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I. Introduction 

The algorithm design phase in the deve- 
lopment of special purpose hardware is 
usually a very small part of the overall 
effort. A much larger portion - often 90% or 
more - is expended on logic design, fabri- 
cation, and debug. Furthermore, since the 
pure algorithmic complexity of hardware tends 
to be small, algorithm design errors 
typically account for a small part of the 
total debug time; errors due to electrical 
effects consume the lion's share. Precautions 
taken during machine design, fabrication, and 
debug to minimize reflection, switching 
noise, and synchronization errors are time 
consuming and expensive. This situation is 
at its worst when various types of equipment 
are to be produced in small quantities. As 
the use of Schottky-TTL and ECL increases, 
the problem will become more severe. 

The purpose of the Micromodules project 
is to greatly reduce the amount of effort 
expended on logic design, fabrication and 
debug for small quantity developments. 
Secondly, with this modular approach, a quick 
reaction capability is sought that would 
allow a large reduction in the time interval 
between system specification and the delivery 
of the finished product. Finally, by simul- 
taneously simplifying and speeding up the 
development process, we aim to improve the 
practicability of implementing more complex 
equipments. 

These goals can be achieved by the 
development of a family of microprogrammable 
modules. Each module will be architecturally 
compatible with a small class of common 
hardware structures with obeisance to a 
standardized interconnection discipline. The 
system designer will obtain a collection of 
modules from inventory and configure them, by 
means of the interconnection discipline, into 
a system which is architecturally suited to 
solve the problem at hand. 

It is likely that many systems will 
require some special hardware development in 
addition to the standard modules; our 
intention is to minimize the quantity and 
complexity of such special equipment. As the 
project progresses, additional common 
structures will be identified and the family 
of micromodules will be expanded to contain 
them when justified. 

Our approach is not without precedent; 
the Macromodules project [1,2,3] at 
Washington University has been a fundamental 
source of inspiration. There, under the 
direction of W. Clark and C. Molnar, a set of 
asynchronous building blocks were con- 
structed. These can be interconnected with 
standard cables. Loading factor allowances, 
noise attenuation and techniques for synchro- 

nization were built into each module. 
Functionally, their modules are quite simple. 
Using adders, registers, memories and other 
modules of similar complexity, they can 
construct systems of interconnected blocks 
which are effectively free from electrical 
errors. System implementation can be accom- 
plished quickly and easily; it is not 
uncor, mon for an engineer to design, 
construct, and debug a significant system in 
a matter of days. 

Due to the functional simplicity of each 
module, the relative cost of eliminating 
intramodular electrical errors is high. 
However, macromodules are intended for the 
construction of experimental equipment. A 
number of modules are configured to implement 
a certain algorithm; the system is used for a 
short period of time and the modules are then 
returned to the stockpile for later use. In 
such an environment, the cost of each module 
is not very important. It will be used in 
many different implementations and only a 
fraction of each module's cost need be 
attributed to each use. The time and effort 
required to build each experimental system is 
the more important consideration. 

Our approach has been to apply the 
macromodular concept to the development of 
unique operational special purpose equipment. 
In this environment, the cost of each module 
is quite important; it will be used in only 
one machine; therefore, the relative cost per 
module of eliminating electrical errors must 
be reduced. To achieve this reduction, we 
chose to increase the functional power of 
each module rather than relax the inter- 
connection discipline. A given algorithm 
would be implemented with fewer, more 
powerful modules; as a result, the overhead 
of eliminating electrical errors is reduced. 

II. Microprogrammed Machines 

Note that a more complex module 
increases the danger of sacrificing the 
flexibility required for constructing special 
purpose hardware of greatly varied designs. 
If flexibility is to be retained, individual 
types of modules should be modifiable within 
the range of their architectures to suit a 
diversity of applications. For this reason, 
our modules are often microprogrammed, ioeo 
designed with alterable control memories. 
Integrated circuit PROMs (programmable read- 
only memories) will be used to specify the 
functions to be performed by each module. 
When new applications of existing module 
architectures are required, new PROMs will be 
designed to tailor the modules to the 
application. With this approach, we can, in 
effect, create a wide variety of complex 
building blocks for a minimum of 
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developmental effort. 
Most projects will still require some 

ROM design. Although many data routing and 
formatting functions will be satisfiable with 
basic designs, it is not likely that needed 
processing and sequencing functions will have 
been previously designed. Therefore, 
compared with the macromodular approach, a 
system built with micromodules will require 
more effort - weeks instead of days. 
Nevertheless, the effort involved in system 
implementation will be greatly reduced when 
compared with that of current, traditional 
hardware development methods. 

The total cost of a given implementation 
will probably also be reduced. Cost 
reductions will be achieved in three areas. 
Since effort can be translated into dollars, 
substantial savings will be gained in 
reducing total effort. Because the modules 
will be produced in quantity, the economies 
of scale create further savings. Finally, the 
extensive use of MSI and LSI technology, 
usually unjustifiable in one-of-a-kind 
equipment development, also contributes to 
overall economy. Offsetting these reductions, 
several factors require expenditures not 
normally accruing to equipment development. 
The cost of developing the modules, their 
associated production tooling and inventory 
maintenance costs must be distributed among 
the equipments produced. Any portion of each 
module's capabilities that is not effectively 
used in a given equipment must still be 
purchased. Quantitative comparisons of these 
factors cannot be made at this time, but it 
appears that the overall cost per equipment 
will be reduced. 

In order to clearly describe the 
micromodular approach, we must examine those 
user-microprograr~able machines currently on 
the commercial market. 

The great majority of commercial 
machines are oriented towards emulation~ for 
this reason, they tend to be complex and 
expensive. Because the machines will be used 
in stand-alone configurations, the archi- 
tectural emphasis tends toward high speed 
full word arithmetic and logical processing 
overlapped with random access memory fetch. 
Very limited Boolean capabilities and almost 
no multiple Boolean decision and control 
functions are included. When used in special- 
purpose equipment, emulation machines require 
considerable interface logic. Relatively 
small amounts of local high speed storage are 
common, because main memory offers large 
amounts of cheaper, slower storage. Due to 
the complexityof emulation machines, their 
cost prohibits multiprocessing systems for 
many hardware applications. Even when multi- 
processing is used, the burden of synchroni- 
zation falls on the microprogrammer, or 
hardware synchronization must be provided. 

Another large segment of the commercial 
market is directed towards the implementation 
of disk and tape controllers. Few of these 
are truly user microprogrammable and 
virtually all are fixed architecture 
machines. Synchronization of multiple machine 
configurations must be microprogramed or 
implemented by means of additional hardware. 

Recognizing the limitations of current 
machines, we decided to use a building block 
approach with the micromodules. Each module 
is designed to solve a small class of common 
hardware problems, without frills. The 

emphasis is on low cost, high instruction 
cycle rate, and the possibility of coopera- 
tion between modules. Although the class of 
problems compatible with each modulees 
architecture is small, several modules can be 
configured to achieve the requirements of a 
given implementation. 

III. Modular Design Considerations 

The separation of functions is an 
important theme in the design considerations. 
Since microprogramming can be a difficult 
task, the separation of functions is useful 
in dividing the problem into subproblems 
which can more easily be solved. Each 
subproblem can then be attacked using the 
most appropriate module. As new classes of 
subproblems are identified, new modules tuned 
to these classes can be developed. System 
debug can also be simplified by the 
subproblem approach~ each subsystem can be 
debugged individually, postponing debug at 
the system level until the last subsystems 
are ready. 

Since systems will be constructed from 
collections of modules, synchronization and 
buffering are also important considerations. 
Facilities for synchronization and buffering 
are built into each module in hardware. 
In most practical cases, loop-free networks 
of modules can be constructed, freeing the 
designer from these problems. Where loops 
must be constructed, some simple precautions 
will ensure that no deadlock problems exist. 
As will be shown later in this paper, a 
minimal amount of programmed synchronization 
can greatly improve efficiency for certain 
kinds of processes. 

Connections between modules can be 
either arithmetic or Boolean. Arithmetic 
paths are eight bits wide (one byte). Each 
byte path is constructed by connecting a 
polarized ten-conductor cable between a byte 
output port on one module and a byte input 
port on another. Each port maintains a FULL 
flip-flop which specifies whether the port 
contains data. When data is transferred from 
an output port to an input port, the FULL 
flip-flop in the output port is cleared and 
the FULL flip-flop in the input port is set. 
The transfer of data between ports and 
control of the FULL flip-flops during 
transmission are performed completely in 
hardware. Two wires in the ten-conductor 
cable are used for handshaking signals. 
Transfer between ports is accomplished by 
logic built into each port. Since each port 
contains its own data buffer register, the 
interconnected modules can be performing 
computations while the transfer is taking 
place. 

Synchronization of byte data transfers 
with processing is accomplished by use of the 
FULL flip-flops. If a microinstruction 
attempts to read data from an input port 
which does not contain data, completion, of 
that instruction is suspended until data is 
transferred into the port by the handshaking 
logic. When an input port is read, its FULL 
flip-flop clears, allowing the handshaking 
control to transfer in another byte. Thus 
each access of an input port reads a new byte 
of data regardless of the input arrival rate. 
Similarly, a mlcroinstruction that attempts 
to place data into an output port, which 
already contains data, is suspended until the 
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port empties. Since both input and output 
ports contain data storage registers, all 
byte transfers between modules are double 
buffered by the hardware. 

Each arithmetically oriented module can 
contain multiple input and output ports for 
byte data. Thus data words larger than eight 
bits can be transferred serially by byte or 
in parallel along several cables. Parallel 
transfers occur independently. Since modules 
can be processing while transfers take place, 
and since data is double buffered, the 
duration of data transfer can be several 
instruction times long without much 
degradation of performance. This relatively 
slow data transfer, combined with fixed 
loading factors and reflection charac- 
teristics, reduces electrical interconnection 
errors to a low level. Resistor terminators 
are built into the input ports and 
interconnection cables are shielded. 

Boolean interconnections are of two 
kinds: level signals and pulsed signals. 
Level signals are useful for connections 
between the modules and peripheral equipment. 
Level signals can be used for controlling and 
sensing Boolean lines, e.g. tape and disk 
drives. Pulsed signals are useful for 
synchronization tasks within the network of 
modules. 

Coaxial cables are used for transmitting 
Boolean signals and each module can contain 
one or more Boolean input and output ports. 
Switches are provided on some modules to 
specify whether a port will be a level or 
pulsed signal device. 

Level signals are strobed into flip- 
flops at the beginning of each instruction 
cycle to assure unambiguous operation. 
Schmidt triggers are used in some modules to 
perform level conversion and signal 
conditioning. 

Pulsed signals require a rise and fall 
cycle of operation. A two phase flip-flop 
configuration is used on the input lines to 
synchronize pulsed signal transmission. A 
received pulse is stored in a flip-flop until 
the receiving module tests that flip-flop. 
When a pulsed flip-flop is tested, it is 
automatically reset. Pulsed signals are 
therefore not acknowledged in hardware by the 
receiving device. If a given system 
requires acknowledgement, this task must be 
performed in firmware. 

IV. Design Aids 

The design of ROMs, as has been 
previously stated, is a difficult task. For 
many projects, ROM design will be the most 
time consuming part of system implementation. 
For this reason, numerous ROM design aids are 
planned. Design aids will be written in 
time-sharing Fortran IV for the DEC PDP-10° 

A basic table-driven assembler will be 
constructed. Individual symbolic assemblers 
can then be written for each module by 
providing the basic assembler with the proper 
tables. 

A single preprocessor program will be 
used to expand macro routines prior to 
assembly. Alphanumeric text, consisting 
solely of macro control statements, will be 
input to the preprocessor. Expansion will 
then be independent of the individual 
assembly languages~ thus the macro capability 
need not be provided for every version of the 

assembler. ROM designers must expand macro 
calls individually and then edit the expanded 
macro text into the body of the program. 

A functional simulation of each module 
will be provided. The ROM designer can then 
debug his microprogram by repeated cycles of 
editing, assembly and simulation in a manner 
similar to the debugging of software. 

An interconnection simulation routine 
will be used to debug configurations of 
modules. This routine will be an event-table 
simulator which enables the system designer 
to observe the interaction of the modules in 
a system. The degree of overlapped operation 
can be observed and the effects of altera- 
tions to individual modules on the configura- 
tion can be ascertained. 

When ROM designs are completed, each 
object program can be dumped to paper tape. 
A ROM can then be physically constructed by 
"burning" the pattern specified on the paper 
tape into PROM integrated circuits. 

System implementation would be accom- 
plished by the software simulation process of 
ROM design, followed by ROM pattern fabri- 
cation. The ROMs would then be plugged into 
the appropriate micromodules obtained from 
stock. Standard cables, also obtained from 
stock, would be used to interconnect the 
modules. 

V. Networks of Modules 

An important goal of the Micromodules 
project is to facilitate the construction of 
more complex equipments than are feasible 
with traditional methods of constructing 
hardware. In particular, we wish to encourage 
the use of large networks of modules. Two 
adaptations of well known techniques are 
expected to be of general use in such 
systems: pipelining and parallel processing. 

A. Pipelines 

Pipeline structures are particularly 
appropriate to the micromodules. Let each 
packet of data be represented as x. Let the 
function f(x) be computed by a pipeline of n 
stages, thus 

f(x) = fl(...fn_l(fn(X))...) 

as illustrated in figure I. 
In designing a pipeline, each processing 

element should compute the appropriate 
function in a fixed time period. Thus each 
packet spends an identical amount of time in 
each processor. If the subfunctions to be 
computed do not have identical computation 
times, synchronization circuitry must be 
included in the design. If some of the 
subfunctions require random computation 
times, the buffering of data packets must 
also be provided for the sake of efficiency. 
Furthermore, each processor should be 
designed so that its average computation time 
is approximately equal to that of the other 
processors. Because of these optimization 
problems, pipeline structures are not often 
practicable for the implementation of complex 
functions. 

However, a modified version of the 
structure (figure 2) allows the pipeline 
concept to be applied to a larger class of 
practical problems. Let the packet y be 
defined as the augmented pair of elements 
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y = (i,x) 

where i is a tag value (initially, i=n) 
representing the next subfunction to be 
computed, i.e. fi(x). Let there be m 
processing elements gj, for j=l,..o,m. After 
each processing element, there is a buffer qi 
of fixed size. Let bj be a Boolean 
feedback signal from qj to gj such that 

bj = 1 iff qjois more than half full 
0 orJ1erwlse. 

The b i signal allows the processing 
element to determine the state of its output 
buffer. By considering the tag value i of 
its current packet and the state bj . of the 
output buffer, each processor makes the 
decision to pass the current packet to the 
buffer or to compute the next subfunction. 
Thus 

gj = gi(i-l,fi(x)) iff (bj=l) and (i>0) 
(1,x) otherwise 

for (0<j<m+l). 

Note that bm=l regardless of the state 
of qm. This fact allows each processing 
element to contain the same microprogram. 
Furthermore, the microprogram is not 
dependent on m or n. Thus a pipeline 
executive microprogram can be written and 
debugged for arbitrary m and n values. The 
executive would only be concerned with 
reading and writing data packets, and with 
making the decision to process or pass the 
current packet. System design of a pipeline 
could be performed by combining the executive 
with a list of packet sizes and subfunction 
addresses in a table indexed by i, and the 
microcode for each subfunction. 

Since the pipeline structure does not 
depend on m, fast failure recovery is facili- 
tated. The faulty module can be quickly 
removed from the pipeline and the system can 
be restarted with a structure of size m-1. 
Performance would be degraded, but the 
structure could still operate with up to m-I 
failures. 

It was stated previously in this paper 
that loop-free interconnect structures could 
sometimes be implemented for algorithms which 
contain loops. The simplest method would be 
to contain the loop within a single module by 
means of the microprogram. Loops can also 
be integrated into the pipeline structure by 
a modification of the definition of gi; let 
the subfunctionmicrocode also compute ~i(i), 
the next value of the tag i. Thus 

gj = g~(si(i),fi(x}) iff (~=i) and (i>0} 
(i,x) otherwise 

with each iteration of a loop being 
considered as a new invocation of the same 
subfunction. 
Either definition of gj preserves the order 
of packet throughput. Although one packet 
can be completely processed in the first 
element and another packet partially 
processed by each stage, each packet will 
leave gm completely processed and in the 
original order. 

Because of the importance of the pipe- 
line concept, a data flow simulator has been 
programmed. The system designer can specify 

the type and shape of computation time 
distributions (assuming they are independent) 
and the packet size for each value of i. By 
selecting values of m and by combining or 
reducing subfunction definitions, he can 
determine the most effective implementation 
of those considered. 

B. Parallel Processing 

The use of parallel structures like that 
in figure 3 is also anticipated. An input 
controller I is used to schedule the flow of 
input data to each of the m processors g~, 
while output controller 0 merges the result 
streams. The mode of operation depends upon 
the characteristics of the function f. If 
f requires a nearly constant amount of 
processing time regardless of the data packet 
values, a phased sequence of processing can 
be scheduled by I and O. If packet transfer 
time is t a and computation requires time tf 
for each ~acket, then for maximum throughput, 

m > [ (tf + 2t d) / t d ] for t d > 0 

If tf is random with a significant 
variation, a more complex structure and 
scheduling algorithm might be used. Data 
packets can be buffered as shown in figure 4 
with the scheduling controlled by the state 
of the buffers. For the input controller, 
let b= be the Boolean state signal defined 
previo~slyo Then a good scheduling 
algorithm might be 

n = min(j) such that bj=0 

where n, if defined, is the subscript of the 
next buffer q to receive a packet of data. 
Similarly, if a~ is the Boolean state signal 
for the jth output buffer, then let 

k = min(j)such that aj=l 
else if no a~=l, 

k = min~j) such that rj is not empty. 

For maximum throughput, 

m > [ E((tf + 2t d) / t d) ] 

Note that the order of packet input is 
not preserved at the output for the case of 
random scheduling. If order must~be pre- 
served, then an order index can be attached 
to each packet at I. This index can be used 
by O to place the results in order. Let 1 be 
the maximum number of packets containable by 
the system in figure 4. Let u be the maximum 
possible computation time, and let v be the 
minimum. Then three buffers of size w are 
required for reordering where 

w = [(lu)/v] 

For the random scheduler, a data flow 
simulation is planned that will be similar to 
that for the pipeline structure. Several 
executive routines for phased and random 
schedulers, with and without order indexing, 
will be written. 

VI. Summary 

The Micromodules project is directed 
towards the simplification of hardware design 
and implementation. A powerful and flexible 
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Figure i. A Pipeline Structure 
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set of microprogra~ed modules is provided. 
The use of a standardized interconnection 
discipline, with an emphasis on the elimi- 
nation of electrical errors, allows the 
engineer to concentrate on the architectural 
aspects of his problem. 

The system designer will have two 
powerful structures at hand: the pipeline and 
parallel schedulers. He can design micropro- 
grams for the functions to be computed. 
Using the computation time characteristics of 
the function microprograms, he can simulate a 
data flow model and manipulate the model to 
achieve the desired throughput. Finally, he 
can assemble an arbitrary network of modules 
without bearing the burden of synchronization 
and buffering design. 

A basic family of four micromodules is 
now in the development stage. Future work 
will include the identification and realiza- 
tion of other useful structures, whether 
microprogrammed or hardwired. A continuing 
effort to construct ROM designs with broad 
applicability and to further improve design 
aids is anticipated. Some effort will also 
be made to discover other basic system 
structures which would be useful in 
distributing processing tasks among a 
collection of modules. 
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