
DESIGN OF A FULLY VARIABLE-LENGTH
STRUCTURED MINICOMPUTER

Z. G. Vranesic
V. C. Hamacher

Y. Y. Leung
Departments of Electrical Engineering and Computer Science

University of Toronto
Toronto, Canada

ABSTRACT

Binary-based and fixed-length structure computers
are often inconvenient and wasteful of resources. In
this paper we present a design for a fully variable-
length structured minicomputer. Since all parameters
(instructions and data) are unrestricted in length,
their boundaries and interpretation are effected by
special delimiter codes. For practical reasons (dic-
tated by current technology) the machine utilizes a
binary-coded decimal number representation.

I. INTRODUCTION

Present day digital systems show a prevalence of
binary, fixed-length structures. This is dictated by
the technological ease of implementation, low cost and
high reliability. Yet there are a large number of
applications where the binary base and fixed-length
organization are inconvenient and often wasteful of
resources.

Decimal and variable-length data have been imple-
mented in differing degrees from the IBM 1620 era [i]
to one of the latest minicomputers, the CIP/2200 [2].
However, most of these machines have achieved these
features in an "added-on" fashion in a structure that
mainly offers conventional binary, fixed-length opera-
tions. The recently reported BIT00 computer [5] re-
flects an attempt to get around the difficulties im-
posed by fixed-length constraints by providing a highly
flexible, reconfigurable structure, where specific
lengths may be defined as run time parameters.

In this paper we propose the design of a relative-
ly small-scale decimal, variable-length machine whose
structure evolves solely from those two features. In a
sense, the work reported here can be interpreted as an
elaboration or feasibility study on some conjectures
made recently by Foster [4] concerning the architecture
of the average computer of the year 2000. The design
study described in more detail in the following sec-
tions in fact supports the feasibility of the basic
concept even in terms of present day technology.

II. MACHINE ORGANIZATION

In o r d e r to p rov ide t h e v a r i a b l e - l e n g t h c h a r a c t e -
r i s t i c f o r d a t a , OP-codes and a d d r e s s e s , i t i s n e c e s s -
ary to employ some " l e n g t h d e l i m i t e r s " . Thus i t i s
apparent that a truly binary machine could not be cons-
tructed to meet such requirements, since the range of
available digits (0,i) leaves no spare codes which
could serve as delimiters. Hence we must turn to a
higher base system, which for practical reasons might
be binary coded.

Our choice is the decimal system with binary coded
implementation. This provides us with six codes (other
than 0-9) for use as delimiters. We will call them

D = { a,8,7,~,+,-}.
The machine has a random-access memory with the

capacity of 100,000 digits, addressable to the digit
(0-99,999).

NUMBER AND CHARACTER REPRESENTATION

In order to represent real numbers of the form N
x 10e, both N and e are expressed as a sign followed by
a 10's complement value. The exponent e is stored
first, followed by the significant digits N, both num-
ber fields occurring low-order digits first.

For example +518.27 x 10 -12 is represented and
stored in memory as -68+72815*, which is equivalent to
31827 x 10 -14 . The decimal point is always implied at
the low order end of N, Note that * could be any deli-
miter.

Integer form is used for addressing purposes only
(e = 0 and it is not shown explicitly) and it is recog-
nized as such from the context of instructions. We will
refer to { ±} followed by a string of digits as a number
field or address, depending on the context, and use the
name number or real number to refer to two successive
number fields.

It is important to observe that the low-order di-
gits are stored first, because the arithmetic unit must
be at least partly serial, to enable it to handle arbit-
rarily long numbers.

The ASCII character set is represented directly
using 2 4-bit digits per character. Any two digit dell-
miter not in the ASCII set, referenced in this paper as
[I], is used as the character string delimiter. In gene-
ral, the address of a character string, number, address,
or instruction is the address of the leading delimiter,
since this delimiter usually describes some property of
the information to follow.

INSTRUCTION SET

The machine has thirty-one instructions, including
four rudimentary I/O instructions. Instructions are
delimited by a. An unsigned decimal opcode follows the
leading a and its end is indicated by any single digit
delimiter. All instructions except HALT have an ope-
rand list which in some cases is preceded by a parame-
ter K. The delimiter ~ indicates that K is present,
and the possible values for K are integers equal to or
greater than 0. The K value may be referenced by any
of the addressing modes of Table i. The interpretation
of the delimiter set when used to separate items of the
operand list is shown in Table i. Table 2 gives the
complete instruction set. In instructions where the
parameter K is called for, it may be omitted if K = i;
there being no ambiguity, since A can never be imme-
diate data. The number of operands is variable in ADSB
and MUDI instructions.

251

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800123.803990&domain=pdf&date_stamp=1973-12-09

A few examples should clarify the appearance in
memory of complete instructions, and give an idea of

instruction execution.
(i) ~MVN82+4196-97+32a -21

This instruction inserts the real number 23xi0 ,
represented by 2 number fields, into the memory
starting at the address 914; while ~MVN~4+419-
0001a moves the four number fields (2 real num-
bers or 4 addresses) starting at the address
stored at location 1000 (indirect mode) into

914. I f t he number f i e l d (a d d r e s s) s t o r e d a t
1000 has a " - " l e a d i n g d e l i m i t e r , t h e n a n o t h e r
l e v e l o f i n d i r e c t i o n i s i n d i c a t e d .

(ii) aCPC+001~D1 D%D 3 D~...Dn_i D []

C 1 C 2 ... Cn/2

compares the character string CiC2...Cn/z with
the one stored at 100 and sets the 2-bit condi-
tion vector in the CPU to 00 if they are equal,
and to ll if they are not; while ~CPC+001y456+27=

TABLE i
Interpretation of delimitersin instructions

Delimiter Addressing Mode
or Function

direct
indirect
indexed

immedia te

instruction delimiter
operation change
(indicates SUBTRACT
instead of ADD and
DIVIDE instead of
MULTIPLY in the ADSB
and MUDI instructions.)

0perand Form

u n s i g n e d i n t e g e r a d d r e s s .
u n s i g n e d i n t e g e r a d d r e s s .
u n s i g n e d i n t e g e r a d d r e s s (t he l o c a t i o n o f
t h e i n d e x) , d e l i m i t e d by + o r - i n d i c a t i n g
a d i r e c t o r i n d i r e c t a d d r e s s to f o l l o w ,
number , a d d r e s s o r c h a r a c t e r s t r i n g ,
a p p r o p r i a t e l y d e l i m i t e d .

0P
CODE

MVN
MVC
MVD
CPA
CPN
CPC
CPD
AND
OR
CMPL
TRCT
CLR
MVPN
MVPEN
MVPC
MVPEC
ADSB
MUDI
ADSBA
CMPN
BRZ
BRNZ
BRN
BRP
BR
JMPS
HALT
IN
0UT
BIN
BOUT

TABLE 2
Instruction Set

0PERAND LIST

K,A,B
K,A,B
K,A,B
A,B
A,B
A,B
K,A,B
K,A,B,C
K,A,B,C
K,A,B
K,A
K,A
K,A
K,A
K,A
K,A

DESCRIPTION

Move number fields (up to Kth delimiter) from B to A
Move character strings (up to Kth delimiter) from B to A
Move K digits from B to A
Compare addresses at A and B
Compare numbers at A and B
Compare character strings at A and B
Compare digit list at A and B
Logical "AND" of K digits at B and C into A
Logical "OR" of K digits at B and C into A
Logical "complement of K digits at B into A
Truncate number at A to K significant digits
Clear K digits starting at A
Move pointer at A over Kth number field delimiter
Move pointer at A to the end of the Kth number field
Move pointer at A over to Kth character string delimiter
Move pointer at A to the end of the Kth character string

A,B,C,...
A,B,C,...
A,B,C,...
A,B
A
A
A
A
A
A

K,A
K,A
K,A
K,A

Add/Subtract B,C,... and put in A
Mult./Div. B,C,..., and put in A
Add~Subtract addresses (single number field)
9's complement of the number field starting at B into A

Br zero
conditional branches Br nonzero

to A Br negative
Br positive

Unconditional branch to A
Subroutine linkage to A
stop
I/O w.r.t, device K;
transfer 16 bits of data
I/O w.r.t, device K;
transfer 8 bits of data

252

Compares the character string at [[654]+72]
where [...] indicates "the contents of".

(iii) aMVPN~21+2a takes [2] as an address and, assu-
ming [2] points at a number field delimiter, in-
creases the value of [2] until it points at the
12th number field delimiter from the starting
point. This would allow [2] to now point at the
6th number down the list from the starting num-
ber. This provides the means for accessing
variable length number or character strings in a
list of such items where the programmer knows
explicitly only the address of the first item.

In the above examples, we have used appropriate
mnemonics for the OP-codes, hut they are actually spe-
cified in memory by unsigned integer codes.

III. HARDWARE DESIGN

Since a l l p a r a m e t e r s may be v a r i a b l e in l e n g t h , a
f u l l y p a r a l l e l d e s i g n o f t h e machine canno t be
a c h i e v e d . I t i s a p p a r e n t t h a t s e r i a l by d i g i t s t r u c -
t u r e would be t h e s i m p l e s t s o l u t i o n in t e rms o f h a r d -
ware c o s t s . However, i n o r d e r to a t t a i n a r e a s o n a b l e
p r o c e s s i n g sp eed , some deg ree o f p a r a l l e l i s m mus t be

introduced.
In our prototype design we have chosen serial

processing of four-digit (16 bits) blocks of data.
Figure 1 shows the block diagram of the machine.

Memory has a 16 bit word length and its address-
ing is arranged in a 4 x 25 x 1000 digit pattern,
giving a total capacity of 100,000 digits. It is
digit-addressable, necessitating two internal read
cycles if the address is not 0 or divisible by 4. In
order to avoid alignment difficulties on the data bus
and in the 4-digit parallel arithmetic unit, the memo-
ry includes alignment circuits so that the memory data
register always contains the addressed digit plus the
three digits that follow. Thus it is not necessary to
impose any boundary alignment conditions on the prog-
rammer for storage of data in the memory.

Internal sequencing and serial control of instruc-
tion execution when the operand length exceeds 4 digits
is regulated by the pointer registers PI, P2, P3 and
P4, each being a 5-digit counter-register.

All addressing is carried out via a 5-digit
address bus. Since addresses are obtained directly
from instructions they are not necessarily correctly
aligned on the data bus. This is remedied by
assembling all addresses in the address register which

FIGURE i
Block Diagram

l
F

Memory

Alignment Circuits
1 t'

Memory Data Reg. r
, I

X Register L
F

1
Arlthmefic

Unit

I_ Y Register r

R Register J

v

Code Re, g.l----

Control L
Unit J-

i Memory Address Reg. ~ - ~

I Program Counter

I PI Register

I P2 Register

I P3 Register

P4 Register

Address Register ~-~
Alignment Switches

PDI

--!

I

e I
! !

PDN

"U

253

i n c l u d e s t he r e q u i r e d a l ignment s w i t c h e s .
P e r i p h e r a l d e v i c e s P D i , . . . , PDN are add res sed

through the low o r d e r d i g i t s o f t he add re s s bus , wi th
da t a t r a n s f e r handled by the da t a bus .

IV. PROGRAMMING CONSIDERATIONS

Consistent with the theme of Foster's [4] brief
sketch of the average computer of the year 2000 which
"... will-be a monoprocessor doing its own I/0, - most
probably be privately owned and monoprograngned, - be an
interpretive engine capable of executing directly one
or more high-level languages...", it is claimed that
although we do not interpretively execute several high-
level languages, the instruction set of Table 2 makes
possible efficient processing on a "one-shot" basis of
relatively small user programs. This is a reasonable
goal for a small, general, privately owned and mono-
programmed computer in any event. The efficient pro-
cessing we mentioned above is from the prograngner
standpoint. This means that the machine language, re-
presented in some assembly form, should have instruct-
ions and formats that make coding of normal problems
somehow natural and concise.

MATRIX MULTIPLY ROUTINE

We first present a complete program to multiply
two matrices of real numbers. All matrix entries are
of variable length, so normal indexing would not work
on any machine, and the equivalent program in a fixed
word length structure would be somewhat clumsy and un-
natural.

The program performs the computation
C = A x B where A is ID rows by JD columns,

B is JD rows by KD columns,
and C is ID rows by KD columns.

Matrices are stored in column order and the program
variables for the matrix dimensions are the same as
above.

Assuming t h a t t he m a t r i c e s A and B have been
loaded in core and ID, JD, and KD have been a p p r o p r i a t e -
ly i n i t i a l i z e d , t he program i s :

ADSBA II÷ID+ID ; inc remen t s t e p f o r PT1

KL¢~P:

IL¢¢P:

JL¢¢P:

ADSBA
MVN
MVN
MVN
ADSBA
MVN
MVPN
MVN
MVPN
ADSBA
MVN

MUDI
ADSB
MVPN

MVPN
ADSBA
BRN
MVPEN
ADSBA
ADSBA
BRN
ADSBA
ADSBA
BRN
HALT

In
tion, we have

K÷-KD to access successive
JV÷0 row entries.
PT3÷#C ;load address of C into
M+.O PT3.
I÷-ID
PT2÷#B
JV,PT2 ;sets PT2 to appropriate
PTi÷#A column of B.
M, PTi ;sets PTi to appropriate
J÷-JD row of A.
2,'PT3÷0.0 ; c l e a r Ci,k(initial length

unimportant.)
TEMP+'PTI*'PT2 ;ai,jxb~, k
'PT.~-'PT3+TEMP ;accumu±ate into ci. k
2,PT2 ;move PT2 across 2 delimi-

ters to b(~+l~
II ,PT1 ;move PT1 ~o a i , (j + l)
J÷J+l
JL¢¢P
2,PT3 ;move PT3 t o next C entry
M+M+2
I÷I+i
ILO~P
JV÷JV+JD+JD ;sets B column accessing
K÷K+i variable.
KL~P

this program, and in t h e remainder of this sec-
used a suitable assembler notation for

t h e pa rame te r and operand l i s t s f o r i n s t r u c t i o n s . For
example, #C , r e f e r s t o t he ad d re s s o f C, and 'PT3 i n d i -
c a t e s i n d i r e c t a d d r e s s i n g th rough l o c a t i o n PT3. There
are no macro r e f e r e n c e s ; and t h e r e i s a s t r i c t o n e - t o -
one co r r e spondence between the l i n e s in the program and
machine i n s t r u c t i o n s .

The p r ev i o u s example was concerned wi th a r i t hme-
t i c o p e r a t i o n s and a r r a y a c c e s s i n g . We now i l l u s t r a t e
some a s p e c t s o f non-numer i ca l programming. The example
chosen can be taken as a model o f some a s p e c t s o f sym-
bol t a b l e m a n i p u l a t i o n in a language p r o c e s s o r . The
main idea here is to illustrate the ease of building
and searching tables of variable length mixed data
types.

SYMBOL TABLE MANIPULATION

A p a r t i c u l a r type o f c h a r a c t e r s t r i n g made up o f
ASCII symbolsxA, B , Z , ~ , $ i s to be p r o c e s s e d .

<A> <D>
A syntactically correct string must start with a

member of <A> and end with a member of <D> followed by
$, with no other occurrences of $, and with all other
occurrences of members of <D> isolated by members of
<A>.

There are also some semantic rules that must be
met. First, we need some definitions. Each occurrence
of a member of <D> will be said to "terminate" the pre-
vious contiguous substring of members of <A>, and the
class name <LABEL> will be used to describe any such
contiguous substring of members of cA>. Now, a syntac-
tically correct string is also semantically correct if
all <LABEL>'s terminated by ":" are unique and any
<LABEL> terminated by ";" also appears in the string
terminated by ":".

Examples of correct and incorrect strings are:
(i) START:L~P:CTR:L~P;OUT:$ is both syntactic-

ally and semantically correct.
(ii) A:A;SRCH:;COMP:SRCH:A:~ is both syntactically

and semantically incorrect (see the underlined places).
The processing to be performed on these strings

is as follows: Build a table in core of all unique
<LABEL>'s with an address associated with each. If the
<LABEL> first occurs terminated by ":", the address is
provided from the contents of a word addressed as
L~CCTR; otherwise, the 5-digit value 00000 is associa-
ted with the <LABEL>. This "dummy" address will be re-
placed by the correct value from L~CCTR when the
<LABEL> later occurs terminated by ":".

There are two subroutines used in the program
which we will list in detail. One, called TBLSCH, is
used to s ea rch t h e t a b l e f o r the o c c u r r e n c e o f t h e
<LABEL> c u r r e n t l y in 'BUFF, The l o c a t i o n s TOP1 and
B~T1 a re p o i n t e r s t o t h e top and bot tom o f t h e t a b l e ,
r e s p e c t i v e l y ; and PT1 i s a p o i n t e r l o c a t i o n f o r a c c e s s -
ing t h e t a b l e e n t r i e s . On e x i t , pu t "Y" in ANS i f t he
<LABEL> is found, and leave PTi pointing at the lead
delimiter for the matching <LABEL>; otherwise, put "N"
in ANS. The routine is accessed from a JMFS instruct-
ion which puts the return address in the first location,
TBLSCH, in the routine.
The coding is:

TBLSCH: DA
MVN
CPA
BNZ

CHECK:

S ;assembler com~nand to
PTI÷B~TI establish a 5-dlgit "return
T~Pi÷+B~TI field:'
CHECK ;go to CHECK if table non-

MVD 2, ANS÷"N" empty.
BR 'TBLSCH
CPC 'BUFF~-~'PT1 ;compare LABEL in 'BUFF
BZ FOUND wi th one in t a b l e .
MVPC PTi ;move PTi to start of next
ADSBA PTi÷PTi+2 <LABEL> in table
MVPN PT1
ADSBA PTi÷PTi+i

254

CPA PTI÷+T~PI ;has whole table been
BNZ CHECK searched?
MVD 2,ANS~-"N"
BR 'TBLSCH

FOUND: MVD 2,ANS÷"Y"
BR 'TBLSCH

The second routine, called TBLINS, inserts the
<LABEL> in 'BUFF onto the top of the symbol table and
associates the address in PARAMwith it. The pointer
T#Pi is adjusted appropriately.

TBLINS: DA 5
MVN PTi÷T@Pi
MVC 'T@Pi÷'BUFF
MVPEC PTi
MVD 2,'PTi÷"[]3";
ADSBA PTI÷PTi+2
MVN 'PTI÷PARAM
MVPEN PTI
MVD 'PTl÷'+'
ADSBA PTi÷PTi+i
MVD 2,'PTi÷"[13"

MVN T@Pi÷PTi
BR 'TBLINS

;add <LABEL>

;insert character delimi-
ter
;insert associated address

;insert number field deli-
miter
;insert table-top delimi-
ter
;adjust table-top pointer

Although we have only presented two of the sub-
routines used in the complete program, the type of
coding used at the assembler level for non-numeric
processing should be evident. The complete program
required Ii0 instructions, including the subroutine
coding.

Due to the radically different structure, it is
difficult to compare our machine with standard minicom-
puters. Meaningful comparisons will become possible
only as a result of extensive experience with it. The
machine was simulated and some interesting observations
made. For example, the above matrix multiply routine
was found to require 400 digits of storage with the
delimiter density of 25%.

V. CONCLUSIONS

We have described the design of a fully variable-
length general purpose computer. In order to assess
the feasibility of such machines it is essential to
take a close look at advantages gained and difficulties
that might be encountered.

Based on a number of programs that we have written,
it is apparent that programming presents fewer diffi-
culties than one usually encounters with standard mini-
computers.

Limits on computational accuracy, size of operand
labels and data as well as the alignment requirements,
are non-existent from the progrmmmer's point of view
by the very nature of the machine.

In order to determine the physical feasibility of
such machines, we have completed the design on the
basic circuit level (using standard TTL MSI components).
As a result we have found that the hardware complexity
and cost place the machine in the price range of
typical minicomputers. Simulator runs have been used
to verify the logical correctness and adequacy of the
selected instruction set, as well as to obtain an
evaluation of memory and cycle time reiuirements.

VII. REFERENCES

IBM Reference Manual, 1620 Data Processing
S s~, IBM, 1960.

CIP/2200 Reference Manuai, Cincinnati Milacron
Company, Process Controls Division, Lebanon,
Ohio, April 1972.

W.T. Wilner, "Burroughs B1700 memory utiliza-
tion," Proceedings of FJCC, 1972, pp. 579-586.

Caxton C. Foster, "The Next Three Generations,"
Computer, Vol. S, No. 2, March/April 1972.

VI. ACKNOWLEDGEMENT

This research was partly supported by the National
Research Council of Canada.

255

