
Software Aids for Microprogram Development 

Christopher Vickery 

Queens College, CUNY 

Summary: Debugging of microprograms can be approached in three ways: (i) with the aid 
of hardware test sets and monitors, (2) through interactive debugging programs, and (3) 
through simulation techniques. This paper discusses these three methods and describes 
an interactive debugging program and a simulator developed for debugging microprograms 
for the Interdata model 85 minicomputer. 

INTRODUCTION 

In the past several years almost all 
Computer manufacturers have retreated 
from their original "users' hands off" 
attitude toward microprogramming and given 
at least begrudging support for user ac- 

cess to an alterable section of control 
storage. The division of control store 
into a read-only memory (ROM) implement- 
ing the vendor's target machine and a 
read/write memory (RAM) for the user to 
manipulate as he wishes has blunted the 
original fears that a user-microprogram- 
med processor would be impossible for the 
vendor to service. The maintenance 
engineer need only demonstrate that a 
failing system still operates correctly 
in "native" mode to prove that the prob- 
lem lies in the design of the user's 
microcode. 

Those uses of RAM control store 
which the manufacturers have anticipated 
have influenced the debugging techniques 
available to the user. Most vendors 
have anticipated the user wanting to 
"tune" his machine to a particular task 
through extension of the basic machine 
instruction set (vid. Reigel & Lawson, 
1973). The organization of a machine 
built for this purpose-is usually orient- 
ed toward a particular user-level 
instruction format, often providing 
fetch and decoding of user instructions 
in a single microinstruction. Hewlett- 
Packard, for example, goes so far as to 
provide a standard interface between 
Fortran programs and microcode (Park, 
1973). Debugging support for this type 

of machine usually takes the form of inter- 
active debugging programs. The user is 
presumed to be interested in how his new 
routine effects the user-level environ- 
ment rather than in its interactions with 
the hardware per s__e. Memory searching 
and modification, breakpoints in micro- 
code, and examination of the user-level 
environment are typically provided by the 
debug program. 

Another class of RAM control store 
usage falls in the category of "emulation." 
Here the user wishes to implement a sub- 
stantially different user-level instruction 

set (or subset) from that provided by 
the vendor. Machines designed for emula- 
tion tend to be flexible in their assump- 
tions about user-level instruction and 
data formats, often employing "setup" reg- 
isters to allow the microprogrammer to 
specify these parameters at execution 
time and still take advantage of hardware 
aids to instruction fetch and decoding. 
The Burroughs 1700, and to some extent 
the Varian 73, are examples of this class 
of machines. Since the emulator writer 
is likely to be using the hardware environ- 
ment in unorthodox ways (relative to the 
machine's native mode of operation), soft- 
ware simulation of the processor can be 
very valuable; it allows the user to trace 
the entire processor state, including 
values that may not be directly available 
even to the microprogram, rather than just 
the conventional user-level view of the 
machine. The simulator may run either on 
the host machine itself, perhaps in an 
interpretive mode, or on another machine 
with perhaps a greater storage capacity. 

208 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800118.803863&domain=pdf&date_stamp=1974-09-30


Husson (1970) anticipated that with 
the advent of writable control storage, 
users might resort to the maintenance 
engineer's facilities for debugging the 
system. In addition to the usual logic 
testing equipment, the maintenance engi- 
neer is likely to have a test set or 
monitor designed expressly for servicing 
a particular machine. Operating as a 
sub-micro level operator's console, such 
test sets give the engineer the ability 
to examine and modify the hardware 
busses and registers, to set breakpoints 
in control store (both ROM and RAM), and 
to control the system clock (e.g., Inter- 
data, 1973). However, such devices are 
designed to facilitate hardware fault 
detection and isolation rather than for 
firmware debugging. Even when they are 
made available to the end user, such aids 
are more likely to help the microprogram- 
mer discover operational characteristics 
of the machine which were otherwise 
ambiguously defined rather than to find 
logical flaws in his microcode. 

In the following two sections of the 
paper, I describe an interactive debug 
program and a software simulator developed 

for the Interdata 85 minicomputer. This 
machine is organized about three 16-bit 
busses connected to as many as eight 
hardware modules (a control unit, an ALU, 
and an I/O unit are standard). It ad- 
dresses up to 64K bytes of semiconductor 
primary memory (270 ns) and up to 4K words 
(32 bits, 60 ns) of control store. The 
first 1024 words of control store is ROM 
implementation of the standard Interdata 
70/80 instruction set; additional control 
store may be a mixture of RAM and ROM. 
The standard model 85 has 1024 words of 
RAM. The machine is highly optimized for 
emulating the standard instruction set, 
with many user-level instructions com- 
pletely emulated in a single microinstruc- 
tion. Thus, the machine falls in the 
first category of machines mentioned 
above, those intended for extension of 
the basic instruction set. The avail- 
ability of this machine only with high 
speed semiconductor main memory reflects 
the vendor's belief that users would be 
interested primarily in the speed ad- 
vantage a "tuned" machine would offer 
through microprogramming. Vendor-sup- 
plied microprogramming support for the 
system consists of a microassembler 
which runs under an operating system, 
a stand-alone interactive debug program, 
and a stand-alone diagnostic program. 
Also, user-level instructions were added 
to the 70/80 instruction set ROM which 

transfer information between user memory 
and RAM control store, and to branch into 
control store from user routines. A hard- 
ware test set is available as an option. 

Micro-Delta 

This is the interactive debug program 
we wrote to replace the one supplied by the 
vendor. Programs of this sort have much 
in common with those normally supplied by 
vendors for debugging user code (ours is 
named after DELTA, which is the debugging 
system for XDS Sigma computers). Memory 
search, examination, and modification, 
breakpoints, and disassemblies are the 
usual ingredients of such a program. Of 
course, the debugger for a microprogrammed 
machine must do double duty because it 
should provide the same functions for a 
user-level program as for a microprogram; 
this feature is especially important in 
the case of a machine which is using 
microcode to extend the user-level in- 
struction set because the microprogram 
under test is usually invoked by a user- 
level program which sets up parameters, 
etc. In Micro-Delta, for example, the 
user types "M" or "U" to indicate which 
level of the machine he wishes to deal 
with ("micro" or "user"), then uses the 
same set of commands for either level. 

One problem with a debug program is 
that not all of the processor environ- 
ment is available even to the microprogram. 
Furthermore, that which is available may 
be destroyed by the process of interrupt- 
ing an errant section of microcode (either 
through a breakpoint or by direct inter- 
vention through the console switches). 
For example, branches in Interdata micro- 
code are of the branch-and-link type, so 
the instruction inserted at the break- 
point necessarily destroys one register 
just to escape from the tested program's 
execution sequence. Runaway microcode is 
particularly troublesome; an interrupt of 
some sort must be generated to stop the 
processor, which means that registers are 
destroyed by the ensuing automatic (ROM 
firmware) PSW swap. One solution to this 
problem is to use a second processor to 
monitor the one under test, perhaps with 
communication between the two through 
shared memory (Gasser, 1973). Aside from 
the obvious cost disadvantage, this sol- 
ution still fails if the runaway micro- 
program never checks the sentinal in 
shared memory. Examples of information 
not available to the Interdata micropro- 
gram are the user instruction register 
(UIR), the primary memory address register 

209 



(MAR), the control store address and data 
registers, and the status flags from the 
ALU or I/O unit. All can be modified or 
tested by the microprogram, but none can 
be stored away for display by the break- 
point routine. 

Micro-Delta differs from the debug 
program delivered with the system in two 
major respects: (i) It runs under an 
operating system. Although it modifies 

the OS and operates in the privileged 
mode, Micro-Delta restores the complete 
OS environment before exiting. The vendor's 
program was stand-alone, which required 
reloading of the OS after each use of the 
debugger, such as to reassemble a micro- 
program. (2) Micro-Delta is highly modular. 
The nucleus requires about 4K bytes of 
user memory, while subroutines perform the 
control store load, memory dump (one rou- 
tine for control store and another for 
user memory), and disassembly functions. 
Calling any routine not linked at the time 
generates an appropriate nasty message 
for the user, who may then exit to the 
operating system to link the desired 
routine(s) from a library and return to 
where he left off in Micro-Delta. The 
vendor-supplied program is monolithic, and 
uses 8K bytes of memory. 

The Simulator 

If our interest had been just in 
extending the basic Interdata instruction 
set so we could do production runs of 
enhanced user-level programs, the debug 
program would probably have sufficed. As 
it is, we face a wide variety of interests 
in the machine by our faculty (emulation, 
operating system enhancement, etc.), as 
well as a potentially large number of 
users (there are 400 undergraduate majors 
in our department). The first factor 
suggested that a simulator would be a 
valuable research aid; the second sug- 
gested that it would be wise to take 
advantage of other computer facilities 
available in developing the simulator. 
To this end, the simulator was designed 
to run in the batch mode, with inter- 
active facilities available optionally 
to the on-line user. Furthermore, we 
decided to write the program in Fortran 
so it could be run both at the campus 
computer center (twin Xerox Sigma 7s) and 
at the City University computer facility 
(IBM 168s). The price paid, of course, is 
that execution time is very long, espe- 
cially when large amounts of output must 
be formatted by the Fortran edit routines. 
simulated-to-real execution ratios as 

poor as 5000:1 may occur, if the user opts 
for a complete printout for a run. 

The simulator has some valuable fea- 
tures not always found in such programs. 
For one, I/O functions are simulated as 
faithfully as possible, enabling meaning- 
ful simulation of time-dependent programs. 
For another, we wrote cross-assemblers 
(both micro and user level) to run on the 
Sigma 7s. We then added a loader which 
accepts the output from the assemblers and 
loads it into the simulated machine's 
memories (output from the assemblers ord- 
inarily goes to magnetic tape which is 
transported manually to the Interdata for 
real-time execution). In addition, the 
standard model 85 ROM data and a core- 
image of one of the standard Interdata 
operating systems are in Sigma 7 files 
and can be included in the simulator's 
memories automatically. In a single batch 
job, a user can thus (i) assemble a user- 
level test program, (2) assemble a micro- 
program for RAM or ROM control store, (3) 
load the object code from both assemblies 
along with the standard ROM and OS image, 
and (4) trace the execution of the system 
to whatever level of detail is desired. 

The structure of the simulator par- 
allels the structure of the Interdata as 

much as possible (There is one subroutine 
for the ALU, another for the I/O unit, 
one for each of the control unit states, 
one for each I/O device controller, etc.). 
This structure means that the timing 
calculations for both the synchronous and 
asynchronous parts of the system were 
straightforward: Synchronous routines 
simply advance the system clock by an 
appropriate amount before returning to the 
calling routine; asynchronous routines 
post their anticipated completion time in 
a common area and return immediately to 
the caller. The result has been very 
close agreement between the simulated 
execution times and the vendor's pub- 
lished values. 

CONCLUSION 

I have suggested that small micro- 
programmable computers today are used in 
either of two ways: (i) as "tuned" versions 
of a vendor-designed processor, or (2) as 
emulators. Further, I have suggested 
that interactive debugging programs are 
appropriate for testing microprograms on 
the first type of machine, while simulation 
programs are more valuable when testing 
programs for the second type of machine. 
Examples of both a debug program and a 

210 



simulator for a machine of the first type 
(which is also used for emulation) were 
described. 

REFERENCES 

Gasser, M. An interactive debugger for 
software and firmware. Preprints 
of the Sixth Workshop on Micro- 
p ro~rammin ~, College Park, 1973. 

Husson, S.S. Microprogramming: Prin- 
ciples and Practices. Englewood 
Cliffs: Prentice-Hall, 1970. 

Interdata, Inc. Model 80 test aid 
instruction manual. Interdata 
publication #29-344, 1973. 

Park, H. Fortran enhancement. Preprints 
of the Sixth Workshop on Microprogram- 
min@, College Park, 1973. 

Reigel, E.W. and Lawson, H.W. At the 
programming language - microprogram- 
ming interface. In R.L. Wexelblat (Ed), 
Prpceedin@s of the ACM Si@plan-Si~micro 
Interface Meeting, Harriman, 1973. 

211 


