
ANOTHER APPROACH TO SERVICE COURSES 

Dr. William Mitchell 

Department of Computing Science 
University of Evansville 

Introduction 

This paper discusses the issues surrounding 
service offerings by Computer Science departments 
and focuses specifically on the first programming 
course. The approach described by the author has 
been developed to serve business students who seek 
an introduction to programming, but it applies 
also to most non-majors. The popularity of 
computer applications in the various disciplines 
as well as the widely publicized vocational oppor- 
tunities in data processing induce ever more stu- 
dents to try their hand at programming. The em- 
barrassment of riches in enrollment, however, 
brings with it multiple problems of staffing, 
machine resources, and curricular balance. Less 
obviously it also brings the pressure for instant 
success in serving this new population and thereby 
avoiding the splintering of programming education 
among interested disciplines, as happened with 
statistics instruction. Various viewpoints on 
solutions to these problems have been published, 
but little understanding of the nature and goals 
of the students involved has been evidenced. What 
follows is an explanation of a student-oriented 
approach to service course instruction which has 
been instituted at the University of Evansville 
(Mitchell 78). 

The Issues 

Beyond the majors and minors currently 
flocking to computer related disciplines is a much 
larger group of students who seek merely brief 
exposure to computer applications or perhaps a 
useful degree of skill in applications programm- 
ing. Most computer science departments initially 
funneled these students into the department's 
introductory course along with the majors. But 
as the discipline matured and the numbers increas- 
ed, this practice has become unsatisfactory, and 
the problem of the first course has emerged. 

Several schools have reported success with 
a modification of the unified first course 

approach which retains common lectures, but coordi- 
nates separate laboratories for each of various 
interest groups (Prather 78, Gibbs 77, Unger 76). 
The benefits of this approach seem to include large 
throughput and a degree of individualization in 
language use and applications. But the increasing 
diversity of students seeking programming skills 
has caused many to challenge the effectiveness of 
a unified first course. The growing numbers of 
students now make the possibility of discipline 

oriented courses economically feasible, and it is 
apparently for non-pedagogical reasons that Gibbs, 
Prather and Unger each take unified approaches as 
an implementation constraint. %~ile there were 
once extensive philosophical arguments in favor of 
unified courses in colle~e mathematics, no similar 
justification of a unified first course in comput- 
ing science has been suggested. 

What has been recommened as the content of the 
first course in programming varies significantly 
from those which assume mathematically sophisti- 
cated majors (Salton 73, Gries 74, Maly 75) to 
those which assume mathematically naive non-majors 
(Leitner 78, Cook 77, Taylor 77). Other authors 
have categorized computer users on a scale from 
those seeking "appreciation" to those concerned 
with "usage" (Adams 72, Solntseff 78). It has 
been argued that students in the usage category 
(practical programming experience is to be acquir- 

ed) are broadly similiar as a consequence of their 
objective (Schneider 78)~ However, Addison Wesley 
documents the e~olution of several content 
approaches relevant to usage, and concludes that 
there is a trend toward at least three distinct 
first courses (Gruener 78). 

Growing experience emphasizes the necessity 
for a service orientation for some first courses. 
The non-major is a distinctly different student 
from the majors we commonly encounter. The 
University of Texas at Austin's attempt to correct 
the dilution of the unified introductory course 
resulted in a 25% drop rate (Chanon 77). The non- 
majors are not intellectually deficient, but their 
motivation to develop competence in programming 
applications is often weak and their preparation 
for the task is often meager. They are not 
programming because they are intrigued and ful- 
filled by the experience, but because they are re- 
quired to gain exposure or they thought it would 
lead to a lucrative job. 

Yet even special non-major courses are not 
overly successful. A study at Penn State to re- 
solve the mutal dissatisfaction of business 
students and the CS faculty with a business 
Fortran course concluded that there was no obvious 
solution (Willoughby 73). Non-major courses cap- 
italize on specialized interests, allow a more 
sedate pace, and permit the excising of more 
difficult, theoretical topics (Cook 77), but they 
have not been demonstrated to be significantly 
more effective in accomplishing the acquisition of 
useful programming skill. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953030.809541&domain=pdf&date_stamp=1979-01-01


One might conclude that despite the growing 
body of experience and experimentation, we have 
not yet grappled with the fundamental problems 
of the service course. The author suggests 

that for too long our students have self-selected 
themselves into computing science and we as faculty 
have never had to satisfy the needs of students who 
lack the common psychological and intellectual 
attributes we have learned to take for granted. As 
long as we continue to approach the students now 
enrolled in our service courses in the same way we 
al~roach our majors, we will continue to be dismay- 
ed by their lack of accomplishment. 

A Student-CenteredAnalysis 

Before you can deal successfully with the re- 
sponsibilities of service instruction you must con- 
front the question "Is programming for everyone?" 
The growing trend toward appreciation courses seems 
to reflect a judgment about programming paralleling 
the judgment arrived at in mathematics concerning 

calculus instruction. The evolution of the first 
course in computer science seems to retrace the 
evolution of liberal arts-mathematics, discipline- 
oriented "applied" calculus, and "regular" calculus. 
The difference is the conviction by many that 
abstract mathematics is not at "the heart of 
computer science" (Gibbs 74) and the knowledge that 
junior colleges and trade schools have been produc- 
ing competent programmers for years. The concrete 
nature of computer applications and their close 
modeling on common clerical procedures suggests 
that programming should be more accessible than 
calculus. Why then do so many students in our 
service courses have such great difficulty acquiring 
programming skill? What makes them so different in 
this regard from our majors? Ability is not the 
explanation, for the junior college does not attract 
the high ability student. The explanation more 
likely lies in the motivation and intellectual ex- 
perience of the student. 

It has been our observation over several years 

of teaching programming to predominantly business 
students in a general education course that they 
would eventually learn to write BASIC code which 
could be executed, but many never got beyond de- 
bugging at random. There never seemed to be a 
firm grasp of the process which was being executed 
by the machine. Many of those who did learn to use 
language well enough to complete their programming 
assignments successfully still required considerable 
direction in planning how to code simple applica- 
tions. The course supposedly complied with the 
request of the business school to provide their 
students with actual programming experience suffi- 
cient to build an appreciation of the cormaercial 
programmer's task and the capabilities of the 
computer when applied to business problems. The 
students did not foresee practicing prograrmaing, 
but were being prepared to manage or interact with 
a corporate data processing function. The diffi- 
culty of dragging a class through expressions, 
loops, branching and arrays, however, usually left 
little time for considering character manipulation 
and file processing, even in a 4 quarter hour 
course. About all most students appreciated upon 
completion was that programming was an exceedingly 
detailed and complex task for which they had neither 
the time nor talent. 

Our students, with few exceptions, have never 
before had occasion to use a computer. Some have 
no real interest in the experience and are only 
satisfying a requirement, but at least as many 
would like to know more about how computers are 
utilized in accounting, inventory, purchasing, and 
other business specialities. But programming was 
a much different activity than they were used to, 
and they had little in their background which 
related to it. They were asked to assimilate and 
integrate a massive collection of details and rules 
without a context. Programming was like working a 
jigsaw puzzle, trying to find the right pieces and 
fit them together so that they would make a 
coherent picture, but they were not puzzle solvers. 
As we examined our student's characteristics we 
found that they had avoided science and mathematics 
as much as possible, and with them the requirement 
to observe rigid rules and develop deductive 
reasoning. They were informal and imprecise in 
their thinking patterns and their manner of 
expression. They had had little opportunity to 
develop skills in detailed planning and foresight, 
or in discovering patterns and relationships. 

Before coding and mechanical execution of 
programs can be made meaningful to these students, 
they must be provided with a context which will 
organize and prioritize the details. Before these 
students can appreciate the application of the 
computer as a problem solving tool, they need an 

understanding of the problem solving process and 
of procedures. It is fashionable to begin most 
introductory courses and text books with a section 

on algorithms, but this is actually intended only 
as a formalization of concepts intuitively under- 
stood. Most of these students lack this intuition. 
A single lecture of definition and examples is not 
a context on which to pursue the development and 
application of algozt~,ic'" thinking. Algorithms 
are already well down the tree of problem solving 
strategies, and the majority of these students are 
not conscious of an~ formal methodologies for 
specifying problems and describing their solutions. 

At the University of Evansville we have 
designed a short course in problem solving and 
algorithms into which we direct any non-major 
student who wishes to pursue a first experience in 
programming. This course intends to make students 
aware of problem solving methodologies and to 
focus their attention on procedural thinking. Its 
style and content incorporates the content of 
Cashman and Mein's problem solving module (Cashman 
75) but preceeds it with exposure to general 
problem solving (James Adams, Conceptual Blockbust- 
ing, Freeman, 1976) and extends it with a more 
detailed consideration of algorithm representation 
and analysis. Turing machines, flowcharting, 

Nassi-Schneiderman diagrams, decision tables, top- 
down decomposition, and procedural validation and 
testing are presented and illustrated with generally 
non-numerical examples. In effect, the original 
4 quarter hour course is now divided so that 2 
hours are devoted to the derivation, specification 
and testing of procedures without ever encountering 
a computer. Most students take this course and the 
following 2 quarter hour course in BASIC coding in 
sequence, so that the separation of programming 
concepts and language instruction advocated by 



Fisher, Hankley and Wallentine is strongly enforced 
(Fisher 73). 

We derive several advantages from the external 
division of these topics into separate two quarter 
hour courses. Separate courses focus both the 
student's and the instructor's attention on the 
topic at hand. When working code is the ultimate 
goal in a course it is impossible to prevent the 
student from focusing on coding. In the first 
course the instructor is forced to deal with the 
real weakness of the student and is not diverted 
by the duty to respond to premature questions 
about syntactical detail and coding techniques. 
The first course forces the student to recognize 
the role of conceptualization and planning and 
accustomizes him to thinking about procedures 
independent of a programming language. When the 
ultimate goal of the course is the ability to 
devise and represent an algorithm clearly, students 
strive to accomplish it. 

Our experience with the two-course sequence 
is that more is learned which is useful to the 
student. In the first course he learns to tackle 
problems by decomposition, to represent the 
algorithms in a structured manner, and to test 
the complete procedure in its logical form before 
ever worrying about its implementation. In the 
second course we are able to deal with more coding 
and applications because the concepts of loop, 
decision, array and file have been previously 
introduced and exercised. In the first course we 
sketch the logic of various business applications, 
and in the second we cover the coding techniques 
and the language facilities for implementing them. 
The relation of programming language to algorithm 
remains clear and well ordered. The opportunity 
to confuse code with thought, to let the computer 
fill in the details or find the errors, is denied. 

The division into separate courses permits 
the use of graduate students as instructors for 

the second course, where the goal is the explana- 
tion and exercise of the features of our inter- 
active BASIC system, and allows the senior faculty 
to confront the intellectual difficulties posed 
by procedural thinking. Students are asked to 
challenge fewer concepts at a time and given more 
time for the concepts to mature before they have 
to test them on the machine. The cost of failure 
is less and the reason for failure is easier to 
diagnose. On the other hand, students with better 
backgrounds or previous computing experience may 
skip the first course and proceed to a fast-paced 
language course which is able to pursue nontrivial 
applications. 

Finally, we believe that a course in problem 
solving and algorithmic thinking is a viable 
general education offering in its own right. It 
is offered with no-mathematical prerequisite 
beyond first year high school algebra so it is 
more accessible than the course popularized by 
Rubinstein at UCLA (Rubinstein 75). While it 
teaches no language, it provides significant in- 
sight into the nature of computer solutions, and 
as such, is a valid introduction to computers 
which can be paired with our two quarter hour 
computer and society course to meet the needs of 
departments such as sociology and nursing. 

We wish we could expand each of these courses 
into full four quarter hour offerings, but we have 
been constrained by the School of Business to 
provide meaningful programming experience within 
a four hour package. The advantages of the current 
sequence for the business student are many, and 
most are also appreciated by other non-majors. He 
now actually gets to learn some of the programming 
techniques utilized in commercial data processing 
and can appreciate the more fully the utility of 
the computer. He is able to consider more complex 
problems which are not only more meaningful but 
require him to bring to bear more of the programm- 
ing language's characteristics. He learns that 
methodical problem solving and algorithms are 
applicable beyond programming, and that the 
distinction between coding and analysis is a valid 
one. He acquires through the problem solving course 
a context for tackling problems, an understanding 
of procedures, and techniques for specifying de- 
tailed plans. This context makes the details in- 
volved in computer interaction comprehensible, and 
conveys a clearer understanding of the machine's 
contribution to the problem solution. 

The student who completes this introductory 
programming sequence is welcomed into the other 
language courses offered by the department (COBOL, 
RPG, FORTRAN, PL/I, etc., all taught as second lan- 
guages) and other courses required of our majors, 
such as introductory hardware and introductory 
systemsanalysis. But the introductory programming 

course offer4d to our majors is quite different, 
for they come with different attitudes, different 
preparation and the need of different skills. Even 
so, weaker majors often elect to take the problem 
solving course after they have difficulty with that 
aspect of their first course. 

SUMMARY 

Arguments to include more instruction in 
problem solving and algorithms in the introductory 

course have been repeatedly offered in the liter- 
ature, but invariably this has been addressed to- 
ward better education of the majors. The author 
argues that a service course aiming at developing 
programming skills in groups of non-majors must 
recognize that these students will lack basic 
concepts of procedural thinking and algorithmic 
problem solving which are taken for granted in 
majors. Without first supplying these concepts, 
the efforts devoted to elaborating programming 
techniques and language details will be largely 

wasted. It is the inability of these students to 
structure problems in procedural ways which in- 
hibits their growth as programmers even as it 
interferes with their acquisition of language 
syntax. The adoption of a very basic problem solv- 
ing course as a prerequisite to an introductory 
coding course at the University of Evansville was 
explained, and the benefits attributed to this 
approach were described. 



REFERENCES 

(Adams 1972) 
Adams, J. M. and D. H. Haden, "Introductory 

Service Courses in the Computer Science 
Curriculum," SIGCSE Bulletin, Vol. 4, 
No. i, pp. 49-52, March 1972. 

(Cashman 75) 
Cashman, W. F., and W. J. Mein, "On The Need 

For Teaching Problem-Solving In A Computer 
Science Curriculum," SIGCSE Bulletin, Vol. 
7, No. i, pp. 40-46, February 1975. 

(Chanon 77) 
Chanon, R. N., "An Experiment with an Intro- 

ductory Course in Computer Science," 
SIGCSE Bulletin, Vol. 9, No. 3, pp. 39-42, 
August 1977. 

(Cook 77) 
Cook, Robert N., "An Approach To The Introduc- 

tory Computer Science Course for Non- 
Majors," SIGCSE Bulletin, Vol. 9, No. 3, 
pp. 30-33, August 1977. 

(Epley 78) 
Epley, Donald and Ted Sjoerdsma, "A Two-semester 

Course Sequence in Introductory Programm- 
ing Using PL/I--A Rationale and Overview," 
SIGCSE Bulletin, Vol. i0, No. 3, pp.i13- 
119, August 1978. 

(Gibbs 74) 
Gibbs, Norman, B. Loveland, and T. Orkga, "The 

Heart of Computer Science", SIGCSE Bulletin, 
Vol. 6, pp. 13-44, December 1974. 

(Gibbs 77) 
Gibbs, 

(Gries 74) 
Gries, 

Norman E., "An Introductory Computer 
Science Course for all Majors," SIGCSE 
Bulletin, Vol. 9, No. 3, pp. 34-38, 
August 1977. 

David, "What Should We Teach In An 
Introductory Programming Course?" SIGCSE 
Bulletin, Vol. 6, NO. i, pp. 81-89, 
February 1974. 

(Gruener 78) 

Gruener, William B. and Steven M. Graziano, 
"A Study of The First Course In Computers," 
SIGCSE Bulletin, Vol. i0, No. 3, pp. i00- 
107, August 1978. 

(Fisher 73) 
Fisher, P., W. Hankley, and W. Wallentine, 

"Separation of Introductory Programming 
and Language Instruction," SIGCSE Bulletin, 
Bol. 5, No. i, pp. 9-14, February 1973. 

(Leitner 78) 

Leitner, Henry and Harry R. Lewis, "Why Johnny 
Can't Program, A Progress Report," SIGCSE 
Bulletin, Vol. i0, No. i, pp. 266-276, 
February 1978. 

(Maly 75) 

Maly, Kurt and Allan Hanson, "A First Course in 
Computer Science: What It Should Be and 
Why," SIGCSE Bulletin, Vol. 7, No. i, 
pp. 95-101, February 1975. 

(Mitchell 78) 
Mitchell, William and Bruce Mabis, "Implement- 

ing a Computer Science Curriculum Merging 
Two Models," SIGCSE Bulletin, Vol. i0, 

No. 3, pp. 151-155, August 1978. 

(Prather 78) 
Prather, Ronald and Judith Schlesinger, "A 

Lecture/Laboratory Approach to the First 
Course in Progra~uning," SIGCSE Bulletin, 
Vol. i0, No. i, pp. 115-118, February 1978. 

(Rubinstein 75) 

Rubinstein, Moshe, PATTERNS OF PROBLEM SOLVING, 
Prentice Hall, Inc. 1975. 

(Salton 73) 
Salton, Gerard, "Introductory Programming at 

Cornell," SIGCSE Bulletin, Vol. 5, No. I, 
pp. 18-20, February 1973. 

(Schneider 78) 
Schneider, G. Michael, "The Introductory 

Programming Course in Computer Science 
Ten Principles," SIGCSE Bulletin, Vol.10, 
No. i, pp. 107-114, February 1978. 

(Smith 76) 
Smith, C. and J. Rickman, "Selecting Languages 

for Pedagogical Tools in the Computer 
Science Curriculum," SIGCSE Bulletin, 
Vol. 8, No. 3 pp. 39-47, September 1976. 

(Solntseff 78) 

Solntseff, N., "Programming Languages for 
Introductory Computing Courses--A Position 
Paper," SIGCSE Bulletin, Vol. i0, No. i, 
pp. 119-124, February 1978. 

(Stokes 74) 
Stokes, Gordon E., "Service Course Position 

Paper," SIGCSE Bulletin, Vol. 6, No. 3, 
pp. 18-22, September 1974. 

(Taylor 77) 
Taylor, Robert P., "Teaching Programming to 

Beginners," SIGCSE Bulletin, Vol. 9, 
No. i, pp. 88-92, February 1977. 

(Unger 76) 
Unger, E. A. and N. Ahmed, "A Instructionally 

Acceptable Cost Effective Approach To a 
General Introductory Course," SIGCSE 
Bulletin, Vol. 8, No. 2, pp. 28-31, 
June 1976. 

(Willoughby 73) 

Willoughby, Theodore, "student Attitudes 
Toward Computers," SIGCSE Bulletin, Vol. 
5, No. i, pp. 145-147, February 1973. 


