
MASTER OF SOFTWARE ENGINEERING - 
A PROPOSED CURRICULUM FOR PRACTITIONERS 

A. A. J. Hoffman 
Texas Christian University 

Fort Worth, TX 76129 

It is well known that software devel- 
opment projects usually exceed both time 
and budget projections. Furthermore, many 
software systems do not meet expectedt per - 
formance, are difficult to modify and 
maintain, and often have unexpectedly 
short life cycles. These problems exist 
even when the developers are college grad- 
uates with bachelor, masters, and doctoral 
degrees in computer science. Clearly, the 
problem is not lack of training but 
rather focuses on the need for a new ap- 
proach to the software development pro- 
cess. 

"Software Engineering" is a term 
coined in 1967 by a computer science 
study group of the NATO Science Committee 
as the theme of a workshop on improving 
the process of software development. 

The purpose of the NATO workshop was 
to attempt to transform software design 
and development into an engineering-type 
discipline. Up to very recently, the 
task has involved seeking out and using 
techniques which can assist in the eco- 
nomic development of software which exe- 
cutes reliably and efficiently on real 
machines. This collection of ad hoc tech- 
niques is correctly named "software design 
methodologies" and often incorrectly re- 
ferred to as "software engineering." Soft- 
ware design methodologies (also called im- 
proved programming methodologies) are 
enormously helpful but do not in them- 
selves solve the basic problems of soft- 
ware development. Now software engineer- 
ing refers to the application of the prin- 
ciples of applied computer science (which 
includes software design methodologies), 
management science, and communication 
skills to the economic design, develop- 
ment, implementation, and maintenance of 
software systems. Programming involves 
simply converting a given set of specifi- 
cations into computer executable code. 
Solving the basic software system develop- 
ment problems involves dealing with the 

entire software life cycle which spans 
the time from conception of the product 
to the end of its operational life. Soft- 
ware projects typically involve a myriad 
of managers, engineers, accountants, pro- 
grammers, and customers - a fact which 
leads to the need for application of the 
best available technologies in an envi- 
ronment where there is a need for ef- 
fective management and communications. 

The overall task of software devel- 
opment involves at least the following 
areas: 

i. systematic programming method- 
ologies, 

2. requirements analysis, 
3. writing specifications, 
4. design technology, 
5. coding, 
6. testing, validation, verifica- 

tion certification, security, 
7. management, 
8. economics, 
9. group dynamics, 

i0. oral/visual communication, 
ii. modification, maintenance, 

portability. 
These areas or tasks can be conve- 

niently grouped into three skill areas: 
A. Systematic Programming Method- 

ologies, 
B. Management, and 
C. Communication. 
It is granted that, in all of these 

areas, there is no substitute for matu- 
rity and experience, However, few prac- 
titioners (i.e. software developers) cur- 
rently in the field have educational 
background in all three areas. Here an 
attempt is made to address the problem of 
introducing these skills into the soft- 
ware development community through the 
Master of Software Enqineerinq. 

In considering the types of individ- 
uals who might be interested in a Masters 
degree program in software engineering 
are: 

70 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800126.809555&domain=pdf&date_stamp=1979-01-01


A. Persons who have completed a Bach- 
elors Degree in Computer Science 
or a related field with little or 
no software development experi- 
ence, 

B. Persons with substantial job re- 
lated experience but either no 
formal education in any of the 
three areas or no recent formal 
education in computer science. 

Individuals with no experience in 
software development have difficulty in 
perceiving the intrinsic differences bet- 
ween one-person and multi-person projects 
and the associated problems. Persons with 
extensive experience already "know how to 
write code" but may not understand why 
systems tend to exceed both budget and 
time projections, don't work as well as 
expected, and are difficult to modify and 
maintain. 

This Master of Software Engineering 
curriculum is designed to serve this con- 
stituency and bring them to the point of 
productive participants on highly suc- 
cessful software projects or managers of 
software development projects. 

To enter the program the prospective 
student should gain admission to Graduate 
School and have either 

i. B.S. in Computer Science and some 
software development experience, 

or 
2. Substantial job related experi- 

ence in software development. 
The program should provide an intro- 

ductory course to motivate the student and 
provide an overview of the problems of the 
software development process and a des- 
cription of the software engineering tools 
(or skills) available to address these 
problems. In addition, the program should 
contain an optional course (or courses) 
for those lacking a formal or recent com- 
puter science technical educational back- 
ground. As already mentioned, management 
and communication courses should comple- 
ment the technology courses. The struc- 
ture and flow of courses is shown in 
Figure I. To serve these purposes a set 
of eleven sample courses are presented: 
SE-i: Introduction to Software Engineering 

(3 hours) 
Deals with the following questions: 

What are the problems encountered in soft- 
ware development? What are the intrinsic 
differences between one-person efforts and 
multi-person software projects? What 
tools are available to deal with these 
problems? What is the state of the art? 
SE-2: Overview of Computer Science 

(3 or 4 hours) 
Overview of undergraduate computer 

science from a software engineering point 
of view. Required only for those lacking 
a formal or recent computer science back- 
ground. 
SE-3: Methodologies 

(3 hours) 
Structured programming. Modular- 

ization. Top-down development. Levels 
of abstraction. Stepwise refinement. 
Hardware, software, and user trade-offs. 
SE-4: Requirements and Specifications 

(2 hours lecture + 1 hour labora- 
tory) 

Requirements analysis. Techniques 
for representing requirements. Specifi- 
cation development techniques. Specifi- 
cation languages. Automated aids. Lab- 
oratory will consist of case studies. 
SE-5: Design 

(3 hours with 2 hour parallel 
laboratory...SE-6) 

The design process. Major design 
methods such as composite/structured de- 
sign, data structure driven design, 
structural analysis, and others. Evalu- 
ation of alternate designs. Automated 
design aids. Design documentation. 
SE-6: Design Laboratory 

(2 hours - parallel to SE-5) 
Case study designs using design 

methods contained in SE-5. 
SE-7: Implementation 

(3 hours) 
Transfer of design to code. Testing 

techniques. Validation. Verification. 
Certification. Security. Case studies. 
SE-8: Management of Software Development 

(3 hours) 
Organization context of software 

development. Analysis of life cycle 
costs. Scheduling and budgeting tech- 
niques. Specification and control of 
standards for products, processes, and 
equipment. Personnel development and 
utilization. Team techniques. 
SE-9: Economics of Software Development 

(3 hours) 
Fundamentals of economics. Distri- 

bution of costs through software life 
cycle. Relative hardware/software costs. 
Economic analysis for decision-making. 
Economic feasibility studies. 
SE-10: Effective Participation in Small 

Task Oriented Groups 
(3 hours) 

Recognizing and supplying actions 
necessary to achieve their objectives. 
Group maintenance roles. Group orienting 
roles. Task directed roles. Evaluative 
roles. Closure and action items. Sys- 
tematic approaches to problem solving. 
Problem definition. Developing the solu- 
tion domain. Means-end analysis. Pro- 

71 



visions for feedback. Delineation of sub- 
problems. Assignment of priorities. Time 
lines. (Should be taken early in the 
program.) 
SE-iI: Communication Techniques for Soft- 

ware Engineers 
(3 hours) 

Organization of presentation materi- 
als. Preparation of graphics for presen- 
tation. Maximizing the use of multimedia. 
Writing style for software documents. 
Development documents - requirements, 
specifications, design, and implementa- 
tion. Technical documentation. User doc- 
umentation, automated aids. Reports. Pro- 
posals. (Should be taken after SE-3) 

These courses follow the pattern 
shown in Figure 2. This plan would pro- 
vide for a 36 semester hour Masters degree 
program with either 

i. 32 hours of software engineering 
plus 4 hours of approved elec- 
tives, 

or 
2. 29 hours of software engineering 

(without SE-2) plus 7 hours of 
electives. 

Local options could include a thesis, a 
comprehensive examination, or a project. 
The student exiting from this program 
would have: 

i. The ability to function in a 
senior level position in software 
development, 

2. Could pursue further work in soft- 
ware engineering education (i.e. 
take courses to keep-up), 

3. Read current application oriented 
literature, and 

4. Could make intelligent choices in 
the development~design process. 

Students who participated in the 
program on a part-time basis would expect 
to complete the degree in approximately 
three years. 

An institution offering this program 
would have to have a faculty with exten- 
sive application oriented experience in 
the designated areas. 

72 



A. Persons who have completed a Bach- 
elors Degree in Computer Science or a re- 
lated field with little or no software 
development experience, 

B. Persons with substantial job re- 
lated experience but either no formal ed- 
ucation in any of the three areas or no 
recent formal education in computer 
science. 

Individuals with no experience in 
software development have difficulty in 
perceiving the intrinsic differences bet- 
ween one-person and multi-person projects 
and the associated problems. Persons with 
extensive experience already "know how to 
write code" but may not understand why 
systems tend to exceed both budget and 
time projections, don't work as well as 
expected, and are difficult to modify and 
maintain. 

This Master of Software Engineering 
curriculum is designed to serve this con- 
stituency and bring them to the point of 
productive participants on highly suc- 
cessful software projects or managers of 
software development projects. 

To enter the program the prospective 
student should gain admission to Graduate 
School and have either 

i. B.S. in Computer Science and some 
software development experience, 

or 
2. Substantial job related experi- 

experience in software develop- 
ment. 

The program should provide an intro- 
ductory course to mativate the student 
and provide an overview of the problems 
of the software development process and a 
description of the software engineering 
tools 

73 



MASTER OF SOFTWARE ENGINEERING 

Subjects - Sequence 

i. 

2. 

Introduction 
I 

Communication 

Group Dynamics 

Oral/wrltten 
Communication 

Technology 

I. Overview 

2. Methodology 

3. Requirements & 
Specifications 

4. Design 

5. Implementation 

Management 

I. Management 

2. Economics 

Figure i 

MASTER OF SOFTWARE ENGINEERING 

J 

A 

Figure 2 

[S~-8 

74 


