends
only on the current state and nof on the signal at the inpﬁt. Let the éet of out-
put signals bg {yi}. The ihput signals ays 85y e @ of the OP are identified
with certain transfofmations of the set of states of this automaton. Thus each
input signal contains the commands for executing the elementary operations
(micro operations).

The CP which works together with the OP is a finite Moore or Mealy automaton.
The input signals to the CP coincide with thé output signals of the OP andAthe out-
put signals of the CP with the input signals of the OP. The number of states of
the CP will usually be relatively small.

In general, there is a third part to this dual sysfem, i.e. Memory and I/0,
(MIO). Information passes from MiO to the OP and the results of micro operations
~pass from the OP to MIO. MIO also send info;mation to the.CP regarding their own
functioning and also. about which instruction is to be executed next. The CP
communicates with MiO and initiates their operations from time to time. The general
system is shown in figure 1.

However, by assuming that memory and I/0 are buffered, the buffer registers
can be cpnsidered.to be part of the OP and the reduced scheme shown in figure 2'
ié obtained.

Let the CP be a Mealy automaton. The problem then is to reduce the numbgr
~of states of this automaton. For. a completely specified finite state automaton
the first step woﬁld be to try and minimize the number of states by'partitioging
_them into equivalenée classes. (For details the reader is referred to [10]).

Since the minimal partition is unique, there is a unique minimal solution. The

CP may be inéompletely'speCified to start off with because for some combinations of
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inputs {a

states aﬁd inputs the output values may not be critical and:are left unspeci~-
fied. The.fbllowing point is more important: i.e. the CP and OP are acting

in conjunction. Thus, even if it is possible to select any state of the OP

as thé initial state, it is not, gengrally‘speaking, possible for all a priori
conceivable sequences of input signals to arrive ét the input of the CP. Because,
of this it may be possible to convert the original completely specified minimal
machine to an'incompletely specified one. The incompletely specified machin can
then be minimized by known techniques [10]. We will:illustrate Glushkov's
technique [8] by means of an example. Let the outputs ;f the OP be {yl, y2} and
1 az}. Let the -OP be describedlby the table in figure 3.

The CP thus has inputs'{yl, yz} and outputs {a }. Let it be

1* 32
described by the table in figure 3.

Assume also that initially the CP is in state 1 and the only input that
can arrive is yl. The OP is first examined. The output gignals of the OoP, 1.e.
y1 and y, are identified with the set of states markgd by these signals;_ Therefore
vy, = {pl, p3}4and Yy = {p2, pa}. Let Saj denote the state entered when the curreqt'
ipput is aj'and current state is S. Let Yy gj dengte the union of all sets yk
which contain states of the fofm Saj where SVE yi. Thus ylal = Yy y2 a; = y2,
¥y 8, = (yl, y2) and Yy 3y = ¥q- For any set of output signéls'M ='{yilg cees yik}
let Maj denote the union of all sets Vig aj, cee Vi aj. Thus, yi a1 =.y2,‘y1 a, = |
(V1> Y)s ¥y 8 =¥, Y, aé =Y 0pa Yy) 8y = Gy ¥y), and (3, ¥, A, = (3,57,
Define M (yi, aj) to bg vy aj if vy € M and ¢ otherwise. Therefore, yl(yl,al) -
Ypr ¥ (¥1s ay) = (yl, Yp) = Y1s Y9)s Yy (Ups 8)) = Y55 Y5 (55585) =¥y (g ¥y)
(73 3 = (1, 7)) (g a)) = ¥,0 G40 9 O, ap) = G0 9% 5, ¥p) U5 3
=‘yl' All other combinations have a value ¢. The produce MN where N is ény get

of pairs (yi’»aj) is defined as the union of the ﬁroducts Mq for all q € N.




The CP is now examined. For any pair (bs, br) of this automaton

define BSr to be the set of all pairs (yi, a,) such that the effect of the

3
input i is to make the CP pass from bs to br’ Thus, B11 = (yz, al),
Blz = (yl)az)i B13 = ¢’ B21 = ¢’ B22 = (yi, al)’ B23 =(Y2’a2)’ B3l = (yZ’az)’

32 1
signals that can reach the CP initially. Thus M; =y Define next, the

B., = ¢, B33 = (yl,az). Definé Mk = ¢ for all k # 1 gnd M. to be the set of

1°
following recurrence relations:

P

MiUHMi By, (k=1,2, ... p)

j+1 -

M

where p is the number of states in the CP. The sequence {Mt}, j=o0,1, ... .
will stabilize at some stage j (i.e. Mi+l = Mﬂ for all k). Let Mk,.k =1,2,...p
denote the stabilized values. For simultaneous operation of the OP and CP,
ﬁhen CP is in state k the only signals tﬁat can possibly arrive a; its input

are those belonging to Mk.- In the particular example under discussion, the

sequences obtained are as follows:

1_ _
W= ), M, G M -
2 2 _
K= v, Moo= 5, M= )
W= ) M= ), M= (3, )

4 _

s

=
[ S

it

We thus conclude that in state 1, y, can never arrive at the input of
the CP and in state'2, yl“cannot arrive. The corresponding entries‘éan.nowibe
deleted from the table in figure 4 to yield the incompletely specified CP of
figure 5. | | | o |

States 1 and 2 are now consistent and can be combined to yield a single

state. Flgure 6 represents the final reduced CP.

Comments :

The example presented was a very simple one and even then the procedure

‘
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to obtain the minimal CP was quite laborious. In a practical situation

one does not deal with machines with 2 or 3 states. Using the automata theory ap-

proach’ | Glushkov would be'ouf of the question for any.mbdern digital

system where the machines have billions of states. Thus even thougﬁ the

‘approach taken by Glushkqv is significant from é theoretical point of view,

. the techniques he suggests are infeasible for all practical purposes. Ry
It must also be pointed out that even if an inéompletely specified Ccp

is obtained a reduced machine need not‘be minimal. Lower and upper bounds

on the number of statgs in the reduced machine can easily belfound and merger

graphs/tables and compatibility gréphs can be used to obtain a systematic ﬁro-

cedure [ 3]. However, there is no simple precise way to obtain a minimal

machine from an incompletely specified one and a cartain amount of "trial and

error”" 1is unavoidable.

III. The Ad Hoc or Engineering Approach

Here we present some of the minimization techniques proposed by Casaglia
e.t., al. [11], Mischenko [11,12], Flynn and Rosin [4 ]. The contol part
can be defined by means of a microprogram which ié a sequence of microinstructions.
As pointed out in | i], this microprogram can be written in one of two languges
which we will discuss here.

Let 01, 02, ey On Ee ;he list of all possible elementary opefétions

of the OP of a system. These are called simple micro operations. A complex

micro operation aj.is a set of 01's such that all the Oi's can be executed

simultaneously. Thus the aj's are the possible outputs of the CP. Recall
that the inputs yi‘to the CP are logical conditions {xl, cees xm} formed as

a result of the execution of certain micro operations in the OP (figure 2). An

unconditional microinstruction is an expression
[b] ay, & 1

where |h|'is the label of the micro instruction being ¢onsidered; k is the.



Page 6

label of the next microinstruction. Thus aj defines the complex microinstruction
to be executed by the OP and k the transfer to be executed by the CP. A conditional
microinstruction can be represented by the following general statement

Ih] if logical condition Xl, then ajl, kl else

k., else

if logical condition X2, then ajps Ky

if logical condition X , theﬁ aj_» k_.
P ‘P P

which takes the symbolic form:

[l (X)) agps Ky (X)) agy, kys weeens () ay ke (2)

'(Xr), a conditional expression,stands for an expression such as

(Xl’ X2’ X7 = 001, 110) which indicates that a subset of the signals Xi must

equal a specified binary combination. The pair a,, k is called a phrase and

j’

the expression (X}) aj, k a conditional phrase. A phrase structured (ps) language

is defined as one where every microinstruction is formed by a one phrase micro-
instruction (1) or by a set of conditional phrases where (a) all the conditional

expreésions and phrases are different and (b) oﬁe and .only one of the logical

conditions is satisfied. A microinstruction structqred (ms) language is diectly
derived from a ps language with the additional condition: "all phrases»in~any,
microinstruction differ only in the transfers." A microinstruction in an ms

language can thus be written as:

Ih} a; (XD ky5 (X)) kys eeen g (X)) kp.
Assume that there are two micfoprograms one writteh.in the ps language
‘and the other in the ms. These microprograms can belviewed as definitionsl
of the control part and from each definition a particular CP can be realized.
Figures 7 and 8 show the CPis correéponding to the ps and ms languages respectively.
Let us now discuss the possible ways of reducing the CP's.
(1) If in the ms microinstructions the maximum number of alternate

transfers is reduced, this will reduce the size of the ROM word in figure. 8.
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(2) If the alternate transfers of every mé microinst?uction are all con-
strained to be coded by addresses that are.relative to a "base addréss"‘and this ad;
dress is stored in the,ROM memory, then the ROM word length can be. considerably reduced.

(3) Civen an msAmicroprogram let there be a set of microinstructions
éuch that (a) all microinstructions in the set differ only in the component
aj and (b) logical conditions exist which can distinguish the different aj's.

For example, let the sét be:
syl ap (%) 25 (X)) s5 (X p
syl a, (%) 25 (%) 85 (X)) p

sl ay (X)) %5 (%) s5 (X)) ».

The following reductions are possible:

(1) Instead of having n words in memory we have only one ‘a L, s, pl.

A small combinatorial network ihtroduced at point B in Figure 8 can be used
to provide the correct output.

(ii) The n potehtial transfer addresses S Sn are reduced to

l, l."
one, i.e. 8. Therefore the complexity of CN should decrease.

(4) 1If in a ps microporgram there is a microinstruction such that all
its phrases differ only in the component aj, then this microinstruction can
be written as

In| [(x) a), (%) a,, ..., (X) a1, k.

The p memory cells corresponding to this instruction can be reduced to 1, i.e.

a |k and a combinatiorial network can be used to .generate the

desired output. °

(5) Let there be a set of ps microinstructions,

[igls ngls oes Iyl |
each of which has n conditional phrases. If when all occurrence of

hl’ h2, cees hm are replaced by h, the m microinstruc;ions
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become identical then they can be replaced by a single ps microinstruction.
Here again m potential transfer addresses have been replaced by one and mn
memory cells by n.
(6) Consider the following m ps microinstructions

Ih,l (x,) a,, k,

In | () 2, k,
If one and only one of the conditions Xl’ X2, “cee Xm can be satisfied at any
time and if (al, kl), (az, k2), eeny (am, km) are all different then these
can be combined into a single instruction

X s )
|h| ( 1) a;s k (XZ) a,, k2’ cens (Xm) a s k .

1} m

Instructions with more than one conditional phrase can similarly be combined.
Here we do not‘get a reduction in ROM but since the number of poetntial
transfer points has been reduced, CN shoﬁld become less complex. Note:

In 3, 5, and 6 where a number of addresses are being replaced bivone through-
out the microprogram, care should be taken to establish that the entire
program is still a valid ps or ms micrprogram as the case may be.

Finally, we would like to mention the very general scheme of "residual
control" in dynamic microproéramming proposed by Flynn and Rosin [ 4]. "The
basic idea is as f&llows: ‘much information specified in thevmicfoinstruction

is static. The status remains unchanged during the execution of a numberof
microinstructions. If this static information and specifications is filtered‘
out of ﬁhe microinstruction and placed in ''set up" registers, the combination

of a particular field of microinstruction with 1ts corresponding set up register
would completely define the control for resource. As Dr. Flynn has pointed

out (private communication) this technique is closely related to the well

" known Huffman coding problem and its solution., In this latter problem onev
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is given an alphabet {a ceey aﬁ} for transmission ‘with probability of

12 @2

occurrence of a, equal to P;- The problem is to encode the elements of the
‘n

alphabet so that i§= ) 'Q'i_ Pi is minim‘izgd, wherg Q'i is the 1epgth of code

assigned to a Thus one is interested in minimizing the expected value of

.
the length of transmitted code. The prbblem is solved, ﬁaturally, 5y
assigniné the cddes in a ménner so that the higher.the probabili£; of
occurrence of an element the shorter the code assigned to 1it.

lIn residual control the problem is-analogous. The fields in a micro-
instruction represent informatibn to bé transmitted. In a certain field in
the miéroinstruction let the information represented by some of thé bits
(say n ip nﬁmber) have a high probability p of remaining static. These n bits
take on ‘a few'definite values with high probabil?ties.’ Because certain
configurations of-thesé n bits have a high frequéngygof(occurfenée, the
corresponding information should be minimally encoded. This 1is done by placing
the information in set up registers and introducing k bits instead of n (k.j_n)
which indicate how thé_information in the set up register changes. For this
method to work, some appropriate'fixed probability P, has to be determined
so that only if p > p, will the information be placed in a set up rggister.

In some of the techniques'proposed by Casaglia et. al. the ROM is :educéd
at the cost of introducing special combinatorial networks. ‘Thu5'there is a loss

of flexibility and & change in the ROM necessitates a ghange in the special

circuitry. In the residual control method, the loss of flexibility is minimal.

‘Coﬁments::

Compared to the “Glushkov Approach" the "Engineering>Approach" has
obvious practical advantages. The techniques suggested in this section ﬁaturally
do not guarantee a minimal CP. Howevef,‘in practical ﬁse, these techniques
éhouid be quite effective. Also, complete minimizatién of an agtomaton

as ‘we find in the Glushkov approach 1s not neéessafily realizable with minimal
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'~ apparatus cost. The techniques presented in this section are thus more

down to earth, more what a CP designer would be interested in.

The Schwartz Approach:

Schwartz [13] is concerned with minimizing the bit dimension of ROM's .
employed in the céntrol part‘bf a microprogrammed digitél computer and
attempts to provide an algorithm to do so. The ROM is an array of stérage
elements cpnsiéting of W words of B bits each. Each word specifies one or
more elementary operations of the control part which can be executed in
parallel. The sequencing of ROM words is not of concern. It is theréforé
assumed that the words do not contain address fields and all B bits are -
used>for specifying subcommands. Figure 9 gives an éxample of ROM specification.
There are several ways of coding the B bits to reduce size. One
important consideration, flexibility, should be kept in mind: tﬁe control
microprogram should be easily modifiable. There are two extreme prossibilities
for encoding the ROM:
1) Each bit of W is used to encode one subcommand. Thus the number
of bits in W is equal to the number of distinct subcommands. The lafter‘will us-
ually be very large compared to the actual number of subcommands'in any word.,
Thus this method is extremely inefficient with regard to the bit dimension B.
The advantage is ﬁaximum flexibility. Since no combinational circuit is
required at the output of the ROM, the contents of the ROM can be érbitrarily
~ changed. |
2) The ROM Words are minimélly éncoded, i.e. B ='[loglwu] where Wu is
.the number of unique words in the ROM wug_ W. In this case all advantages
of microprogrammidgare lost. The ROM is used only to sequence words in
the microprograms since the ROM word address is already an encoding of the
corresponding word. A large combinaforial network Qould be required at the

output of the ROM. If this is to remain unchanged with changes in the
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microﬁroéram, then aAy such change would have to result in a word already. in
the system.

Schwar£z takes a midway position. The bit dimension is partitioned into
groups. Each group represents'a number of sﬁbcommands, no two of which
‘occur together'in the same word. The esseﬁtial feature however'is tﬁat each
group represents only one subcommand in ény given word.

The problem now is to minimize B. Schwartz realizes this but is
unable to solve the problem. He givés instead an alogrithm that partitiomns
the subcommands into é:miﬁimal number of groﬁps, The basié procedure is
as fqllows; Find the word Wj with the largest number Qf subcommands Sj'
"Thus B must be'partitionéd into at least Sj'groups. The remaining words areA
taken one at a time and the subcommands éontained in each are assigned to
groups. fhe following constraints have to be met at each stage: -all sub;
commands in the same word must be placed in different groups. When words are
encountered with previously aSsigned subcommands, it must be ascertained
that no two of them have been aésigned.tp the same .group. Any new subcommand
in such words must be assignea to groups not in prior use in the word. The
algorithm is basically one of exhaustive evaluation. gHowever, there is no
guarantee that a solution of~Sj groups exists. if the solution for Sj groups
does not exist, the entire procedure is repeated for Sj + 1 groups.

"As Grasselli and Montanari | g] point out, a minimimum group solution
does not imply.a miniﬁﬁm B solution. Thé minimum group soiution of Schwartz
for the ROM'in Figure 9 is {a}, {b,g}, {c,3,k}, {d,i}. Number of groups
- 5, B = 10 (Each group also coﬁtains the subcommand NO OP). The solution

suggested by Grasselli and Montanari Is: {a}, {b}, {c}, {d,g,i}, {e}, {f,1i,k}

‘{h}. Number of groups = 6, B = 9.
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Thus one has to look beyond the minimum group solution. Schwartz
now gives an upper bound on the number of groups that need be considered.
He shows that if a minimum group solution has a bit dimension of size Bm and
if ST is the total number of subcommands then the largest number of groups
that could have a smaller bit dimension is Cm+l where €m is given by

log, (ST - Cm +2) =B_-C_

Noting the inability of Schwartz to give an algorithm for minimizing
B, the problem was reformulated by Grasselli and Montanari in the framework
of switching theory. The main minimization problem was reduced to a set
covering problem of the prime implicant type.

The ROM words are considercd to be a set of subcommands:

W = {sal, Sags «++s S }

ag,
Wy = {sbl, Sby» ++es sbB}
We = 8¢y Seps ovvs Se,}
A compatibility relation is defined among the subcommands.Si and Sj are com-
patible. If

=>
S € Wy =S, f W YV 1

A compatibility class Ci of subcommands is a class whose members are
pairwise compatible. (compatibility is not an equivalence relation) A
maximal compatibility class is one to which no subcommand can be added wifh—
out violatiﬁg pairwise_compatibility. Let the set of subcommands be A. Then
a minimal solution is a set of compatibility classes: {C

h h

such that | ) C, =A and B= 3 [log(#C; + 11 is minimal. Here # G
n=1 n n=1 n

i7s Cips vevs Cipl

denotes the number of subcommands in Ci,-
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Grasselli and‘Montaﬁari shows that the only classes tHat need be considered .

for a minimal solution are prime compa;ibility classes defined below:
| 1) Ci is nonmaximal and # Ci = 2h -1 (h=1,2...)

2) C, is maximal and # C ¢ 2 (k=1, 2, ...)
The minimal cover is obtained by ;olving a coveriné table of the prime
implicant type. The table has a column.corresponding Fo evéry subcommand Sj
and a row corresponding to every prime class. The cost of row i is tHé
cnst nf the corrcopending class Ci; The ailm is to select rows so‘tha; the
total cost is minimized and eéch column is covered.

The three basic redﬁction rules for solving a covering table are:

L) Row essentiality.

2) Row dominance.

3) Column dominance.

Rule 3 is néver applicable becaﬁse of thé péculiér,nature of the coﬁering
table and Rule 2 can be.replaced by : 2') Any row i of cost Wi (Wi'> 1) in
which the number of crosses is not greater than Zwifl, can be erased from the
table. | |

We will now present a well known technique of integer programming.to
solve.this problem. Rule 1 and 2' can be very easily applied in any reduced -
cover table. éince the method to be pfesented invoives solVing reaﬁced tables,
it.should be parti;ularly suited for our prdblem.

Let tﬁére be m distinct subcommands and let {Cl, C2, cany Cn} be the

prime compatibility classes, and W, the cost of C

: 121 S<n. Let {alj}nx

m

denote the covefing table where aij = 1 if the subcommand corresponding‘td

column'j belongs to class Ci' Let there be n variables Xy Koy eves X0 Then

é solution is an assignment of values 0 or 1 to the variables LI Class Ci
1s selected 1f and only 1f x, = 1. Let x be a solution. The cost of x is 2 =
4 _ ] n .
ééj wi X, x 1s a feasible solution if Z alj Xy 2_1, 1 <] <m.
: A i=1

i=1
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x is a minimal solution if it is feasible and in.addition g& W, x, 1s

i1
{ i= 1 ;
minimal. Let Pk be a vector that represents an assignment of 0 or 1 to some
of the variables x,. Thus if P, = (1, 3, 4) then x, = 1, x, = 1 and x, = 0.

i k 1 3 4

The above covering problem can be formulated as an integer programming

problem. If the constrants xi.= l1or0, 1<1i<n are replaced by X >0
1 <i <n, we get the following linear program:
n
-
min = wi Xy
subject to the constraints
>
a,. x, > 1 1<j<m
.1 Wt
x, > O 1<1i<n
i = A
If x 1is the solution of this linear program with cost 2z° then let <x;> =
. n
o . (.a: o =z o
if x; =0 } and <z°> = wi <xi>.

1 otherwise

Stage k:

*
Let x* be the best solution so far with cost z ‘and let a particular

Pk be given. Define Sk+ K

= { + - < < .
B i1 ¢ 5, s, and 1<di<n}

k * 1 Get a reduced cover table from the original one by deleting the

{1]1e Pk},' S = 4| 4te Pk}

i +1ys, : hich > 1.
set {Ci | i€ S U Sy }, and deleting columns j for whic i%éiij >
k -2 Reduce the cover table further by applying rules 1 and 2'. Formulate

a linear program for the final reduced tabie (In a manner similar
to that described above for the complete tablé), Solve this
linear program. P together with steps k<l and k-2 gives a solution. .-

k
The following are possible:

* is obfained. Let its cost be Zk*.

* and x* be x *. If all entries

a) - An optimal integer solution X

If 2 * < Z* let the new value of Z* be Z,

of Pk are underlined, go to Quit. Else get Pk+1.from Pk by underlining

the rightmost:nonunderlined entry in P, and erasing all entries to the

k



right of it. Start stage k + 1.

b) There 4s no feasible solution. If all entries of P are underlined,

k

go to Quit. Else, get P as in a) and start stage k+l.

k+1
c) An obtimal noninteger solution xk* is obtained, with cost Z *.

k

1) <Zk*> > 7%, 1f all entries of Pk are underlined, go to Quit.
Else obtéin Pkn as in a) and start stége k+1.

ii) <Zk*> < Z%, then <xk*> defines a feésible solution better than x*.
'Howgver, a muéh better solution, called a prime solution can be obtained
by the following.simple heuristic.

Consider the original cover table. Déleté all rows except those correspond-
ing to‘{Ci I ieF, and X, = 1}. Dglete the‘column§ correéponding to the sub~
commands covered by {Ci | i€ Sk+}.

i) ' Reduce the table further according to rules 1 and 2'.

~ii) Select the row Ci with the least cost | column. - (Calculated

by dividing the cost of Ci by the number of columns covered

by Ci after step (i).) If there is more than one, select any.

1

Delete the columns covered.

Repeat (i) and (ii) until the cover is complete. Let S, be the set of rows

k
selected by repeated application of (i) and (ii). Sk+ and Sk define a
solution xk° with cost Zk°. Let the new value of x* be xk° and Zk be Zk°.
. + - T =8, | T+ 1.
Define %dd.ao that Sk+1 ng Sk and Sk+1 ‘ $k< Start stage k + 1

Quit: Stop the computatidn. x* gives the minimal solution with cost z *,
Thus the procedure is as follows:

Start at stage 0 with PO’? @, SO'+= S0 =@ aqd Fo = {1, 2, cees n};
Z*m o and x* undefined. If steps 0°1 and 0°2 yield an integer sqlu;ion,
we are done. Even if a noninfeger solution 'Is obtained the heuristic yields

a result that is near minimal. (Let 0+1 and 0-2 yield a minimum cost Z,%,

ndt necessarily integral). Then contihue with stages 1,2,... tillQuit is
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reached or a solution with Zk* = [Zo*] is obtained.

One further heuristic may decrease computation by indicating diréctly
that no feasible solution exists at a particular stage. Let p be the number
of columns selected in the heuristic at the end of the Othstage. For -the original
cover table deterﬁine the minimum number of rows that must be selected, using.
the method proposed by Du ({3]. Let the number be r. Note that if there
is no feasible solution using < s maximal compatibility classes, then there
is no feasible solution using only s rows. Thus by examining the numbers
between r and p (possibly by doing a binary search if p-1ris lérge) and.the
maximal compatibility classes only, we.can find very quickly, a number t,
r Xt < p so that we are guaranteed that any solution of the covering table
must have at least t rows. The closer that t is to p, the better the heuristic

k

number of underlined indices. Let the number be pk. If n «~

will work. At anyAétage k (k > 0) we run a quick check on P, and count the
pk < t we can |
immediately conclude that there is no feasible solution and go directly to
stage k + 1.

Finally, Das et. al [ 2] start with the same basic formulaéion as
Grasselli and Montanari. However, they éfart~direct1y with the maximal'cém-
patibility classes, MCC's whose number is usually small. The basic procedure
is as follows:

Given a set of microcommands {Sl, S,s "'.Sk} and a set of MCC's
{ le, sz, cee Cmn} obtained from the set of microcommands, a table is
constructed by writirg Sl’ 82’ K
if Si € ij. This table 1is called a CM cover table.- The MCC's that appear

... S, in a row and by entering ij below S,

alone in some columns are called globally essential. The CM cover table ¢an
be reduced by
1. Selecting globally eésential MCC's and deleting the columns in-l
which these MCC's appear. | |

2. .Deleting all but one of the columns having identical sets of MCC's.
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3. Deleting dominated columms.,
Figure 10 gives a CM cover table corresponding to Figure 9 and Figure 11 a

reduced CM cover table. The MCC's are :

¢, = {a,g,k}, C, = {b,g,k}, Cy ={c,1,k}, C, = {d,8,3}, C; = {d,1},

c, = {e,g,3,k}, c, = {e,h}, C

6 = {e,1i,k}, Cy = {f,g,3,k}, C10'= {£,1,k}.

8
‘The reduced CM cover table is:;heﬁ solved. One thus obtains the
following irredundant oolutions:

1) €;C,C4C,C,C 0>

2) €;C,C4C,C,CqCs,

+3) €1C5C4C5C4Ch0>

4) €,C,CaC.CoC,.

These solutions are irredundant because if any class is dropped from any

~ solution we no longer have a feasible solution (i.e., at least one mi crocommand

will not be covered).

The following procedure i1s now carried out for each irredundant solution

A table (solution CM table) is constructed similar to the cM cover
table where we restrict ourselves only to classes belonging to ij' The _
table corresponding to the solution C1C2C3C4C7C10 is given in Figure 12.

The solution CM table indicates which particular MCC (or its subclass)
has to be retained in the solution in order that all microqommands are inciuded
in the MCC's (or their subclasses).

The table in figure 12, for example; tells us that a can be covered only

by C, or a subclass of C

1 1

covered by more than one MCC. To find the different covers a reduced table is

containing a. Also, microcommands g,j,k can be

constructed (figure 13).

This cover table is solved and ifrredundant solutions C1C3, C1C4’ C2C3,



Page 18

C2C4 and C4C10'are found. For each of these solutions the follewing procedures
is adopged: |
Suppose we decide to cover g, j, k by C3 and CA. Then, -retaining g,j,k

in C3 and C4 and deleting their appearance from all other MCC's, the foilowing
solutions are obtained:  (Remember that the overall irredundant solution is
C1C2C304C7C10.)

{a}, {b},{c,3,k}, {e,h}, {d,g},{f,i}

{a}, {b}, {c,k}, {e,n}, {d,g,j}, {£,i}.
After going through all the iterations, the minimal solution is obtained.

Das et. al. also give two theorems which supposedly reduce the overall

effort.

Comments :

We see in the Schwartz approach that the problem was formulated in
the framework of switching theory. Two methods for solving the problem in this
framework were presented: the integer programming method and the method of
Das et. al. Which of these methods is better practically can only be decided
by using both for minimizing real systems. It appears that the integer pro-
gramming method can be easily programmed for a computer; Maybe a combination

of the two methods would be the best.

Conclusions:

In this report we have sqrveyed most of the Important résearch to
date on minimizing the contol part of a micfoprogrammed digital computer..
We feel that the results are largely negative, i.e., the Glushkov approach
does not seem feasible in. any practical en&ironment and we have our reser-
vations regarding the 8chwartz approach. If the requireﬁents of minimal
soiution are removed so that one would be satisfied with a near minimal solu-

tion, the integer programming method can be used since a very good solution

is usually ob;ained after the first iteration.
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For reducing the overall control unit, the engineering approach
(Casaglia, et. al., Flynn and Rosin and Mishenko ) seems to be the only

feasible one.
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