
ON FINDING LOWEST COMMON ANCESTORS IN TREES

by

A. V. Aho
Bell Laboratories

Murray Hill, New Jersey 07974

J. E. Hopcroft*
Cornell University

Ithaca, New York 14850

J. D. Ullman**
Princeton University

Princeton, New Jersey 08540

ABSTRACT

Trees in an n node forest are to be merged according to instructions in a given sequence, while other
instructions in the sequence ask for the lowest common ancestor of pairs of nodes. We show that any
sequence of O(n) instructions can be processed "on line" in O(n log n) steps on a random access computer.

,Y ,Y

If we can accept our answer off-line , that is, no answers need to be produced until the entire
sequence of instructions has been seen seen, then we may perform the task in O(n G(n)) steps, where G(n)
is the number of times we must apply log 2 to n to obtain a number less than or equal to zero.

A third algorithm solves a problem of intermediate complexity. We require the answers on line, but we
suppose that all tree merging instructions precede the information requests. This algorithm requires
O(n log log n) time.

We apply the first on line algorithm to a problem in cnde optimization, that of computing immediate
dominators in a reducible flow graph. We show how this computation can be performed in O(n log n) steps.

i. INTRODUCTION

Suppose that we are running the following genealogy service. During the course of a day we receive
new information concerning the ancestry relationships among a fixed set of men. (e.g., B is a son A~.
We also receive requests asking for the closest common male ancestor of pairs of men. (e.g., who is the
most recent common male parent of C and D?) Our problem is to process each new request in turn using the
most current information.

We can abstract our problem as follows. We have n nodes in a finite set of trees (see[l] for defin-
itions), hereafter called a forest. We receive a sequence of instructions to execute. The instructions
are of two types:

(i) The instruction link(u,v) makes node u a son of node v. We assume that at the time this instruc-
tion is received, nodes u and v are on different trees and that u is a root. Thus, after executing this
instruction, the nodes will remain a forest.

(2) The instruction ica(u,v) prints the lowest common ancestor of nodes u and v if it exists, and
the word "unrelated" otherw~e.

Example II Suppose that we initially have a forest consisting of eight isolated nodes Ul,U2 , ... ,u 8
and we receive the following sequence of instructions.

Work supported by ONR grant NOOOI4-67-A-O077-O021
**

Work p a r t i a l l y supported by NSF grant gJ-1052.

253

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800125.804056&domain=pdf&date_stamp=1973-04-30

link(Ul,U2)

link(u3,u 4)

link(us,U 6)

link(u7,u 8)

!ink(u6,u 8)

lea (u5,u7) ll n U4,U6)
link(u2,u 3)

When the instruction lea(us,u7) is received, the forest is as shown in Fig. l(a).
common ancestor of u 5 and u7, is printed.

Thus, us, the lowest

Fig. l(a) Tree Structures After lca(us,u7) Fig. l(b) Tree Structures After ica(u2,u3)
Instruction ~ Instruction

Fig. l(b) shows the forest when ica(u2,u3) is executed. This instruction causes u 4 to be printed.

In this paper we shall consider the problem of executing a sequence ~ of link and lea instructions on
a forest with n nodes. If we execute O(n) link instructions, trees with paths of length n-I can develop.
Consequently, if we execute the ica instructions in the obvious way, we could spend O(n) time on each Ica
instruction, or 0(n 2) time in tot~ when there are O(n) ica instructions.

We shall first given an on-line algorithm that requires O(n log n) steps to execute ~. We shall also
provide an asymptotically faster off-line algorithm and an algorithm of intermediate complexity which solves
an intermediate problem. We then apply the on-line algorithm to compute the immediate dominators of an n
node reducible program flow graph in O(n log n) steps.

2. AN 0N-LINE ALGORITHM

In this section we shall present an O(n log n) algorithm that will execute the sequence ~, providing
an answer to each lea instruction before the next instruction is read. We begin by describing the data
structure used to store the forest. We then show the operations used to simulate the effect of each link
and ica instruction on the forest.

2.1 A Useful Data Structure for Forests

Let us call the forest which the link instructions manipulate the implied forest. In our on-line
algorithm we shall represent the information in the implied forest in the computer in two forests, called
the A-forest and the D-forest.

The first defined forest, the A-forest, has the same structure as the implied forest. For the A-forest
we shall maintain an array ancestor~,where u is a node and i an integer such that 0 ~ i < log n. All
algorithms in this paper are to the base 2. At all times, aneestor(u,i) will be either the 2 i th ancestor
of node u in the implied forest or will be undefined. However, ancestor(u,i) could be undefined-even though
u has a 2 i th ancestor, since we shall not compute ancestor information until needed. Maintenance of
ancestor information will be discussed in Section 2. 3 .

254

The second forest, called the D-forest, has nodes grouped into the same trees as the implied forest,
but the internal structure of corresponding trees will in general be different. The sole purpose of the
D-forest is to keep track of depth information of nodes in the implied forest.

In what follows we shall refer to a node in the A- and D-forests merely by its name in the implied
forest. We trust no confusion will result. It should be borne in mind, however, that "the depth of u "
always refers to the depth of u in the implied forest or, equivalently, to the depth of u in the A-forest.

2.2 Maintaining the D-Forest

The following procedure uses the D-forest to compute the depth of nodes in the implied forest. We
have attached an integer weight(u) to each node u in the D-forest. To find the depth of a node, we find
the representative of the node in the D-forest and trace the path from this node to its root, summing the
weights of the nodes ~along this path. We then make each node along this path, except the root, be a son of
the root, updating the weights of the nodes appropriately.

procedure depth(u):

(i) Find the path from node u to its root in the D-forest.
where u O is the root and u k is u.

k
(2) depth(u) <-- 7~ weight(u.)

i = O ~ i

(3) for i = 2 to k do

gmake u i a son of u 0 in the D-forest;

welght(ui) <-- weilght(u i) + we ight(ui_l) }

Suppose Uk, Uk_l,...,uFu 0 is that path,

The root of each tree in the D-forest also has an associated count, giving the number of nodes in the
tree. Before any instructions in G are executed, each node in the D-forest is in a tree by itself, having
a count of i and a weight of 0. When a link(u,v) instruction is to be executed, the following procedure is
invoked.

procedure zer~e(u,v):

(i) In the D-forest find the roots x and y of the trees holding u and v, respectively, by executing
depth(u) and depth(v).

(2) If count(x) ~ count(y), then make x a son of y in the D-forest and do the following:

count(yl <-- count(K) + count(x);

weight(x) <-- weight(x) + depth(v) + i - welght(y)

Otherwise, if count(x) B count(y), make y a son of x in the D-forest and do the following:

count(x) <-- count(y) + count(x);

weight(x) <-- weight(x) + depth(v) + i~

weight(y) <-- weight(y) - weight(x)

In step (2) we merge the smaller tree into the larger, adjusting the weights and count appropriately.

Define G(n) to be the smallest number of times the log function must be applied to n to yield zero or
less. For example, G(9) = 4, since

log log log(9) ~ 0

but

log log log(9) ~ O.

Note that G(n) ~ 6 for n ~ 265536 .

Lenmma l: Suppose the procedure merg_.___~ is used every time a link instruction is to be executed. Then

(a) each value depth(u) is correct, and

(b) if O(n) tree mergers and O(n) depth computations are done, the total time spent is O(n G(n)).

255

It is important that the weights in the D-forest do not grow too large since we are assuming that
arithmetic on integers can be accomplished in one step. Should numbers grow larger than say O(n), we would
have to consider the cost of multiple precision arithmetic. However, the following bound suffices to
Justify our ignoring the cost of arithmetic.

Lemma 2: No weight in the D-forest exceeds n in magnitude.

2.3 Computing Ancestor Information

It is straightforward to maintain the structure of the A-forest, since a link(u,v) instruction can be
executed by setting ancestor(u,O) to v. What is difficult is the maintenance of the ancestor information.
We shall define a recursive routine getancestor(u,i) which inserts the 2 i th ancestor of u into the ancestor
array. This routine will be called at various times when ancestor informa~on is needed to execute an lca
instruction. We note that whenever getancestor(u,i) is called, ancestor(u,O) ~ undefined.

procedure getancestor(u,i):

if ancestor(u,i-l) = undefined then;

ancestor(u,i) <-- getancestor(getancestor(u,i-l),i-l);

re sultis ancestor(u,i)

Given the assumption that ancestor(v,O) is correctly defined for all v, and that u has a 2 i th ancestor, a
straightforward induction on i ~ 1 shows that getancestor(u,i) correctly returns ancestor(u,i~.

We shall also define a procedure find(u,v,i,d).which takes as arguments two distinct nodes u and v of
equal depth d such that 2 i-1 ~ d and such that the 21 th ancestors of u and v are the same or neither exists.
The result of find(u,v,i,d) is the lowest cormnon ances~r of u and v; find works by releatedly halving the
range in which the length of the path from u to the lowest cnmmon ancestor of u and v is known to lie.

procedure find(u,v,i,d);

if i = 0 then resultis ancestor(u,O);

else if getancestor(u,i-l) = getancestor(v,i-l) then

resultis find(u,v,i-l,d)

else

resultis find(getancestor(u,i-l),getancestor(v,i-l),

mlm<i-l,Llog(d - 2i-1)Dl, d - 2 i-l)

It is straightforward to show that find works correctly given that 2 i-I ~ d. The selection of the
third argument on the last line of the pr~dure insures that 2J -1 < d - 2 i'l where j = mln(i-l,log L(d-2i-l~J).

We can now give a routine to compute the lowest common ancestor of an arbitrary pair of nodes.

procedure lowest(u,v);

(1) Compute depth(u) and depth(v). If u and v are on different trees, resultls "unrelated." Other-
wise, assume without loss of generality that depth(u) ~ depth(v).

(2) Find the ancestor a of u having the same depth as v by the following procedure

a <-- u;

d <-- depth(u) - depth(v);

while d b 0 do

<-- Llog

a <-- ancestor(a,j);

d <-- d - 2J] *

resultls a

• The control of this loop can also be implemented by treating d as a binary number, examining its least
significant bit and rlght shifting. Thls avoids having to evaluate the logarithm.

256

(3) if a = v resultis a else resultis find(a,v, klog dJ, dept____~(v))

2.4 The 0n-line Algorithm

Let us write ~ as ~i~2...~ m where each ~i represents a link or Ic_a instruction and m is O(n). We now
provide an algorithm to execute ~ on-llne, that is, providing the answer to ~i before ai+ 1 is read.

Algorithm i; On-line execution of ~.

(i) Initialize the D-forest with all nodes in separate trees, having counts of i and weights of O.

i2) Initialize the A-forest with all nodes in separate trees and with ancestor(u,i) = undefined for
all u and i.

(3) for i = i to m do

i~ i = ic__~(u,v) resultis lowest(u,v);

i~ i = link(u,v) then

fancestor(u,0) <--v

merge(u,v)]

Theorem l: If Algorithm i is applied to execute ~, the execution of the algorithm requires at most
0(n log n) steps of a random access computer.

One might argue that the "obvious" method of executing ~ has an expected time of O(n log n), since a
random sequence of llnk instructions might produce paths of length 0(log n), rather than 0(n). In this
case, however, it is easy to bound the expected (not worst case) time taken by Algorithm 1 at
O(n log log n). In fact, if the expected path length in trees is f(n), then our algorithm will run in
O(max~n log f(n), n G(n)]~ steps. In Section 4 we shall see that in the case where all link instructions
precede all ica instructions, O(n log log n) is an upper bound on the running time of a modified algorithm,
as well as its expected time.

3. AN OFF-LINE ALGORITHM

Algorithm i produces an answer to the i th instruction in ~ before the i + i st is read. However, if we
are willing to wait until all of ~ has been seen before producing any answers, we can do better than
O(n log n);an O(n G(n)) algorithm exists.

To begin, we use the 0(n G(n)) set merging algorithm of [2] to find all Ica(u,v) instructions in ~ with
u and v on different trees. We answer all such lca instructions with the messag---e "unrelated" and remove
these instructions from ~. We then build the forest created by the link instructions in ~. If there is
more than one tree in the final forest at the end, we can make all roots be sons of a new node, so that
exactly one tree T results. For each ic__~(u,v) instruction now in ~, the lowest common ancestor of u and v
in T will be their lowest common ancestor in the forest built by the llnk instructions preceding that ica
instruction in ~.

We shall number the nodes of T so that if we visit them in preorder, we visit them in the order
1,2,... For example, the nodes in Fig. l(b) would be numbered as shown in Fig. 2.

(
(

<>

Fig. 2. Preorder Numbering

257

The construction of T and the preorder numbering of the nodes can clearly be done in O(n) steps.

Note that if a and b are preordered nodes, then a < b if and only if (i) a is ancestor of b or (ii) a
is to the left of b.

We shall now identify each ica(u,v) instruction in ~ with a distinct object X with which we shall
associate the integers (i,j), su~-that i < j and i and j are the numbers associated with nodes u and v.
Let L and R be the projection functions such that L(X) : i and R(X) : j.

We wish to generate the answers to the ica instructions in ~. To do this we shall first derive from
the tree T a sequence B of new instructions ~er(X) and remove(i), where X is an object and i an integer.
We can think of these instructions as entering and removing objects from a "bin" which is initially empty.

(i) The instruction enter(X) places object X in the bin.

(2) The instruction remove(i) removes from the bin all objects X such that L(X) ~ i. In addition,
for each object removed, we set LCA(X) = i, where LCA is a table indexed by the objectS. We shall later
see that i is the lowest common a~,cestor of the pair of nodes associated with the object X.

We shall subsequently show that the execution of the sequence B can be simulated in O(n G(n)) steps
off-line by the O(n G(n)) set merging algorithm of [2]. To begin, we show how the sequence B is generated
from the set of objects and the tree T.

i is
81.

Algorithm 2; Generating B.

(i) For each node i, llst those objects X for which R(X) = i.

(2) Process each node of T in postorder. That is, node i is processed before node j if and only if
to the left of j or a descendant of j. The nodes in postorder for the tree of Fig. 2 are 5 4 6 3 7 2

When at node i, do the following :

(a) Generate the instruction enter(X) for each X such that R(X)= i.

(b) Generate the instruction remove(i).

We shall now state an important property of the sequence B of enter and remove instructions generated
by Algorithm 2.

Lemma 3: Object X is removed from the bin by the instruction remove(a) in B if and only if a is the
lowest conmnon ancestor of L(X) and R(X).

We shall now give an algorithm that will simulate the execution of the sequence B.

Algorithm 3; Simulation of B. We note that all instructions in B are distinct, and that the last
instruction in B is remove(1).

(I) Suppose that there are k nodes in the tree T, so for all objects X, we have 1 ~ L(X] < k. (Note
that k ~ n + i, where n is the number of nodes in the original forest.) For each i, 1 ~ i ~ k, make a list
OBJ(i) of those objects X for which L(X) = i.

(2) Create an atom e X for each enter(X) instruction in B and an atom r i for each remove(i) instruction
in B. Also create an initlally empty set named S i for each remove(i) instruction in B. Place e~ in S i
if R(X) = i. Place r i in Sj if remove(j) is the first remove instruction in B to follow remove(i}.

(3) For i = k, k-l, ..., 1 in turn do the following;

(a) For each X on OBJ(i), find the set Sj of which e X is currently a member.

(b) If i > j, place X on list REM(j), which will hold all objects that are removed from the bin
when the instruction-remove(j) in ~ is executed. Return.

(c) If i < J, merge set S. with that set S h such that rj is in S h. Call the new set S h. Return
to step (b) with j set to h. J

(4) Examine each remove(i) instruction of B in turn from the beginning. List those pairs (X,i) such
that X is on REM(i).

In step (i) of Algorithm 3 we create the list 0BJ to sort the objects in terms of their first com-
ponents. In step (2) we enter the atoms representing the objects into sets indexed by the second component
of the object. We also include in set Sj the atom r i corresponding to the instruction remove(i) if node j

258

follows node i in the postorder. In step (3) for each object X in set S~, we locate via the r-atoms the
first ancestor a of node j such that L(X) b a. Node a is the lowest common ancestor of nodes L(X) and R(X).

The motivation behind Algorithm 3 is that each remove(i) instructior in 8 is presumed to remove from
the bin all objects X such that the instruction enter~recedes remove(i) in 6. However, if we are
working on some X for which L(X) b i, then we will have already fround all those objects which will be
removed by the instruction remove(i). We therefore "get rid of" the instruction remove(i) by merging the
set Si with the set for the next remaining remove instruction.* (Note that the last instruction, remove(i),
can never disappear, so step 3(c) can always be carried out.) The atom r i allows us to find the next
remove instruction, since r i will always be in the set associated with that instruction.

A formal proof that Algorithm 3 works correctly is quite similar to the proof regarding the "INSERT-
EXTRACT" instructions in [2], and we omit it.

We now summarize the off-line link-lca algorithm.

Algorithm 4: Off-line simulation of the sequence G of llnk and ic.__~ instructions.

(i) Using the O(n G(n)~ set merging algorithm in [2], remove from G all lea instructions whose argu-
ments are on different trees. For these instructions give the answer "unrelated."

(2) Build the forest as dictated by the link instructions in G. If necessary, add one root to make
the final forest a tree T.

(3)

(4)
preorder

Number the nodes of T in preorder.

For each remaining Ic__~(u,v) instruction in G, create an object X = (i,j) where i and j are the
numbers of u and v.

(5) Use Algorithm 2 to generate the sequence 6 of enter and remove instructions for T and the set of
objects created in step (4).

(6) Use Algorithm 3 to simulate the sequence B.

(7) Scan the output of Algorithm 3. For each (X,i) in the output, set LCA(X) = i.

(8) For each lca(u,v) instruction currently in G, determine the corresponding object X; LCA(X) is the
lowest common ancestor of u and v.

Theorem 2: Algorithm 4 requires O(n G(n)) steps on a random access computer.

4. AN INTERMEDIATE PROBLEM

Let us return to the on-line processing of G, our original sequence of llnk and ica instructions, but
now assuming that all link instructions in G precede all lca instructions. In this case we may build the
implied forest first, and then process the lca instructlons without changing the forest. However, before
executing the lca instructions we shall con~rt the implied forest into a tree T by making the roots direct
descendants of-F-new root labeled "unrelated." We then modify this tree so that all paths in the forest are
bounded by O(log n) in length. Then we can process each lca instruction in at most log log n steps.

Given the tree T, we shall construct from it a virtual tree V which has the same nodes as T but in
which nodes have different fathers. The father of a node u in V is the lowest ancestor of u in T having at
least twice as many descendants as u. As a special case, if no such ancestor exists and u is not the root
of T, we then make the root of T the father of u in V.

Example 2: A tree T is shown in Fig. 3(a). Its virtual tree is shown in Fig. 3(b).

Ca) Tree (b) Virtual Tree
Fig. 3 Tree and its Virtual Tree

Note that the last instruction, remove(l), can never disappear so step 3(c) can always be carried out.

259

For example, node 9 has three descendants (we are assuming a node is a descendant of itself). Node 8 has
four, but node 7 has six, so node 7 becomes the father of node 9 in the virtual tree.

Lemma 4: Let T be a tree with n nodes, and V its virtual tree. No path in V is longer than log n.

Lemma 5: Let T be a tree with n nodes, and V its virtual tree. Let u and v be two nodes and let node
a be their lowest common ancestor in T. Assume u, v and a are all distinct, and suppose v has at least as
many descendants as u. Then f, the father of u in V, is a descendant of a in T (possibly a itself). Thus,
in T a is also the lowest common ancestor of f and v.

An efficient off-line method for determining whether one of two nodes in a tree T is a descendant of
the other is to preorder the nodes of T and attach to each node i (that is, i is its preorder number) the
value high(i) which is the highest numbered node that is a descendant of node i. It can be shown that i is
a descendant of j if and only if j ~ i and high(j) ~ high(i). It should be clear that high can be computed
for a tree with n nodes in O(n) steps.

We also observe without proof that in O(n) steps we can compute count(u), the number of descendants of
node u, for all nodes u. Furthermore, in O(n) steps we can find for each node u, a son of u having the
largest count.

We shall now outline an O(n) algorithm to construct a virtual tree from a tree T with n nodes. The
heart of the algorithm is a procedure build(u) which finds fathers in the virtual tree for all nodes in the
subtree T u of T with root u. The result of bufld is a queue Q of those nodes v in T u such that 2 *
count(v) > count(u).

A queue is a list of elements from which elements are removed from the front and added to the rear.
front(Q) is the first element of a queue Q.

procedure build(u):

construct a list of nodes Ul,U2,...,u k such that u I = u, u k is a leaf, and ui+ I is a son of u i with
the largest count, for i ~ i < k;

Q<-- uk;

for i = k-l, k-2, ..., 1 do

[while count(ui) h 2 * eoUnt(front(Q)~ do

fmake u i the father of front(Q) in the virtual tree;

delete front(Q) from Q];

add u i to the rear of Q};

resultis Q;

for i = i, 2, ..., k-I do

fo.__~, each son v of u i other than ui+ I d._~

fR <-- build(v);

Algorithm 5:

fo_r. each w on R do make u i the father of w in the virtual tree]

Constructing the Virtual Tree.

(i) Execute build(uo) , where u 0 is the root of T.

(2) For each node v ~ u o on the resulting queue, make u 0 the father of v in the virtual tree.

Example 3: After applying build to node 1 of Fig. 3(a) Q contains nodes 6 and i.

Lemma 6: Algorithm 5 requires O(n) steps and correctly builds the virtual tree.

We shall use the following strategy to simulate 6. After all link instructions in ~ have been seen,
we shall build the implied forest F. We make F into a tree T by making the roots of F direct descendants
of a new root labeled "unrelated." We then construct from T a virtual tree V. Then, when we see an
instruction ic.__Ju,v), we choose the one of u and v having the smaller count, say u. We find the [log nJ/2
th ancestor of u in V, say a. If a.= v, ica(u,v) is clearly v. If a is a proper ancestor of v in T, we
re~eat this procedure, finding the Llog n~ th ancestor of u in V. If a is not an ancestor of v in V, we
repeat the procedure, assuming the instruction-'was lsa(a,v) and beginning with the Llog n~/4 t~ ancestor

26o

in V of the one of a and v having the smaller count.

In log log n steps we shall converge upon a node a in V which is an ancestor of one of u and v in V.
Since we are effectively following paths in T from u and v toward the root, and since we always move from
the current ancestor of u or v having the smaller counts Len~na 5 guarantees us that a is the lowest common

ancestor of u and v in T.

To implement this strategy we shall use a procedure 10cate(u,v,i,J) which finds the lowest common

ancestor of u and v on T, given that

(a) the 2 i t h ancestor of u on V either does not exist or is an ancestor of v in T and

(b) the 2 j th ancestor of v in V either does not exist or is an ancestor of u in T.

In what follows, we assume that count and high refer to the implied tree T and ancestor(p,i) to its virtual
tree V. We assume that this information has already been computed.

(1) procedure locate#u,v,i,j):

(2) if count(u) % count(v~ then u,v,i,j <-- v,u,j,i;

(3) comment We assume that u now has the smaller count;

(~I if i = 0 then resultls ancestor(u,O)

(5) else (a <-- ancestor(u,i-l);

(6) if v = a then resultis a

(7) else if (a = undefined) or (v ~ a and highCv) < high(a~)

(8) then resultis loeate(u,v,i-l,j)

(9) else resultis locate(a,v,i-l,J)]

We now summarize the entire algorithm.

Algorithm 6: On-llne execution of ~, assuming all link instructions in ~ precede all lca instructions.

(1) As the llnk instructions are read, build the implied forest F in the obvious way.

(2) When the first lca instruction is encountered, do the following steps:

(a) ~ake F into a tree T by making the roots in F direct descendants of a new root labeled
"unrelated. "

(b) Using Algorithm 5, from T construct a virtual tree Vo

(c) Use the procedure getancestor of Section 2.3 to compute ancestor(u,i) for all nodes u and

o 4 i 4 Ll°g(1 ÷ ' L log n DJ •

(d) Preorder the nodes of T and compute count(u) and hid(u) for all nodes u.

(3) Now process each lca instruction in turn. To compute lc__a(u,v), we check whether one of u and v
is a descendant of the othe~-~sing the high information. If so, the response is obvious. If not, we
execute locate(u,v,k,k), where k = Llog~+ Llog nJ)j and print the result.

Theorem 3: Algorithm 6 correctly simulates ~.

5. DOMINATORS AND REDUCIBLE GRAPHS

We shall now apply ~lgorithm 1 to a problem in code optimization. This section presents the basic
definitions.

A flow graph is a triple G = (N,E,uo) , where N is a finite nonempty set of nodes, E is a subset of

N × N (~-set of directed edges), and u 0 in N is the initial node. There is a path from u 0 to every node.

If each node has no more than two successors, we call G a program flow graph.

We say that node d dominates node u if every path from u O to u passes through d. That is, if
i~,Ul,...,u i is a path with u i = u, then there exists an integer j, 0 ! j (i such that uj = d. We say d
mmediately dominates u if d dominates u and every other dominator of also dominates d. There are several

261

interesting properties of the dominator and immediate dominator relations. The following lemma is taken
from [3].

Lemma 7:

(a) Every node except the initial node has an immediate dominator.

(b) We may construct a tree (called the dominator tree) in which u is a son of d if and only if d
immediately dominates u. The ancestors of u in the tree are precisely the dominators of u.

Information about the dominator relation is useful for certain code optimizations, such as those
involving the detection of "loops." See [3,4] for elaboration. By Lermna 7(b), the dominator information
can be stored in a tree constructed knowing only the immediate dominators. If, as in [3], only a small
number of dominators - the lowest ancestors in the tree - are used, we may not even need to construct the
complete dominator relation.

Algorithms to compute the dominator relation are given in [3] ands[5]. Each requires O(n 3) steps for
program flow graphs, where n is the number of nodes in the graph. 0(n n) algorithms for program flow are
found in [4] and [6], and these appear to be optimal as it can take O(n 2) time just to print the answer. To
our knowledge, no one has developed a faster algorithm to compute only the immediate dominators. Here we
do so for the important special case of reducible program flow graphs.

Reducible graphs were defined in [7]. The flow graphs of goto-less programs are reducible. In fact,
experiments have shown that the flow graphs of most programs written in practice are reducible. Moreover,
any flow graph can be made reducible by judicious node splitting [8]. While this process could be expen-
sive, those flow graphs which come "from nature" but which are not reducible readily yield to the node
splitting technique. As a result, many code optimization algorithms such as

(1) eliminating common subexpressions [9,10],

(2) propagating constants [4],

(3) eliminating useless definitions [4], and

(4) finding active variables [ll]

have been couched in terms of reducible flow graphs.

We shall give a definition of reducible flow graphs taken from [12]. This involves two transformations
on directed graphs illustrated in Fig. 4 and defined as follows:

Tl: Delete a loop.

T2: Let node u be the lone predecessor of node v, where v is not the initial node. Merge
u and v into a single node w. The predecessors of u become predecessors of w. The successors of u and v

become successors of w. Note that w has a loop if there was formerly an edge to u from u or v. If u was
the initial node, w becomes the new initial node.

T 1

In this trans~

• '°

()

'ormation we say v is consumed.

(a) Transformation T I (b) Transformation T 2

Fig. 4.

It is known that if T 1 and T 2 are applied to a given flow graph until no longer possible, a unique flow
graph results. If this flow graph is a single node, we call the original graph reducible. We should observe
that every rooted directed acyclic graph is reducible.

262

T 2

~U

U 2

> <u° uO T2

Fig. 5. Reduction of a Flow Graph

In the first step T 2 is applied to u I with lone predecessor u O. At the second step T 2 is applied to
u 2 with lone predecessor [Uo,Ul]. There is a loop introduced sinc@ rUo,Ul] is a sucessor of u 2. The loop
is then removed by T I.

A region R is a subset of the nodes of a flow graph such that there is a node h in R, called the
header, having the property that every node in R - [hi has all of its predecessors in R. Thus, the header
dominates every other node in the region.

Example 5: Any node by itself is a region. In the previous example, ruo,ul] is a region with header
uo, but [Ul,U2] is not since both u I and u 2 have a predecessor, Uo, outside the set.

Following [i0], we may observe that as we reduce a flow graph by applying T I and T2, each node of each
successive graph represents a region in the following sense.

(i) Initially, each node represents itself.

(2) If we apply T I to a node, it continues to represent the same region as before.

(3) If we apply T 2 when node u is the lone predecessor of node v, the resulting node represents the
union of the regions represented by u and v. The header of the region represented by u is the header of the
new region.

The following lemma is a restatement of the definitions of "dominator tree" and "region".

Lemma 8:

(a) If u is a node in region R and u is not the header of R, then the immediate dominator of u
is a member of R.

(b) If T 2 is applied to nodes u and v, with u the lone predecessor of v, and u and v represent
regions R~ and R v respectively, then the i~ediate dominator of the header h of R u is the lowest common
ancestor (on the dominator tree of R v) of the predecessors of h in the original graph.

6. DOMINATORS OF A REDUCIBLE FLOW GRAPH

As a consequence of Lemma 8~ the following algorithm may be used to construct the dominator tree for
a reducible flow graph. The algorithm generates a sequence of link and ica instructions for each reduction
by T 2. These instructions will place Uo, the header of the region cons~ by T2, in its proper place on
the dominator tree. Thus, if the flow graph is reducible, every node except the initial node will be the
header of a region consumed by T2, and its irgnedlate dominator will be known. The details of the algorithm
are as follows.

Algorithm 7: Construction of dominator tree.

(i) List the predecessors of each node of the original graph.

(2) Use the algorithm of [13] to reduce the graph. Keep track of each region represented by the nodes
of the "current" graph. Each time a node is consumed by T2, create the sequence of instructions

263

ica(ul,%5
ica(vl,u 3)

ica(vk_2,u k)

link(uo,vk_l)

and simulate them by Algorithm i. (Note that neither Algorithm 4 or 6 is sufficient. Direct on-line
simulation is required.) Here u 0 is the header of the consumed region, Ul,...,ukare all its predecessors,
v I is the lowest common ancestor of u I and u2, and v~_ is the lowest common ancestor of vi_ 1 and ui+ 1 for
2 ~ i < k. If k = I, the sequence is just link(uo,Ul).

(37 The desired dominator tree is the final A-forest (which must be a tree, since only one root, the
initial node, remains).

Theorem 5: Algorithm 7 correctly constructs the dominator tree and requires O(E log E) steps on a
reducible flow graph with E edges.

Corollary: Algorithm 7 works for and requires O(E log E5 steps on a rooted directed acyclic graph with
E edges.

7. CONCLUSIONS

We have defined a problem that involves merging nodes into trees while retaining the ability to deter-
mine the lowest common ancestor of any two nodes. We have offered an O(n log n5 algorithm to solve the
problem on-line. We have shown how this algorithm provides a fast way of computing the dominator tree of a
reducible flow graph. If an off-line solution is sufficient, the link-lca problem can be solved in
O(n G(n) 5 steps. An on-line solution in the case where all link instructions precede all ica instructions
can be achieved in O(n log log n) steps. ~ '

A number of open questions remain.

(15 Are the algorithms given here the best possible for their respective problems?

(2) Can the techniques in Algorithm 7 be extended to arbitrary (irreducible5 flow graphs?

(3) Can the link-lca problem be used effectively as a subproblem to help provide faster algorithms
for problems other than the computation of dominators?

REFERENCES

[I] D. E. Knuth, The Art of Computer Programming, Volume i: Fundamental Algorithms. Addison-Wesley,
Reading, MassUV-19~.

[2] J. E. Hopcroft and J. D. Ullman, "Set Merging Algorithms," Submitted to SIAM J. Computing.

[3] E. S. Lowry and C. W. Medlock, "Object Code Optimization," Comm. ACM, 12:1 (January 19695, 13-22.

[4] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling, Volume II: Compiling,
Prentice-Hall, Englewood Cliffs, N.J., January 1973.

[5] M. Schaefer~ A Mathematical Theory of Global Flow Analysis, Prentice-Hall, Englewood Cliffs, N.J.,
1973.

[6J

[TJ

[81

[9]

[lO]

P. W. Purdom and E. F. Moore, "Algorithm 430: Immediate Predomlnators in a Directed Graph," Comm.
ACM, 15:8 (August 1972), 777-778.

F. E. Allen, "Control Flow Analysis," SIGPLAN Notices, 5:7 (July 1970), 1-19.

J. Cocke and R. E. Miller, "Some Analysis Techniques for Optimizing Computer Programs," Proc. Second
International Conference~on System Sciences, Honolulu, Hawaii, 1969.

J. Cocke, "Global Common Subexpression Elimination," SIGPLAN Notices, 5:7 (July 1970), 20-24.

J. D. Ullman, "Fast Algorithms for the Elimination of Common Subexpressions," Technical Report TR-i06,
Department of Electrical Engineering, Computer Sciences Laboratory, March, 1972. Also in Proc.
IEEE 13th Annual Symposium on Switching and Automata Theory, October, 1972,

264

[ii] K. Kennedy, "A Global Flow Analysis Algorithm," International J. Computer Mathematics, 3:1 (December
1971), 5-16.

[12] M. S. Hecht and J. D. Ullman, "Flow Graph Reducibility," SIAM J. Computing, 1:2 (June 1972), 188-202.

[13] R. E. Tarjan, "Testing Flow Graph Reducibility," Department of Computer Science, Cornell University,
Ithaca, N.Y.

265

