A EASIC Program package for introducing the
top-down Approach to Computer Programming
Ronald G. Ragsdale
Ontario Institute for Studies in Education

In the summer of 1978, a program package was produced by six members of the class of course 1516, Programming Applications in Ontario Curricula, offered at the Ontario Institute for Studies in Education. The course participants were secondary school teachers of computer science or related subjects.

REASONS FOR THIS PROJECT

The primary argument for producing this package is described by Cherniak (1976). He argued that students should be introduced to programming in a top-down manner if we expect them to use the top-down approach in their programming. He proposed a sequence in which students begin as users of computer programs, then write programs by calling high-level subroutines, and finally progress to investigate, modify, and create the subroutines themselves. Therefore, the primary reason for this project was a wish to construct a model program which could be used to illustrate the top-down approach. The model should be capable of being used as a package, as a set of high-level subroutines, or as a set of low-level subroutines to be modified, ete.
A second reason for this project was
the desire of members of the class to
obtain some experience in a group
programming exercise. One element of this
experience was to be the oreation of a
number of program modules and the other was
to be the use of some type of team approach
to the programming task. The latter was
approximated by assigning the three major
portions of the program, input,
calculation, and output, to three groups of
students. In this case one student worked
on input, two on calculations, and two on
output, with the sixth student serving a
coordination - documentation function, and
the instructor serving as team leader.

A further goal of this project was to demonstrate the use of a programming exercise which could serve as a vehicle for the learning of some other subject matter (see Ragsdale, 1976). It was also hoped
that the package could be constructed so that variable subsets of the package could be used in order to increase the generality of its application. It was also intended to create a program which would allow students of various ability levels to make use of the program.

METHOD OF GENERATING THIS PACKAGE

The program package was produced in the BASIC language. There were advantages and disadvantages associated with this decision. Obviously, the top-down approach could have been demonstrated more effectively in some other languages, such as PL/1. On the other hand, the availability of BASIC on many inexpensive computers makes it more likely that secondary schools could make use of a package programmed in BASIC. Since all of the participants in the course either had access to a computer which utilized BASIC or were likely to acquire a micro-computer system including BASIC, that language was chosen.

The program was created through each "group" programming individual modules which were combined by the coordination documentation specialist. This latter person was also responsible for maintaining working documentation notes, which included descriptions of arrays and variables common to the three main routines, local variables, and line numbers assigned to the various modules (see appendix). He also created "dummy modules" and associated data which were used by the groups to debug their routines. Note that there was some error checking built into the subroutine calls, in that the string $A \$$ was used to carry the name of the subroutine being called and $A \$$ was checked to make sure it had the correct value when the subroutine was entered.

There are obvious limitations to this package, including the size (about 1000 lines) of the final program, the fact that subroutines in BASIC do not include the passing of arguments, and the level of difficulty in understanding the function of some of the modules.

SUGGESTED USES

There are at least four possible uses for this top-down package. The first is to be used as a top-down introduction to programming. Students could begin by running the package, then write a program to call the highest level subroutines, then progress to the lower level routines, and finally, could modify or add subroutines to the package. The hoped for result is that this will encourage students to think about programming problems in this same top-down manner.

A second use is as a model programming package for any programming course, even when the introduction to top-down programming is not used. The package could be used as a framework in which students could be asked to modify subroutines or add new subroutines.

A third use of the program is as a package for a non-computer science course (in this case, statistics). Parts of the program could be modified by the instructor to show the students the effects of varying the form of calculation, etc.

Finally the package could be used as a starting point for expansion of the programs into some larger set of routines. In this case, a statistical library of routines might be the end product of such an expansion.

References

Cherniak, B. Introductory programming reconsidered - a user-oriented approach. Joint issue of SIGCSE Bulletin, 1976, $\underline{8}$ (1) and SIGCUE Topics, 1976, 2, 65-68.

Ragsdale, R. G. Multi-disciplinary programming exercises. Joint issue of SIGCSE Bulletin, 1976, $\underline{8}$ (1) and SIGCUE TOpics, 1976, 2, 295-297.

Appendix
 Documentation for program PACKG

ARRAYS AND VARIABLES

GLOBAL VARIABLES GENERATED BY HIGH LEVEL ROUTINE

$\mathrm{A} \$$	- must contain the name of the subroutine being called
$\mathrm{B} \$$	- flag for rerun of program or termination

GLOBAL VARIABLES GENERATED BY INPUT ROUTINE
$A(1,1-100)$ - contains the first vector input by the user
$A(2,1-100)$ - contains the second vector input by the user
A1(1) - contains the number of elements in row 1 of A
A1(2) - contains the number of elements in row 2 of A
A3(1) - estimated minimum value for elements in row 1 of A
A3(2) - estimated minimum value for elements in row 2 of A
A4(1) - estimated maximum value for elements in row 1 of A
A4(2) - estimated maximum value for elements in row 2 of A
$\mathrm{L} \$(1)$ - contains the label for row 1
L\$(2) - contains the label for row 2
U $\$(1) \quad$ - contains the units for row 1
U\$(2) - contains the units for row 2
$D(1) \quad-$ contains the number of significant digits in row 1
$D(2) \quad-\quad$ contains the number of significant digits in row 2
E - 1 there is only one vector

- 2 there is two vectors

GLOBAL VARIABLES GENERATED BY CALCULATION ROUTINE
A(3,1-100) - contains the elements of row 1 in ascending order
$A(4,1-100)$ - contains the elements of row 2 in ascending order
$\mathrm{A}(5,1-100)$ - contains elements of row 2 matched with its corresponding elements in row 3
A(6, 1-100) - contains elements of row 1 matched with its corresponding elements in row 4
$G(1) \quad$ - contains the number of groups in row 1
G(2) - contains the number of groups in row 2

LOCAL VARIABLES
INPUT


```
    Y5(2)- sum of squared deviations from the mean in row 2
    SORT
    Y0 - counter
    Y1 - counter
    Y2 -temporary storage
    Y3 - counter
    Y8 -temporary storage
    INCREMENT
    V3 - arbitrary divisor (1,2,5) for number of groups
    V4 - number of groups before rounding
FACTOR
    V7 - dummy variable for sorted input
    P - exponent for group calculation
    COVARIANCE
    I - counter
    Y9 - sum of covariance
    LOWUPBND
    Y6 - intermediate variable in lower bound calculation
    Y8 -intermediate variable in upper bound calculation
OUTPUT
    Z1 - flag for A1(1)=0 and A1(2)=0
    Z2 - counter of vector number
HEADINGS
    Z1 - flag for A1(1)=0 and A1(2)=0
ECHO
    Z5 - the number of elements in the smallest vector
        A(1,I) or A(2,I) when they are not equal in size
LITERALS
    Z1 - transfer of variables to and from SIGNIF. DIGITS
    Z2 - counter of vector number
PLOT
    26 - the number of coincident points on the
        scatterplot at the particular location being
        considered
    Z7 - the number of printing symbols on the scatterplot
        for a single line of printing
    Z8(1,I)- the vector A(3,I) scaled between ? and 25
                for the scatterplot
    Z8(2,I)- the vector A(5,I) scaled between 1 and 50
                        for the scatterplot
    Z9$(I)- the printing symbols for the scatterplot in
                their proper positions
HISTO
            Z2 - counter of vector number
        LITSUB
            J - counter for number of modes
            Z1 - dummy one dimensional variable used to pass numbers
                to subroutine sig. dig.
            Z2 - counter of vector number
SCAL
            Z3 - range between max and min values of A(1,I)
            Z4 - range between max and min values of A(2,I)
            Z8(1,I)- vector A(3,I) scaled between 1 and 25 for
                        the scatterplot
            8(2,I)- vector A(5,I) scaled between 1 and 50 for
            the scatterplot
    HISSCALE
        - counter for boundary loop
        - counter for boundary to maximum frequency comparison
        - counter of vector number
        - counter of vector number
        - upper frequency boundary
    HISPLOT
            J - counter of horizontal bars on histogram
            - counter for filling the horizontal print line
            Z6$ - print symbol > or blank
            Z7$ - print symbol > or blank
            Z8$ - print symbol * or blank
        FREQSCALE
            - upper frequency boundary
            Z7 - increment for frequency scale - actually a decrement
```


