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ABSTRACT 

Binary-based and fixed-length structure computers 
are often inconvenient and wasteful of resources. In 
this paper we present a design for a fully variable- 
length structured minicomputer. Since all parameters 
(instructions and data) are unrestricted in length, 
their boundaries and interpretation are effected by 
special delimiter codes. For practical reasons (dic- 
tated by current technology) the machine utilizes a 
binary-coded decimal number representation. 

I. INTRODUCTION 

Present day digital systems show a prevalence of 
binary, fixed-length structures. This is dictated by 
the technological ease of implementation, low cost and 
high reliability. Yet there are a large number of 
applications where the binary base and fixed-length 
organization are inconvenient and often wasteful of 
resources. 

Decimal and variable-length data have been imple- 
mented in differing degrees from the IBM 1620 era [i] 
to one of the latest minicomputers, the CIP/2200 [2]. 
However, most of these machines have achieved these 
features in an "added-on" fashion in a structure that 
mainly offers conventional binary, fixed-length opera- 
tions. The recently reported BIT00 computer [5] re- 
flects an attempt to get around the difficulties im- 
posed by fixed-length constraints by providing a highly 
flexible, reconfigurable structure, where specific 
lengths may be defined as run time parameters. 

In this paper we propose the design of a relative- 
ly small-scale decimal, variable-length machine whose 
structure evolves solely from those two features. In a 
sense, the work reported here can be interpreted as an 
elaboration or feasibility study on some conjectures 
made recently by Foster [4] concerning the architecture 
of the average computer of the year 2000. The design 
study described in more detail in the following sec- 
tions in fact supports the feasibility of the basic 
concept even in terms of present day technology. 

II. MACHINE ORGANIZATION 

In o r d e r  to  p rov ide  t h e  v a r i a b l e - l e n g t h  c h a r a c t e -  
r i s t i c  f o r  d a t a ,  OP-codes and a d d r e s s e s ,  i t  i s  n e c e s s -  
ary to  employ some " l e n g t h  d e l i m i t e r s " .  Thus i t  i s  
apparent that a truly binary machine could not be cons- 
tructed to meet such requirements, since the range of 
available digits (0,i) leaves no spare codes which 
could serve as delimiters. Hence we must turn to a 
higher base system, which for practical reasons might 
be binary coded. 

Our choice is the decimal system with binary coded 
implementation. This provides us with six codes (other 
than 0-9) for use as delimiters. We will call them 

D = { a,8,7,~,+,-}. 
The machine has a random-access memory with the 

capacity of 100,000 digits, addressable to the digit 
(0-99,999). 

NUMBER AND CHARACTER REPRESENTATION 

In order to represent real numbers of the form N 
x 10e, both N and e are expressed as a sign followed by 
a 10's complement value. The exponent e is stored 
first, followed by the significant digits N, both num- 
ber fields occurring low-order digits first. 

For example +518.27 x 10 -12 is represented and 
stored in memory as -68+72815*, which is equivalent to 
31827 x 10 -14 . The decimal point is always implied at 
the low order end of N, Note that * could be any deli- 
miter. 

Integer form is used for addressing purposes only 
(e = 0 and it is not shown explicitly) and it is recog- 
nized as such from the context of instructions. We will 
refer to { ±} followed by a string of digits as a number 
field or address, depending on the context, and use the 
name number or real number to refer to two successive 
number fields. 

It is important to observe that the low-order di- 
gits are stored first, because the arithmetic unit must 
be at least partly serial, to enable it to handle arbit- 
rarily long numbers. 

The ASCII character set is represented directly 
using 2 4-bit digits per character. Any two digit dell- 
miter not in the ASCII set, referenced in this paper as 
[I], is used as the character string delimiter. In gene- 
ral, the address of a character string, number, address, 
or instruction is the address of the leading delimiter, 
since this delimiter usually describes some property of 
the information to follow. 

INSTRUCTION SET 

The machine has thirty-one instructions, including 
four rudimentary I/O instructions. Instructions are 
delimited by a. An unsigned decimal opcode follows the 
leading a and its end is indicated by any single digit 
delimiter. All instructions except HALT have an ope- 
rand list which in some cases is preceded by a parame- 
ter K. The delimiter ~ indicates that K is present, 
and the possible values for K are integers equal to or 
greater than 0. The K value may be referenced by any 
of the addressing modes of Table i. The interpretation 
of the delimiter set when used to separate items of the 
operand list is shown in Table i. Table 2 gives the 
complete instruction set. In instructions where the 
parameter K is called for, it may be omitted if K = i; 
there being no ambiguity, since A can never be imme- 
diate data. The number of operands is variable in ADSB 
and MUDI instructions. 
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A few examples should clarify the appearance in 
memory of complete instructions, and give an idea of 

instruction execution. 
( i )  ~MVN82+4196-97+32a -21 

This instruction inserts the real number 23xi0 , 
represented by 2 number fields, into the memory 
starting at the address 914; while ~MVN~4+419- 
0001a moves the four number fields (2 real num- 
bers or 4 addresses) starting at the address 
stored at location 1000 (indirect mode) into 

914. I f  t he  number f i e l d  ( a d d r e s s )  s t o r e d  a t  
1000 has  a " - "  l e a d i n g  d e l i m i t e r ,  t h e n  a n o t h e r  
l e v e l  o f  i n d i r e c t i o n  i s  i n d i c a t e d .  

(ii) aCPC+001~D1 D%D 3 D~...Dn_i D [] 

C 1 C 2 ... Cn/2 

compares the character string CiC2...Cn/z with 
the one stored at 100 and sets the 2-bit condi- 
tion vector in the CPU to 00 if they are equal, 
and to ll if they are not; while ~CPC+001y456+27= 

TABLE i 
Interpretation of delimitersin instructions 

Delimiter Addressing Mode 
or  Function 

direct 
indirect 
indexed 

immedia te  

instruction delimiter 
operation change 
(indicates SUBTRACT 
instead of ADD and 
DIVIDE instead of 
MULTIPLY in the ADSB 
and MUDI instructions.) 

0perand Form 

u n s i g n e d  i n t e g e r  a d d r e s s .  
u n s i g n e d  i n t e g e r  a d d r e s s .  
u n s i g n e d  i n t e g e r  a d d r e s s  ( t he  l o c a t i o n  o f  
t h e  i n d e x ) ,  d e l i m i t e d  by + o r  - i n d i c a t i n g  
a d i r e c t  o r  i n d i r e c t  a d d r e s s  to  f o l l o w ,  
number ,  a d d r e s s  o r  c h a r a c t e r  s t r i n g ,  
a p p r o p r i a t e l y  d e l i m i t e d .  

0P 
CODE 

MVN 
MVC 
MVD 
CPA 
CPN 
CPC 
CPD 
AND 
OR 
CMPL 
TRCT 
CLR 
MVPN 
MVPEN 
MVPC 
MVPEC 
ADSB 
MUDI 
ADSBA 
CMPN 
BRZ 
BRNZ 
BRN 
BRP 
BR 
JMPS 
HALT 
IN 
0UT 
BIN 
BOUT 

TABLE 2 
Instruction Set 

0PERAND LIST 

K,A,B 
K,A,B 
K,A,B 
A,B 
A,B 
A,B 
K,A,B 
K,A,B,C 
K,A,B,C 
K,A,B 
K,A 
K,A 
K,A 
K,A 
K,A 
K,A 

DESCRIPTION 

Move number fields (up to Kth delimiter) from B to A 
Move character strings (up to Kth delimiter) from B to A 
Move K digits from B to A 
Compare addresses at A and B 
Compare numbers at A and B 
Compare character strings at A and B 
Compare digit list at A and B 
Logical "AND" of K digits at B and C into A 
Logical "OR" of K digits at B and C into A 
Logical "complement of K digits at B into A 
Truncate number at A to K significant digits 
Clear K digits starting at A 
Move pointer at A over Kth number field delimiter 
Move pointer at A to the end of the Kth number field 
Move pointer at A over to Kth character string delimiter 
Move pointer at A to the end of the Kth character string 

A,B,C,... 
A,B,C,... 
A,B,C,... 
A,B 
A 
A 
A 
A 
A 
A 

K,A 
K,A 
K,A 
K,A 

Add/Subtract B,C,... and put in A 
Mult./Div. B,C,..., and put in A 
Add~Subtract addresses (single number field) 
9's complement of the number field starting at B into A 

Br zero 
conditional branches Br nonzero 

to A Br negative 
Br positive 

Unconditional branch to A 
Subroutine linkage to A 
stop 
I/O w.r.t, device K; 
transfer 16 bits of data 
I/O w.r.t, device K; 
transfer 8 bits of data 
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Compares the character string at [[654]+72] 
where [...] indicates "the contents of". 

(iii) aMVPN~21+2a takes [2] as an address and, assu- 
ming [2] points at a number field delimiter, in- 
creases the value of [2] until it points at the 
12th number field delimiter from the starting 
point. This would allow [2] to now point at the 
6th number down the list from the starting num- 
ber. This provides the means for accessing 
variable length number or character strings in a 
list of such items where the programmer knows 
explicitly only the address of the first item. 

In the above examples, we have used appropriate 
mnemonics for the OP-codes, hut they are actually spe- 
cified in memory by unsigned integer codes. 

III. HARDWARE DESIGN 

Since  a l l  p a r a m e t e r s  may be v a r i a b l e  in  l e n g t h ,  a 
f u l l y  p a r a l l e l  d e s i g n  o f  t h e  machine  canno t  be 
a c h i e v e d .  I t  i s  a p p a r e n t  t h a t  s e r i a l  by d i g i t  s t r u c -  
t u r e  would be t h e  s i m p l e s t  s o l u t i o n  in  t e rms  o f  h a r d -  
ware c o s t s .  However, i n  o r d e r  to  a t t a i n  a r e a s o n a b l e  
p r o c e s s i n g  sp eed ,  some deg ree  o f  p a r a l l e l i s m  mus t  be 

introduced. 
In our prototype design we have chosen serial 

processing of four-digit (16 bits) blocks of data. 
Figure 1 shows the block diagram of the machine. 

Memory has a 16 bit word length and its address- 
ing is arranged in a 4 x 25 x 1000 digit pattern, 
giving a total capacity of 100,000 digits. It is 
digit-addressable, necessitating two internal read 
cycles if the address is not 0 or divisible by 4. In 
order to avoid alignment difficulties on the data bus 
and in the 4-digit parallel arithmetic unit, the memo- 
ry includes alignment circuits so that the memory data 
register always contains the addressed digit plus the 
three digits that follow. Thus it is not necessary to 
impose any boundary alignment conditions on the prog- 
rammer for storage of data in the memory. 

Internal sequencing and serial control of instruc- 
tion execution when the operand length exceeds 4 digits 
is regulated by the pointer registers PI, P2, P3 and 
P4, each being a 5-digit counter-register. 

All addressing is carried out via a 5-digit 
address bus. Since addresses are obtained directly 
from instructions they are not necessarily correctly 
aligned on the data bus. This is remedied by 
assembling all addresses in the address register which 

FIGURE i 
Block Diagram 
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i n c l u d e s  t he  r e q u i r e d  a l ignment  s w i t c h e s .  
P e r i p h e r a l  d e v i c e s  P D i , . . . ,  PDN are  add res sed  

through the  low o r d e r  d i g i t s  o f  t he  add re s s  bus ,  wi th  
da t a  t r a n s f e r  handled  by the  da t a  bus .  

IV. PROGRAMMING CONSIDERATIONS 

Consistent with the theme of Foster's [4] brief 
sketch of the average computer of the year 2000 which 
"... will-be a monoprocessor doing its own I/0, - most 
probably be privately owned and monoprograngned, - be an 
interpretive engine capable of executing directly one 
or more high-level languages...", it is claimed that 
although we do not interpretively execute several high- 
level languages, the instruction set of Table 2 makes 
possible efficient processing on a "one-shot" basis of 
relatively small user programs. This is a reasonable 
goal for a small, general, privately owned and mono- 
programmed computer in any event. The efficient pro- 
cessing we mentioned above is from the prograngner 
standpoint. This means that the machine language, re- 
presented in some assembly form, should have instruct- 
ions and formats that make coding of normal problems 
somehow natural and concise. 

MATRIX MULTIPLY ROUTINE 

We first present a complete program to multiply 
two matrices of real numbers. All matrix entries are 
of variable length, so normal indexing would not work 
on any machine, and the equivalent program in a fixed 
word length structure would be somewhat clumsy and un- 
natural. 

The program performs the computation 
C = A x B where A is ID rows by JD columns, 

B is JD rows by KD columns, 
and C is ID rows by KD columns. 

Matrices are stored in column order and the program 
variables for the matrix dimensions are the same as 
above. 

Assuming t h a t  t he  m a t r i c e s  A and B have been 
loaded in  core  and ID, JD, and KD have been a p p r o p r i a t e -  
ly  i n i t i a l i z e d ,  t he  program i s :  

ADSBA II÷ID+ID ; inc remen t  s t e p  f o r  PT1 

KL¢~P: 

IL¢¢P: 

JL¢¢P: 

ADSBA 
MVN 
MVN 
MVN 
ADSBA 
MVN 
MVPN 
MVN 
MVPN 
ADSBA 
MVN 

MUDI 
ADSB 
MVPN 

MVPN 
ADSBA 
BRN 
MVPEN 
ADSBA 
ADSBA 
BRN 
ADSBA 
ADSBA 
BRN 
HALT 

In 
tion, we have 

K÷-KD to access successive 
JV÷0 row entries. 
PT3÷#C ;load address of C into 
M+.O PT3. 
I÷-ID 
PT2÷#B 
JV,PT2 ;sets PT2 to appropriate 
PTi÷#A column of B. 
M, PTi ;sets PTi to appropriate 
J÷-JD row of A. 
2,'PT3÷0.0 ; c l e a r  Ci,k(initial length 

unimportant.) 
TEMP+'PTI*'PT2 ;ai,jxb~, k 
'PT.~-'PT3+TEMP ;accumu±ate into ci. k 
2,PT2 ;move PT2 across 2 delimi- 

ters to b(~+l~ 
II ,PT1 ;move PT1 ~o a i , ( j + l )  
J÷J+l  
JL¢¢P 
2,PT3 ;move PT3 t o  next C entry 
M+M+2 
I÷I+i 
ILO~P 
JV÷JV+JD+JD ;sets B column accessing 
K÷K+i variable. 
KL~P 

this program, and in t h e  remainder of this sec- 
used a suitable assembler notation for 

t h e  pa rame te r  and operand l i s t s  f o r  i n s t r u c t i o n s .  For 
example,  #C , r e f e r s  t o  t he  ad d re s s  o f  C, and 'PT3 i n d i -  
c a t e s  i n d i r e c t  a d d r e s s i n g  th rough  l o c a t i o n  PT3. There 
are  no macro r e f e r e n c e s ;  and t h e r e  i s  a s t r i c t  o n e - t o -  
one co r r e spondence  between the  l i n e s  in  the  program and 
machine i n s t r u c t i o n s .  

The p r ev i o u s  example was concerned  wi th  a r i t hme-  
t i c  o p e r a t i o n s  and a r r a y  a c c e s s i n g .  We now i l l u s t r a t e  
some a s p e c t s  o f  non-numer i ca l  programming. The example 
chosen can be taken as a model o f  some a s p e c t s  o f  sym- 
bol  t a b l e  m a n i p u l a t i o n  in  a language p r o c e s s o r .  The 
main idea here is to illustrate the ease of building 
and searching tables of variable length mixed data 
types. 

SYMBOL TABLE MANIPULATION 

A p a r t i c u l a r  type  o f  c h a r a c t e r  s t r i n g  made up o f  
ASCII symbolsxA, B . . . .  , Z , ~ , $  i s  to  be p r o c e s s e d .  

<A> <D> 
A syntactically correct string must start with a 

member of <A> and end with a member of <D> followed by 
$, with no other occurrences of $, and with all other 
occurrences of members of <D> isolated by members of 
<A>. 

There are also some semantic rules that must be 
met. First, we need some definitions. Each occurrence 
of a member of <D> will be said to "terminate" the pre- 
vious contiguous substring of members of <A>, and the 
class name <LABEL> will be used to describe any such 
contiguous substring of members of cA>. Now, a syntac- 
tically correct string is also semantically correct if 
all <LABEL>'s terminated by ":" are unique and any 
<LABEL> terminated by ";" also appears in the string 
terminated by ":". 

Examples of correct and incorrect strings are: 
(i) START:L~P:CTR:L~P;OUT:$ is both syntactic- 

ally and semantically correct. 
(ii) A:A;SRCH:;COMP:SRCH:A:~ is both syntactically 

and semantically incorrect (see the underlined places). 
The processing to be performed on these strings 

is as follows: Build a table in core of all unique 
<LABEL>'s with an address associated with each. If the 
<LABEL> first occurs terminated by ":", the address is 
provided from the contents of a word addressed as 
L~CCTR; otherwise, the 5-digit value 00000 is associa- 
ted with the <LABEL>. This "dummy" address will be re- 
placed by the correct value from L~CCTR when the 
<LABEL> later occurs terminated by ":". 

There are two subroutines used in the program 
which we will list in detail. One, called TBLSCH, is 
used to  s ea rch  t h e  t a b l e  f o r  the  o c c u r r e n c e  o f  t h e  
<LABEL> c u r r e n t l y  in  'BUFF, The l o c a t i o n s  TOP1 and 
B~T1 a re  p o i n t e r s  t o  t h e  top  and bot tom o f  t h e  t a b l e ,  
r e s p e c t i v e l y ;  and PT1 i s  a p o i n t e r  l o c a t i o n  f o r  a c c e s s -  
ing  t h e  t a b l e  e n t r i e s .  On e x i t ,  pu t  "Y" in  ANS i f  t he  
<LABEL> is found, and leave PTi pointing at the lead 
delimiter for the matching <LABEL>; otherwise, put "N" 
in ANS. The routine is accessed from a JMFS instruct- 
ion which puts the return address in the first location, 
TBLSCH, in the routine. 
The coding is: 

TBLSCH: DA 
MVN 
CPA 
BNZ 

CHECK: 

S ;assembler com~nand to 
PTI÷B~TI establish a 5-dlgit "return 
T~Pi÷+B~TI field:' 
CHECK ;go to CHECK if table non- 

MVD 2, ANS÷"N" empty. 
BR 'TBLSCH 
CPC 'BUFF~-~'PT1 ;compare LABEL in  'BUFF 
BZ FOUND wi th  one in  t a b l e .  
MVPC PTi ;move PTi to start of next 
ADSBA PTi÷PTi+2 <LABEL> in table 
MVPN PT1 
ADSBA PTi÷PTi+i 
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CPA PTI÷+T~PI ;has whole table been 
BNZ CHECK searched? 
MVD 2,ANS~-"N" 
BR 'TBLSCH 

FOUND: MVD 2,ANS÷"Y" 
BR 'TBLSCH 

The second routine, called TBLINS, inserts the 
<LABEL> in 'BUFF onto the top of the symbol table and 
associates the address in PARAMwith it. The pointer 
T#Pi is adjusted appropriately. 

TBLINS: DA 5 
MVN PTi÷T@Pi 
MVC 'T@Pi÷'BUFF 
MVPEC PTi 
MVD 2,'PTi÷"[]3"; 
ADSBA PTI÷PTi+2 
MVN 'PTI÷PARAM 
MVPEN PTI 
MVD 'PTl÷'+' 
ADSBA PTi÷PTi+i 
MVD 2,'PTi÷"[13" 

MVN T@Pi÷PTi 
BR 'TBLINS 

;add <LABEL> 

;insert character delimi- 
ter 
;insert associated address 

;insert number field deli- 
miter 
;insert table-top delimi- 
ter 
;adjust table-top pointer 

Although we have only presented two of the sub- 
routines used in the complete program, the type of 
coding used at the assembler level for non-numeric 
processing should be evident. The complete program 
required Ii0 instructions, including the subroutine 
coding. 

Due to the radically different structure, it is 
difficult to compare our machine with standard minicom- 
puters. Meaningful comparisons will become possible 
only as a result of extensive experience with it. The 
machine was simulated and some interesting observations 
made. For example, the above matrix multiply routine 
was found to require 400 digits of storage with the 
delimiter density of 25%. 

V. CONCLUSIONS 

We have described the design of a fully variable- 
length general purpose computer. In order to assess 
the feasibility of such machines it is essential to 
take a close look at advantages gained and difficulties 
that might be encountered. 

Based on a number of programs that we have written, 
it is apparent that programming presents fewer diffi- 
culties than one usually encounters with standard mini- 
computers. 

Limits on computational accuracy, size of operand 
labels and data as well as the alignment requirements, 
are non-existent from the progrmmmer's point of view 
by the very nature of the machine. 

In order to determine the physical feasibility of 
such machines, we have completed the design on the 
basic circuit level (using standard TTL MSI components). 
As a result we have found that the hardware complexity 
and cost place the machine in the price range of 
typical minicomputers. Simulator runs have been used 
to verify the logical correctness and adequacy of the 
selected instruction set, as well as to obtain an 
evaluation of memory and cycle time reiuirements. 
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