
COMPUTER SCIENCE CL~RICULL~ FOR SMALL COLLEGES 

J. S. Cameron and Z. A. Karian 

Mathematical Sciences Department 
Denison University 

Granville, Ohio 43023 

Introduction 

benison University is a small, liberal arts 
college located in Granville, Ohio. It has a 
student body o£ approximately 2000 undergraduates 
and a faculty ot approximately 165. Courses in 
Computer Science have been offered since 1969, 
and in 1972 it became possible to award a Bache- 
lor's degree in Mathematical Sciences with a Con- 
centration (minor) in Computer Science. In 1975, 
a full scale BacHelor's program in Computer Sci- 
ence was authorized, and the first degrees were 
awarded in 1976. Tne program was designed to 
satisfy two objectives. First, there are a 
number of students who are oriented towards man- 
agement and are interested in the applications of 
computing in industrial environments. Many of 
these students either pursue a double major or 
major in one area and develop a strong background 
in another field. These students frequently do 
not need a strong mathematical background, but do 
need a broad exposure to a variety of applica- 
tions. The Bachelor of Arts degree program was 
designed for these students. Our second objec- 
tive was to construct a program for those stu- 
dents who were interested in computer science as 
a profession; these students would probably go 
to graduate school or take technical positions in 
industry upon graduation. For these students we 
provided the Bachelor of Science degree, which is 
a more rigorous program. 

Since the degree program was authorized in 
19/5, the curriculum has been significantly 
changed, and the resulting program seems to be 
one which could serve as a paradigm for those 
small colleges which are about to undertake a 
program in Computer Science. 

~he Orlglnal Curriculum 

In order to understand how we arrived at our 
current program, it is necessary to see the pro- 
gram we originally instituted. The approved pro- 
posal to award degrees in Computer Science was 
strongly influenced Dy the ACM 68 Curriculum, and 
consisted of the following 12 one-samester 
courses: 

a) Introduction to Computer Science 
b) Problem Solvlng and Intermediate 

Progra~ing 
c) Data Structures 

d) Discrete Structures 
e) Systems Deslgn (Computer Architecture) 
t) Modeling and Computer Slmulatlon 
g) Systems Programming 
h) Advanced Systems Design and Progrananing 
i) Data Base Systems 
j) Programming Languages 
k) Introduction to Automata and Computabillty 
i) Numerlcal Analysis 

It should De noted that only the introducto- 
ry course, the intermediate course (Problem Solv- 
ing), and Numerical Analysis had been ottered 
wlth any regularity prior to 1975, although some 
ot the remaining courses had been offered at 
least once in the past. Further, although per- 
mlssion was granted to otter these courses, there 
was no guarantee that all would De ottered with 
any degree ot frequency in the future. In tact, 
the plan was to otter the majority ot the higher 
level courses only once every four semesters, 
with no immediate plans to implement at least two 
of the courses (i.e. Advanced Systems Design and 
Automata and Computability). 

Even though thls type of schedule seamed 
reasonable, certain problems surfaced rapidly. 
First, each advanced course had to 'stand alone', 
since the instructor could not assume any knowl- 
edge on the part ot students beyond the interme- 
diate level. Thus, a course in Data Base Systems 
would have some students who were tamlliar wlth 
Data Structures, some who were tamiliar wlth Dis- 
crete Structures, and some wno were tamlliar wlth 
both or neither. The obvious solution of adding 
prerequisites was not teaslble since many ot our 
students do not decide to major in Computer Sci- 
ence until tnelr sophomore year, and the course 
schedules would preclude getting the prerequi- 
sites in time to take the desired advanced 
courses. This resulted in setting aside a cer- 
tain amotxlt ot tlme in each course tot a quick 
'review' ot relevant concepts, a review whlch was 
too tast tor the students who had never seen some 
ot the material betore, and too slow for those 
WhO had already been through the same review sev- 
eral times. 

A second, less serious, problem was t/~at a 
semester was not really long enough to allow the 

instructor in some courses to assign enough 
'interesting' problems to ensure thorough knowl- 

215 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800126.809586&domain=pdf&date_stamp=1979-01-01


edge of the material (e.g., Systems Programming 

and Design). 

Finally, in at least one case, it was disco- 
vered that a course offered in Computer Science 
(i.e., Discrete Structures) had a consideraD£e 
overlap with a course offered in Mathematics 
(i.e., Modern Algebra), a situation which result- 
ed in an unnecessary drain og departmental re- 
sources. 

As these, and ot~er problems surfaced, there 
was a temptation to patch the program. However, 
a conscious decision was made to keep the curri- 
culum stable until we had gone through a complete 

cycle of offerings so that the entire program 
could De revised at one tlme. ThiS review was 
made in the tall ot 1977, and the revised curri- 
culum was adopted tot the gall og 197~. 

Cur rent Curt iculum 

~lhe new curriculum (see Appendix A for de- 
gree requirements) is co~orlsed og a core ot slx 
courses which are offered each year and seven 
courses offered on a rotating basis (see Appendix 
C for the schedule). Tne core consists og: 

a) Introduction to Computer Science 
b) Introduction to Statistics and Data Analysls 
c) Software Structures (two semester sequence) 
d) Systems Programming and Design (two semester 

sequence) 

The introductory course in Computer Science 
is a standard course, as is the introductory 
statistics course. The inclusion of statistics 
in the program is a recognition of the importance 
that statistics plays in a wide variety og com- 
puter applications. 

The Software Structures course is the larg- 
est single change in the new program, and is a 
combination of Intermediate Programming and Data 
Structures. This approach has several practical, 
as well as conceptual advantages. First, data 
structures ot all types are introduced in a na- 
tural manner. The concept and implementation of 
arrays, stacks, queues, etc. are developed as 
tools in the development of algorithms or compu- 
tatlonal procedures. Tne same or similar proD- 
lems can be solved using a variety ot structures 
and students can galn an appreciation of the im- 
pact of data and its structure on a program, 
which is itself a computational structure. 
Second, by combining the two courses, and gocus- 
ing the programing appllcations on the data 
structure aspect we are able to include more, and 
larger, projects than was previously the case. 
Finally, it is a general feeling wlthin the de- 
partment that the practice of making Data Struc- 
tures a separate course only serves to make the 
subject obscure and mysterious. It does not re- 
inforce the concept of data-algorltnm interac- 
tion, a shortcoming we are attempting to over- 

come. 

The final core sequence, Systems Progranmaing 
and Daslgn, was made a requirement as a result og 
our conviction that each student should have some 

baSlC unoerstandlng ot the interaction of 
hardware and software, as well as an t~Oerstano- 
ing or Now systems work. This sequence culmi-" 

hates with a project SUCh as writing a small com- 
piler or cross assen~Dler. 

qhe glnal c~ange in our curriculum was a 
merging of the Discrete Structures course wlth 
the course in Modern Algebra to form a course in 
Discrete AlgeDralc Structures. ~[his course is 
the prequislte for both the Automata and Computa- 
bility and the Modern Algebra courses w~ic~ are 
ottered in alternate years. The remaining 
courses (i.e., Modeling and Computer Simulation, 
Numerical Analysis, Computer Architecture, Data 
Base Systems, and Programming Languages) are 
st111 oggered every fourth semester. This allows 
us to offer at least two advanced courses every 

semester. 

Starting Considerations 

~ne current curriculum seems to De and in 
tact is, a rather ambitlous undertaklng for a 
small college. A natural conclusion would be 
that there was a large increase in the start og 
the Department og Mat/~ematical Sciences in order 
to implement it. For several reasons this was 
not the case. First, Denison requires all stu- 
dents to take one-semester laboratory science 
courses in at least three dltterent departments. 
Introductory Computer Science is one of the 
courses whlch satisfies this requirement. The 
stagting requirements for t~is course (tour sec- 
tions/year in 197b and elght sectlons/year in 
19/I) had forced the department to employ indivi- 
duals w~o were, or were interested in becoming, 
qualified to teach in this area. 

Further, the decision to otter the Concen- 
tration (minor) in Computer Science colnclded 
wltn a natural vacancy witiqin the departement 
Which led to the employment of a computer sclen- 
tist who could teach some og t_~e upper divlsion 
courses. Additionally as vacancies occurred 
wlthin the department, a conscious decision was 
made to hire only indivlouals who had some train- 
ing in Computer Science. Other advanced courses 
(i.e. Modeling and Computer Simulation, Nu~rl- 
cal Analysis) were taught by mat~ematiclans/ sta- 
tisticians who had sufficient interest in the 
tleld to become well qualitled for these courses. 
'l~us, when the degree granting authorlty was 
glven, there was a cadre ready who had a good 
idea what should, and should not, be done. In 
practice, the net increase in stagtlng tot the 
department had been one and one halt since 1973, 
and t~is is largely accounted for by the increase 
from tour to nine sectlons per year of the intro- 
ductory course, and some additional sections ot 
the pre-calculus mathematics. 

Although there has been some stattlng incre- 
ase, it should not be assumed that there is only 
one Computer Scientist on the stagE. ~he re- 
placement of a mathematics faculty member (menti- 
oned above) by a computer scientist (VnD) plus 
the addition of a second computer sclentist (ABD) 
glves us two doctoral level faculty members. 
Also one of the members ot the mathematics facul- 

216 



ty acquired an MS in Computer Science on hls saD- 
batlcal. Thus, we nave t~ree members ot the fa- 
culty wltn advanced formal training in the tleiO, 
and one other member who has mlnlmal formal tra- 
ining Dut has been deeply involved in the com- 
puter science program tot more than ten years. 

Other Conslderatlons 

~Ihe nlstory ot Computer Science at Denison 
is markeo Dy the constant encouragement and in- 
terest ot the University Admlnlstratlon. The 
computer's use has been increasing to the point 
that the average student logs over eleven hours 
ot connect tlme each year, the l lmitlng factors 
apparently being terminal availability and com- 
puter capaclty. Over 50% of our graduates have 
taken at least one formal course in Computer Scl- 
ence, and a fairly large numter take courses 
which use the computer as a resource (e.g., Span- 
ish vocaOulary drill). It is ODViOUS that thls 
interest in computing was benetlclal to the de- 
velopment ot a program. Some additional evlOence 
ot the status ot computing at Denison is the tact 
that it was selected as one of eleven unlvers~- 
ties in the country to serve as models tot aca- 
demic computing. The study was pertormeO in 
1976-1977 tot NSF Dy the Human Resources Research 
Organization. 

Our computing facilities consist ot a 
PDPII/45 wltn ii6K words Or maln memory and 120 
million bytes ot on line storage. We also have 
three magtape drives, a card reader, a plotter, 
and 35 terminals. These resources serve the ad- 
minlstratlve needs, the general academic needs ot 
dlverse disciplines as well as the needs or the 
computer science program. Since the acquisition 
ot the PDP 11/45 system in 1973, our computing 
needs have exceeded the capacity or the system 
and we plan to have a signiticantly larger system 
for the next academic year. 

Pecommendatlons 

If any small college, comparable in slze to 
Denlson, is planning to institute a degree pro- 
gram in Computer science, our advice is to plan 
as tar ahead as possible. The Concentration 
(minor) in Computer science seems to De a good 
approach and is an attractlve method ot gaining 
Departmental expertise in an orderly fashion. 
Assuming that an introductory course is currently 
being offered, the next step could De the intro- 
ductlon of sequence simllar to our Sottware 
Structures. Courses in either Numerical Ana- 
lysls, Discrete Structures, or Automata and Com- 
putatlon can be taught by members ot the mat~e- 
matlcs taculty who have some training and experi- 
ence in computation. This will start the transi- 
tion process in a relatively painless manner. 
Later, a course in Assembly language programming 
can be introduced wnlch could eventually lead to 
a sequence in Systems Programming and Design. 
Other electives could be added as expertise and 
interests develop. Even with best intentions, it 
is not reasonaDle to expect that even a minor in 
Computer science can be oftered wltrlout any tra- 
ineo computer scientists on a statE, and the 

first one should De employed prior to offering 
the Sottware Structures course. Further, when 
natural vacancies occur w~thln a department, an 
effort must be maoe to hlre a second or third 
computer sclentlst. Under no circumstances 
should a degree program be undertaken wlth fewer 
than two formally trained computer sclentlsts, 
since it is not reasonaDle to assume that any one 
person can handle all, or even the majority, of 
the advanced courses with a high level ot compe- 
tence. 

The computing facilities ot a college where 
a Computer science program is to be initiated 
needs to De carefully scrutinized. With the de- 
velopment of a program, the facilltiesmay not be 
aDle to cope wlth the additional load. Estimates 
ot increases in connect time and CPU time should 
De studled so that it additional equipment is 
needed, it can be planned for ahead of time. 

During the past several years the ACM has 
had committees reviewing curriculumproposals and 
accreditation guidelines. Intentionally or oth- 
erwlse, the plight of the s~all (fewer than 2500 
undergraduates) liberal arts colleges has been 
ignored. We feel our curriculum does, in fact 
satisfy all appropriate guidelines, but we also 
teel that our sltuatlon is somewhat unique. We 
would like either for the ACM to form a committee 
Which can develop a realistic curriculum and ac- 
creditation guidelines for small colleges or for 
a working committee made up or representatives 
from s~li colleges to do the jOD for the ACM. 
It is oDvious that many colleges are presently 
entering the Computer Science field; it would De 
a tragedy it there is no practical guidance ava- 
ilable from our professlonal society on how to do 
it properly. 

Appendix A 

Summary ot Courses Required for a Degree in 
Computer Science at Denison University 

a. All candidates must take the following core 
courses: 

i. Introduction to Computer Science 
2. Introduction to Statistlcs and Data Ana- 

lysis 
3. Software Structures (2 semesters) 
4. Systems Programming and Design (2 semes- 

ters) 

b. BA candidates must take at least two of the 
following: 

i. Computer Architecture 
2. Data Base Systems 
3. Modeling and Computer Simulation 
4. Programming Languages 

c. BS canOidates must take at least four of: 

i. Discrete AlgeDralc Structures 
2. Automata and Computability (Discrete 

Algebraic Structures is the prerequisite) 

217 



3. Numerlcal Analysis (Ditterentlai Equa- 
tions is a co-requlslte) 

4. computer Architecture 
5. Modeling and Computer Simulation 
6. Programming Languages 
7. Data Base Systems 

d. Prerequisites (not noted earlier) 

I. Discrete Aigebralc Structures has a Cal- 
culus I and Linear Algebra as prerequi- 
site 

2. Difterentlal Equations (co-requlsite for 
Numerical Analysis) has Calculus III and 
Linear Algebra as prerequisites 

3. All other advanced courses have Software 
Structures II as a prerequisite 

e. General Comments 

i. The Bachelor ot Science degree is de- 
signed tor students who wlsh eltner to 
pursue a career in a sclentltlc environ- 
ment or to pursue an advanced degree in 
Computer Science. qhus, a BSmajor must 
have either an analysis (calculus) or an 
algebraic (Automata and Computability) 
sequence. 

2. Tne Bachelor ot ~rts degree is designed 
for those whose primary interest is in- 
dustrial employment culminating a manage- 
ment position. Many ot our BAma]ors 
take either a seconO ma]or or a minor in 
anot~ler field, frequently Economics. 
Althoug~ not required, it is recommended 
that BA candidates take at least one sem- 
ester of Calculus and one semester of Li- 
near Algebra. 

Appendix B 

Course Descriptions 

Most of toe courses listed in Appendix A, 
have the usual content of courses with similar 
titles offered at most colleges and universities. 
~is Appendix describes three courses which, we 
believe, have some unique features. 

a) Software Structures 

Computer programs are representations ot al- 
gorithms or computational procedures, and 
are therefore amenable to rigorous analysis. 
A logically correct program may not be the 
most efticient one in either run tLme or use 
of resources due to poor program or data 
structure. This course is designed to bring 
together the concepts ot rigorous algorithm 
development, program atructures, and data 
structures for students w~o have had one 
previous Computer nsclence course. 

Tne first semester consists ot an in- 
troduction to a structured language (PAS- 
CAL), the analysis ot algorithms, and a tor- 
mal description of standard data types such 
as arrays, stacks, queues, etc.. Laboratory 

problems are designed to get students to im- 
plement various 0ata structures. The second 
s~nester introduces such diverse topics as 
polynomial algebra, sparce matrices, gener- 
alizod lists, trees, graphs, sorting and 
searching, hashing and memory management. 
qhe laboratory exercises in most ot these 
areas require students to develop specific 
algorithms or study t~e relative merits ot 
various techniques. 

i. Horowiz, E. and Sahnl, S., Fundamentals 
ot Data Structures, Computer Science 
Press, 1976. 

2. Schneider, G. and Weingart, S. and Perl- 
man, D., Introduction to Proqramming and 
Problem Solving, With PASCAL, John Wiley 
and Sons, 1978. 

b) Systems Programming and Design 

This two semester sequence examines the de- 
sign and implementation of operating sys- 
tems. Conslderabie tlme is spent in devel- 
oping skills in assembly language program- 
ming both as an end in itself and as a vehi- 
cle for studying the organization ot com- 
puter systems. Tne variety ot systems pro- 
grarrming tasks studied include the design 
and implementation of assemDlers, macro pro- 
cessors, loaders, and compilers. A third 
component of the course is the study ot the 

structure and implementation of operating 
systems with an examination of possible mem- 
ory, processor, and information management 
schemes. 

Systems programming is also viewed as 
an important source of relevant and more 
complicated programming problems. Students 
are given experience in large scale group 
and individual projects Wnlch emphasize 
sound design, implementation, evaluation, 
and documentation techniques. 

c) Modeling and Computer Simulation 

Simulation courses in most Computer Science 
programs deal essentially with dlscrete 
event models and toe use of special 
languages tor the simulation of these mo- 
dels. Toe emphasis generally is on the slm- 
ulatlon rather t/nan model construction. We 
feel our course strikes a better balance 
model design and simulation methodology by 
investigating the underlying mathematical or 
statistical structure ot the model. For ex- 
ample, the consideration of queuing models 
includes a discussion of statistical impli- 
cations ot Poisson processes. Simulation 
courses offered by Operations Researc~ de- 
partments traditionally have emphasized 
these ideas. Our course may be consldered a 
hybrid of computer science and operations 
research simulation courses. 

The general topics include a discussion 
of the statistical quality ot algorlt~ms tor 
t~e generation of random numbers and other 
random variates, queulng theory and the use 

218 



ot GPSS in slmulatlng queuing models, and 
the use or DYNAMO tor the simulation ot con- 
tinuous models includlng models detlned by 
dltterence equations. We have not tound any 
one text which tlts our needs and have had 
to rely on notes specially prepared tor t~e 
course. 'Ihe tollowlng texts, however all 
have some ot the content that we need. 

i. Fis~man, G. S., Concepts and Methods in 
Discrete Event Digital Simulatlon, John 
Wiley and Sons, 1973. 

2. CGordon, G., Tn__e Application ot GPSS to 
Discrete System_ Simulation, Prentlce Hall 
Inc., 19/b. 

3. Yakowltz, S. J., Com~utatlona ! Probablll- 
ty and Slmulatlon, Addison Wesley, 197/. 

Appendix C 

Course Schedule Over a Cycle ot Otter lngs 

The core courses are taught every year. 
Multlple section ot Introductory Computer Science 
and Introductory Statistics are ottered each sem- 
ester. A single section ot Sottware Structures 
and Systems Programming and Design courses are 
ottered starting in the Fall Semester. The scr~e- 
dule tot the remainlng courses is: 

Fall 19/8 
Computer Arcnltecture 
Discrete AlgeDralc Structures 

Spring 1979 
Modeling and Computer Simulation 
Automata and Computabllity 

Fall 1979 
Data Base Systems 
Discrete Algebralc Structures 

Spring 198U 
Programming Languages 
Numerical Analysls 

For stattlng purposes it should De noted that one 
ot the two courses each semester is mathematical 
in nature and is trequently taught by a matnema- 
ticlan wltn some background in computing. 

Reterences 

i. "Currlculum Recommendation tot the Undergra- 
duate Program in Computer Science --A work- 
ing Report ot the ACM Committee on Currlcu- 
lum in Computer Science," SIGCSZ Bulletin 9, 
2 (June 1977), 1-16. 

2. Curriculum Committee on Computer Science, 
"Cklrrlculum '68, Recommendation for Academic 
Programs in Computer Science," CALM Ii, 13 
(March 1968), 151-19/. 

3. Hunter, B., Academlc Computing at Denison 
Universlty - A Case Study, Human Resources 
Research Organlzatlon, 1978. 

4. Worland, B. P., "Using t~e ACM Computer Sci- 
ence Recommendations in a Liberal Arts Col- 
lege," SIGCSZ Buletln 10, 4(December 1978), 
16-19. 

219 


