
MICROMODULES: MICROPROGRAMMABLE
BUILDING BLOCKS

FOR HARDWARE DEVELOPMENT
Richard G. Cooper

National Security Agency
Fort Meade, Maryland

I. Introduction

The algorithm design phase in the deve-
lopment of special purpose hardware is
usually a very small part of the overall
effort. A much larger portion - often 90% or
more - is expended on logic design, fabri-
cation, and debug. Furthermore, since the
pure algorithmic complexity of hardware tends
to be small, algorithm design errors
typically account for a small part of the
total debug time; errors due to electrical
effects consume the lion's share. Precautions
taken during machine design, fabrication, and
debug to minimize reflection, switching
noise, and synchronization errors are time
consuming and expensive. This situation is
at its worst when various types of equipment
are to be produced in small quantities. As
the use of Schottky-TTL and ECL increases,
the problem will become more severe.

The purpose of the Micromodules project
is to greatly reduce the amount of effort
expended on logic design, fabrication and
debug for small quantity developments.
Secondly, with this modular approach, a quick
reaction capability is sought that would
allow a large reduction in the time interval
between system specification and the delivery
of the finished product. Finally, by simul-
taneously simplifying and speeding up the
development process, we aim to improve the
practicability of implementing more complex
equipments.

These goals can be achieved by the
development of a family of microprogrammable
modules. Each module will be architecturally
compatible with a small class of common
hardware structures with obeisance to a
standardized interconnection discipline. The
system designer will obtain a collection of
modules from inventory and configure them, by
means of the interconnection discipline, into
a system which is architecturally suited to
solve the problem at hand.

It is likely that many systems will
require some special hardware development in
addition to the standard modules; our
intention is to minimize the quantity and
complexity of such special equipment. As the
project progresses, additional common
structures will be identified and the family
of micromodules will be expanded to contain
them when justified.

Our approach is not without precedent;
the Macromodules project [1,2,3] at
Washington University has been a fundamental
source of inspiration. There, under the
direction of W. Clark and C. Molnar, a set of
asynchronous building blocks were con-
structed. These can be interconnected with
standard cables. Loading factor allowances,
noise attenuation and techniques for synchro-

nization were built into each module.
Functionally, their modules are quite simple.
Using adders, registers, memories and other
modules of similar complexity, they can
construct systems of interconnected blocks
which are effectively free from electrical
errors. System implementation can be accom-
plished quickly and easily; it is not
uncor, mon for an engineer to design,
construct, and debug a significant system in
a matter of days.

Due to the functional simplicity of each
module, the relative cost of eliminating
intramodular electrical errors is high.
However, macromodules are intended for the
construction of experimental equipment. A
number of modules are configured to implement
a certain algorithm; the system is used for a
short period of time and the modules are then
returned to the stockpile for later use. In
such an environment, the cost of each module
is not very important. It will be used in
many different implementations and only a
fraction of each module's cost need be
attributed to each use. The time and effort
required to build each experimental system is
the more important consideration.

Our approach has been to apply the
macromodular concept to the development of
unique operational special purpose equipment.
In this environment, the cost of each module
is quite important; it will be used in only
one machine; therefore, the relative cost per
module of eliminating electrical errors must
be reduced. To achieve this reduction, we
chose to increase the functional power of
each module rather than relax the inter-
connection discipline. A given algorithm
would be implemented with fewer, more
powerful modules; as a result, the overhead
of eliminating electrical errors is reduced.

II. Microprogrammed Machines

Note that a more complex module
increases the danger of sacrificing the
flexibility required for constructing special
purpose hardware of greatly varied designs.
If flexibility is to be retained, individual
types of modules should be modifiable within
the range of their architectures to suit a
diversity of applications. For this reason,
our modules are often microprogrammed, ioeo
designed with alterable control memories.
Integrated circuit PROMs (programmable read-
only memories) will be used to specify the
functions to be performed by each module.
When new applications of existing module
architectures are required, new PROMs will be
designed to tailor the modules to the
application. With this approach, we can, in
effect, create a wide variety of complex
building blocks for a minimum of

221

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800123.803987&domain=pdf&date_stamp=1973-12-09

developmental effort.
Most projects will still require some

ROM design. Although many data routing and
formatting functions will be satisfiable with
basic designs, it is not likely that needed
processing and sequencing functions will have
been previously designed. Therefore,
compared with the macromodular approach, a
system built with micromodules will require
more effort - weeks instead of days.
Nevertheless, the effort involved in system
implementation will be greatly reduced when
compared with that of current, traditional
hardware development methods.

The total cost of a given implementation
will probably also be reduced. Cost
reductions will be achieved in three areas.
Since effort can be translated into dollars,
substantial savings will be gained in
reducing total effort. Because the modules
will be produced in quantity, the economies
of scale create further savings. Finally, the
extensive use of MSI and LSI technology,
usually unjustifiable in one-of-a-kind
equipment development, also contributes to
overall economy. Offsetting these reductions,
several factors require expenditures not
normally accruing to equipment development.
The cost of developing the modules, their
associated production tooling and inventory
maintenance costs must be distributed among
the equipments produced. Any portion of each
module's capabilities that is not effectively
used in a given equipment must still be
purchased. Quantitative comparisons of these
factors cannot be made at this time, but it
appears that the overall cost per equipment
will be reduced.

In order to clearly describe the
micromodular approach, we must examine those
user-microprograr~able machines currently on
the commercial market.

The great majority of commercial
machines are oriented towards emulation~ for
this reason, they tend to be complex and
expensive. Because the machines will be used
in stand-alone configurations, the archi-
tectural emphasis tends toward high speed
full word arithmetic and logical processing
overlapped with random access memory fetch.
Very limited Boolean capabilities and almost
no multiple Boolean decision and control
functions are included. When used in special-
purpose equipment, emulation machines require
considerable interface logic. Relatively
small amounts of local high speed storage are
common, because main memory offers large
amounts of cheaper, slower storage. Due to
the complexityof emulation machines, their
cost prohibits multiprocessing systems for
many hardware applications. Even when multi-
processing is used, the burden of synchroni-
zation falls on the microprogrammer, or
hardware synchronization must be provided.

Another large segment of the commercial
market is directed towards the implementation
of disk and tape controllers. Few of these
are truly user microprogrammable and
virtually all are fixed architecture
machines. Synchronization of multiple machine
configurations must be microprogramed or
implemented by means of additional hardware.

Recognizing the limitations of current
machines, we decided to use a building block
approach with the micromodules. Each module
is designed to solve a small class of common
hardware problems, without frills. The

emphasis is on low cost, high instruction
cycle rate, and the possibility of coopera-
tion between modules. Although the class of
problems compatible with each modulees
architecture is small, several modules can be
configured to achieve the requirements of a
given implementation.

III. Modular Design Considerations

The separation of functions is an
important theme in the design considerations.
Since microprogramming can be a difficult
task, the separation of functions is useful
in dividing the problem into subproblems
which can more easily be solved. Each
subproblem can then be attacked using the
most appropriate module. As new classes of
subproblems are identified, new modules tuned
to these classes can be developed. System
debug can also be simplified by the
subproblem approach~ each subsystem can be
debugged individually, postponing debug at
the system level until the last subsystems
are ready.

Since systems will be constructed from
collections of modules, synchronization and
buffering are also important considerations.
Facilities for synchronization and buffering
are built into each module in hardware.
In most practical cases, loop-free networks
of modules can be constructed, freeing the
designer from these problems. Where loops
must be constructed, some simple precautions
will ensure that no deadlock problems exist.
As will be shown later in this paper, a
minimal amount of programmed synchronization
can greatly improve efficiency for certain
kinds of processes.

Connections between modules can be
either arithmetic or Boolean. Arithmetic
paths are eight bits wide (one byte). Each
byte path is constructed by connecting a
polarized ten-conductor cable between a byte
output port on one module and a byte input
port on another. Each port maintains a FULL
flip-flop which specifies whether the port
contains data. When data is transferred from
an output port to an input port, the FULL
flip-flop in the output port is cleared and
the FULL flip-flop in the input port is set.
The transfer of data between ports and
control of the FULL flip-flops during
transmission are performed completely in
hardware. Two wires in the ten-conductor
cable are used for handshaking signals.
Transfer between ports is accomplished by
logic built into each port. Since each port
contains its own data buffer register, the
interconnected modules can be performing
computations while the transfer is taking
place.

Synchronization of byte data transfers
with processing is accomplished by use of the
FULL flip-flops. If a microinstruction
attempts to read data from an input port
which does not contain data, completion, of
that instruction is suspended until data is
transferred into the port by the handshaking
logic. When an input port is read, its FULL
flip-flop clears, allowing the handshaking
control to transfer in another byte. Thus
each access of an input port reads a new byte
of data regardless of the input arrival rate.
Similarly, a mlcroinstruction that attempts
to place data into an output port, which
already contains data, is suspended until the

222

port empties. Since both input and output
ports contain data storage registers, all
byte transfers between modules are double
buffered by the hardware.

Each arithmetically oriented module can
contain multiple input and output ports for
byte data. Thus data words larger than eight
bits can be transferred serially by byte or
in parallel along several cables. Parallel
transfers occur independently. Since modules
can be processing while transfers take place,
and since data is double buffered, the
duration of data transfer can be several
instruction times long without much
degradation of performance. This relatively
slow data transfer, combined with fixed
loading factors and reflection charac-
teristics, reduces electrical interconnection
errors to a low level. Resistor terminators
are built into the input ports and
interconnection cables are shielded.

Boolean interconnections are of two
kinds: level signals and pulsed signals.
Level signals are useful for connections
between the modules and peripheral equipment.
Level signals can be used for controlling and
sensing Boolean lines, e.g. tape and disk
drives. Pulsed signals are useful for
synchronization tasks within the network of
modules.

Coaxial cables are used for transmitting
Boolean signals and each module can contain
one or more Boolean input and output ports.
Switches are provided on some modules to
specify whether a port will be a level or
pulsed signal device.

Level signals are strobed into flip-
flops at the beginning of each instruction
cycle to assure unambiguous operation.
Schmidt triggers are used in some modules to
perform level conversion and signal
conditioning.

Pulsed signals require a rise and fall
cycle of operation. A two phase flip-flop
configuration is used on the input lines to
synchronize pulsed signal transmission. A
received pulse is stored in a flip-flop until
the receiving module tests that flip-flop.
When a pulsed flip-flop is tested, it is
automatically reset. Pulsed signals are
therefore not acknowledged in hardware by the
receiving device. If a given system
requires acknowledgement, this task must be
performed in firmware.

IV. Design Aids

The design of ROMs, as has been
previously stated, is a difficult task. For
many projects, ROM design will be the most
time consuming part of system implementation.
For this reason, numerous ROM design aids are
planned. Design aids will be written in
time-sharing Fortran IV for the DEC PDP-10°

A basic table-driven assembler will be
constructed. Individual symbolic assemblers
can then be written for each module by
providing the basic assembler with the proper
tables.

A single preprocessor program will be
used to expand macro routines prior to
assembly. Alphanumeric text, consisting
solely of macro control statements, will be
input to the preprocessor. Expansion will
then be independent of the individual
assembly languages~ thus the macro capability
need not be provided for every version of the

assembler. ROM designers must expand macro
calls individually and then edit the expanded
macro text into the body of the program.

A functional simulation of each module
will be provided. The ROM designer can then
debug his microprogram by repeated cycles of
editing, assembly and simulation in a manner
similar to the debugging of software.

An interconnection simulation routine
will be used to debug configurations of
modules. This routine will be an event-table
simulator which enables the system designer
to observe the interaction of the modules in
a system. The degree of overlapped operation
can be observed and the effects of altera-
tions to individual modules on the configura-
tion can be ascertained.

When ROM designs are completed, each
object program can be dumped to paper tape.
A ROM can then be physically constructed by
"burning" the pattern specified on the paper
tape into PROM integrated circuits.

System implementation would be accom-
plished by the software simulation process of
ROM design, followed by ROM pattern fabri-
cation. The ROMs would then be plugged into
the appropriate micromodules obtained from
stock. Standard cables, also obtained from
stock, would be used to interconnect the
modules.

V. Networks of Modules

An important goal of the Micromodules
project is to facilitate the construction of
more complex equipments than are feasible
with traditional methods of constructing
hardware. In particular, we wish to encourage
the use of large networks of modules. Two
adaptations of well known techniques are
expected to be of general use in such
systems: pipelining and parallel processing.

A. Pipelines

Pipeline structures are particularly
appropriate to the micromodules. Let each
packet of data be represented as x. Let the
function f(x) be computed by a pipeline of n
stages, thus

f(x) = fl(...fn_l(fn(X))...)

as illustrated in figure I.
In designing a pipeline, each processing

element should compute the appropriate
function in a fixed time period. Thus each
packet spends an identical amount of time in
each processor. If the subfunctions to be
computed do not have identical computation
times, synchronization circuitry must be
included in the design. If some of the
subfunctions require random computation
times, the buffering of data packets must
also be provided for the sake of efficiency.
Furthermore, each processor should be
designed so that its average computation time
is approximately equal to that of the other
processors. Because of these optimization
problems, pipeline structures are not often
practicable for the implementation of complex
functions.

However, a modified version of the
structure (figure 2) allows the pipeline
concept to be applied to a larger class of
practical problems. Let the packet y be
defined as the augmented pair of elements

223

y = (i,x)

where i is a tag value (initially, i=n)
representing the next subfunction to be
computed, i.e. fi(x). Let there be m
processing elements gj, for j=l,..o,m. After
each processing element, there is a buffer qi
of fixed size. Let bj be a Boolean
feedback signal from qj to gj such that

bj = 1 iff qjois more than half full
0 orJ1erwlse.

The b i signal allows the processing
element to determine the state of its output
buffer. By considering the tag value i of
its current packet and the state bj . of the
output buffer, each processor makes the
decision to pass the current packet to the
buffer or to compute the next subfunction.
Thus

gj = gi(i-l,fi(x)) iff (bj=l) and (i>0)
(1,x) otherwise

for (0<j<m+l).

Note that bm=l regardless of the state
of qm. This fact allows each processing
element to contain the same microprogram.
Furthermore, the microprogram is not
dependent on m or n. Thus a pipeline
executive microprogram can be written and
debugged for arbitrary m and n values. The
executive would only be concerned with
reading and writing data packets, and with
making the decision to process or pass the
current packet. System design of a pipeline
could be performed by combining the executive
with a list of packet sizes and subfunction
addresses in a table indexed by i, and the
microcode for each subfunction.

Since the pipeline structure does not
depend on m, fast failure recovery is facili-
tated. The faulty module can be quickly
removed from the pipeline and the system can
be restarted with a structure of size m-1.
Performance would be degraded, but the
structure could still operate with up to m-I
failures.

It was stated previously in this paper
that loop-free interconnect structures could
sometimes be implemented for algorithms which
contain loops. The simplest method would be
to contain the loop within a single module by
means of the microprogram. Loops can also
be integrated into the pipeline structure by
a modification of the definition of gi; let
the subfunctionmicrocode also compute ~i(i),
the next value of the tag i. Thus

gj = g~(si(i),fi(x}) iff (~=i) and (i>0}
(i,x) otherwise

with each iteration of a loop being
considered as a new invocation of the same
subfunction.
Either definition of gj preserves the order
of packet throughput. Although one packet
can be completely processed in the first
element and another packet partially
processed by each stage, each packet will
leave gm completely processed and in the
original order.

Because of the importance of the pipe-
line concept, a data flow simulator has been
programmed. The system designer can specify

the type and shape of computation time
distributions (assuming they are independent)
and the packet size for each value of i. By
selecting values of m and by combining or
reducing subfunction definitions, he can
determine the most effective implementation
of those considered.

B. Parallel Processing

The use of parallel structures like that
in figure 3 is also anticipated. An input
controller I is used to schedule the flow of
input data to each of the m processors g~,
while output controller 0 merges the result
streams. The mode of operation depends upon
the characteristics of the function f. If
f requires a nearly constant amount of
processing time regardless of the data packet
values, a phased sequence of processing can
be scheduled by I and O. If packet transfer
time is t a and computation requires time tf
for each ~acket, then for maximum throughput,

m > [(tf + 2t d) / t d] for t d > 0

If tf is random with a significant
variation, a more complex structure and
scheduling algorithm might be used. Data
packets can be buffered as shown in figure 4
with the scheduling controlled by the state
of the buffers. For the input controller,
let b= be the Boolean state signal defined
previo~slyo Then a good scheduling
algorithm might be

n = min(j) such that bj=0

where n, if defined, is the subscript of the
next buffer q to receive a packet of data.
Similarly, if a~ is the Boolean state signal
for the jth output buffer, then let

k = min(j)such that aj=l
else if no a~=l,

k = min~j) such that rj is not empty.

For maximum throughput,

m > [E((tf + 2t d) / t d)]

Note that the order of packet input is
not preserved at the output for the case of
random scheduling. If order must~be pre-
served, then an order index can be attached
to each packet at I. This index can be used
by O to place the results in order. Let 1 be
the maximum number of packets containable by
the system in figure 4. Let u be the maximum
possible computation time, and let v be the
minimum. Then three buffers of size w are
required for reordering where

w = [(lu)/v]

For the random scheduler, a data flow
simulation is planned that will be similar to
that for the pipeline structure. Several
executive routines for phased and random
schedulers, with and without order indexing,
will be written.

VI. Summary

The Micromodules project is directed
towards the simplification of hardware design
and implementation. A powerful and flexible

224

f(x) = fl (.... fn_l(fn(X))...)

Figure i. A Pipeline Structure

(n,x)

ql

gj --

Figure 2.

q2

gj(i-l,fi(x)) iff (bj=l) and (i>0)

(i ,x) otherwise

A Self-Optimized Pipeline Structure

qm

- (O,f (x))

O

gj (x) = f(x)

Figure 3.

(O<j<m+l)

A Parallel Processing Structure

= f(x)

X I I

Figure 4.

b 1 ~ a 1

ql rl

b 2 ~ a 2

q2 r2

b ~ _ ~ _ ~ _ ~ ~

% rm

L.

]

J

iio
r,

A Self-Optimized Parallel Processing Structure

--- f (x)

225

set of microprogra~ed modules is provided.
The use of a standardized interconnection
discipline, with an emphasis on the elimi-
nation of electrical errors, allows the
engineer to concentrate on the architectural
aspects of his problem.

The system designer will have two
powerful structures at hand: the pipeline and
parallel schedulers. He can design micropro-
grams for the functions to be computed.
Using the computation time characteristics of
the function microprograms, he can simulate a
data flow model and manipulate the model to
achieve the desired throughput. Finally, he
can assemble an arbitrary network of modules
without bearing the burden of synchronization
and buffering design.

A basic family of four micromodules is
now in the development stage. Future work
will include the identification and realiza-
tion of other useful structures, whether
microprogrammed or hardwired. A continuing
effort to construct ROM designs with broad
applicability and to further improve design
aids is anticipated. Some effort will also
be made to discover other basic system
structures which would be useful in
distributing processing tasks among a
collection of modules.

References

[I] W. A. Clark, "Macromodular Computer
Systems", 1967 SJCC Proceedings, p335

[2] S. M. Ornstein, M. J. Stucki and W. A.
Clark, "A Functional Description of
Macromodules", 1967 SJCC Proceedings,
p337

[3] C. E. Molnar, S. M. Ornstein and A.
Anne, "The CHASM: A Macromodular
Computer for Analyzing Neuron Models",
1967 SJCC Proceedings, p393

Bibliography

[4] H. H. Loomis, Jr. and M. R. McCoy, "A
Scheme for Synchronizing High Speed
Logic: Part I." and "... Part II.",
IEEE Trans. Computers, January and
February 1970

[5] H. H. Loomis, Jr., "The Maximum Rate
Accumulator", IEEE Trans. Computers,
August 1966

[6] C. G. Bell and J. Grason, "Register
Transfer Modules (RTM) and their Design",
Computer Design, May 1971

[7] D. Misunas,
Independent
August 1973

"Petri Nets and Speed
Design", Comm. ACM,

226

