COMPUTER SCIENCE CURRICULUA FOR SMALL COLLEGES

J. 8. Cameron and Z. A. Karian

Mathematical Sciences Department
Denison University
Granville, Ohio 43023

Introduction

Denison University is a small, liberal arts
college located in Granville, Ohio. It has a
student body of approximately 2000 undergraduates
and a faculty ot approximately 165. Courses in
Computer Science have been offered since 1969,
and in 1972 it became possible to award a Bache-
lor's degree in Mathematical Sciences with a Con-
centration (minor) in Computer Science. In 1975,
a full scale Bachelor's program in Computer Sci-
ence was authorized, and the first degrees were
awarded in 1976. The program was designed to
satisty two obijectives. First, there are a
number of students who are oriented towards man-
agement and are interested in the applications of
computing in industrial environments. Many of
these students either pursue a double major or
major in one area and develop a strong background
m another field. These students frequently do
not need a strong mathematical background, but do
need a broad exposure to a variety of applica-
tions. The Bachelor of Arts degree program was
designed for these students. Our second objec-
tive was to construct a program for those stu-
dents who were interested in computer science as
a profession; these students would probably go
to graduate school or take technical positions in
industry upon graduation. For these students we
provided the Bachelor of Science degree, which is
a more rigorous program.

Since the degree program was authorized in
1975, the curriculum has been significantly
changed, and the resulting program seems to be
one which could serve as a paradigm for those
small colleges which are about to undertake a
program in Computer Science.

The Original Curriculum

In order to understand how we arrived at our
current program, it is necessary to see the pro-
gram we originally instituted. The approved pro-
posal to award degrees in Computer Science was
strongly influenced by the ACM 68 Curriculum, and
consisted of the following 12 one-semester
courses:

a) Introduction to Computer Science

b} Problem Solving and Intermediate
Programming

c) Data Structures

d) Discrete Structures

e) Systems Design (Computer Architecture)

t) Modeling and Computer Simulation

g) Systems Programming

h) Advanced Systems Design and Programming

1) Data Base Systems

j) Programming Languages

k) Introduction to Automata and Computability
1) Numerical Analysis

It should be noted that only the introducto-
ry course, the intermediate course (Problem Solv-
ing), and Numerical Analysis had been ottered
with any reguiarity prior to 1975, although some
ot the remaining courses had been offered at
least once in the past. Further, although per-
mission was granted to otter these courses, there
was no guarantee that all would be ottered with
any degree ot trequency in the tuture. In tact,
the pilan was to oftter the majority of the higher
level courses only once every four semesters,
with no immediate plans to implement at least two
of the courses (i.e. Advanced Systems Design and
Automata and Computability).

Even thougn this type of schedule seemed
reasonable, certain problems surtaced rapidly.
First, each advanced course had to 'stand alone‘',
since the instructor could not assume any Knowl-
edge on the part ot students beyond the interme-
diate level. Thus, a course in Data Base Systems
would have some students who were tamiliar with
Data Structures, some who were tamiliar with Dis-
Ccrete Structures, and some who were familiar with
both or neither. The obvious solution of adding
prerequisites was not teasible since many ot our
students do not decide to major in Computer Sci-
ence until their sophomore year, and the course
schedules would preclude getting the prerequi-
sites in time to take the desired advanced
courses. This resulted in setting aside a cer-
tain amount of time in each course ftor a quick
'review' ot relevant concepts, a review which was
too fast ftor the students who had never seen some
ot the material betore, and too slow for those

who had already been through the same review sev-
eral times.

A second, less serious, problem was that a
Semester was not really long enough to allow the
instructor in some courses to assign enough
‘interesting' problems to ensure thorough knowl-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800126.809586&domain=pdf&date_stamp=1979-01-01

edge of the material (e.q.,
and Design).

Systems Programming

Finally, in at least one case, it was disco-
vered that a course oftered in Computer Science
(i.e., Discrete Structures) had a considerable
overlap with a course oftered in Mathematics
(i.e., Modern Algebra), a situation which result-
ed in an unnecessary drain ot departmental re-
sources.

As these, and other problems surtaced, there
was a temptation to patch the program. However,
a conscious decision was made to keep the curri-
culum stable until we had gone through a complete
cycle of otterings so that the entire program
could be revised at one time. This review was
made in the tall ot 197/, and the revised curri-
culum was adopted tor the tall ot 1978.

Current Curriculum

The new curriculum (see Appendix A for de-
gree requirements) is comprised ot a core ot Six
courses which are oftered each year and seven
courses otftered on a rotating basis (see Appendix
C tor the schedule). The core consists of:

a) Introduction to Computer Science

b) Introduction to Statistics and Data Analysis

c) Sottware Structures (two semester sequence)

d) Systems Programming and Design (two semester
sequence)

The introductory course in Computer
1s a standard course, as 1is the introductory
statistics course. The inclusion of statistics
in the program is a recognition of the importance
that statistics plays in a wide variety of com-
puter applications.

Science

The Sottware Structures course is the larg-
est single change in the new program, and is a
compination of Intermediate Programming and Data
Structures. This approach has several practical,
as well as conceptual advantages. First, data
structures ot all types are introduced in a na-
tural manner. 'The concept and implementation of
arrays, stacks, Queues, etc. are developed as
tools in the development of algorithms or compu-
tational procedures. The same or similar prob-
lems can be solved using a variety ot structures
and students can gain an appreciation of the im-
pact of data and its structure on a program,
which is itselt a computational structure,
Second, by combining the two courses, and focus-
ing the programming applications on the data
structure aspect we are able to include more, and
larger, projects than was previously the case.
Finally, it is a general feeling within the de-
partment that the practice of making Data Struc-
tures a separate course only serves to make the
subject obscure and mysterious. It does not re-
intorce the concept of data-algorithm interac-
tion, a shortcoming we are attempting to over-
come.

Te tinal core sequence, Systems Programming
and Design, was made a requirement as a result ot
our conviction that each student should have some

216

basic undgerstanding ot the interaction of

hardware and sottware, as well as an understand-

ing ot how systems work. This sequence culmi-’
nates with a project such as writing a small com-

piler or cross assembler.

The tinal change in our curriculum was a
merging of the Discrete Structures course with
the course in Modern Algepbra to form a course in
Discrete Algebraic Structures. This course is
the prequisite for both the Automata and Computa-
bility and the Modern Algebra courses which are
offered in alternate years. The remaining
courses (i.e., Modeling and Computer Simuiation,
Numerical Analysis, Computer Architecture, Data
Base Systems, and Programming Languages) are
still oftered every fourth semester. This allows
us to ofter at least two advanced courses every
semester.

Statting Considerations

The current curriculum seems to be and in
tact 1is, a rather ambitious undertaking for a
small college. A natural conclusion would be
that there was a large increase in the statt ot
the Department ot Mathematical Sciences in order
to implement it. For several reasons this was
not the case. First, Denison requires all stu-
dents to take one-semester laboratory science
courses in at least three ditterent departments.
Introductory Computer Science is one of the
courses which satisties this requirement. The
statting requirements tor this course (tfour sec-
tions/year in 1975 and eight sections/year in
19//) had forced the department to employ indivi-
duals who were, or were interested in becoming,
qualitied to teach in this area.

Further, the decision to otter the Concen-
tration (minor) in Computer Science coincided
with a natural vacancy within the departement
which led to the employment of a computer scien-
tist who could teach some ot the upper division
courses. Additionally as vacancies occurred
within the department, a conscious decision was
made to hire only individuals who had some train-
ing in Computer Science. Other advanced courses
(i.e. Modeling and Computer Simulation, Numeri-
cal Analysis) were taught by mathematicians/ sta-
tisticians who had sufticient interest in the
tield to become well qualitied for these courses.
'thus, when the degree granting authority was
given, there was a cadre ready who had a good
1dea wnat should, and should not, be done. 1In
practice, the net increase in statting tor the
department had been one and one halt since 1973,
and this is largely accounted for by the increase
trom four to nine sections per year of the intro-
ductory course, and some additional sections ot
the pre-calculus mathematics.

Although there has been some statting incre-
ase, it should not be assumed that there is only
one Computer Scientist on the statt. The re-
placement ot a mathematics ftaculty member (menti-
oned above) by a computer scientist (PhD) plus
tne addition of a second computer sScientist (ABD)
gives us two doctoral level facuity members.
Also one ot the members of the mathematics tacul-

ty acquired an MS in Computer Science on nhis sab-
batical. Thus, we have three members ot the ta-
culty with advanced rormal training 1n the tieid,
and one other member who has minimal tormal tra-
ining but has been deeply involved 1in the com~
puter sclence program for more than ten years.

Other Considerations

The history ot Computer Science at Denison
1S markea by the constant encouragement and in-
terest ot the University Administration. The
computer's use has been increasing to the point
that the average student logs over eleven hours
ot connect time each year, the limiting tactors
apparently being terminal availability and com-
puter capacity. Over 50% of our graduates have
taken at least one formal course in Computer Sci-
ence, and a tairly large numper take courses
which use the computer as a resource (e.dg., Span-
ish vocabulary drill). It is obvious that this
interest in computing was beneticial to the de-
velopment ot a program. Some additional evidence
ot the status of computing at Denison is the fact
that it was selected as one ot eleven universi-
ties in the country to serve as models tfor aca-
demic computing. The study was pertormed in
1976-19/7 tor WNSK by the Human Resources Research
Organization.

OQur computing facilities consist of a
PDP11/45 with 116K words otf main memory and 120
miilion bytes ot on line storage. We also have
three magtape drives, a card reader, a plotter,
and 35 terminals. These resources serve the ad-
ministrative needs, the general academic needs ot
diverse disciplines as well as the needs ot the
computer scilence program. Since the acquisition
of the PDP L1/45 system in 1973, our computing
needs have exceeded the capacity or the system
and we plan to have a signiticantly larger system
tor the next academic year.

Recommendations

If any small college, comparable in size to
Denison, 1s planning to institute a degree pro-
gram in Computer Science, our advice is to plan
as tar ahead as possible. The Concentration
(minor) in Computer Science seems to be a good
approach and is an attractive method of gaining
Departmental expertise in an orderly tashion.
Assuming that an introductory course is currently
being oftered, the next step could be the intro-
duction of sequence similar to our Sottware
Structures. Courses in either Numerical BAna-
lysis, Discrete Structures, or Automata and Com-
putation can be taught by members of the mathe-
matics taculty who have some training and experi-
ence in computation. This will start the transi-
tion process in a relatively painless manner.
Later, a course in Assembly language programming
can be introduced which could eventually lead to
a sequence in Systems Programming and Design.
Other electives could be added as expertise and
interests develop. Even with best intentions, it
1S not reasonable to expect that even a minor in
Computer Science can be offered without any tra-
inea computer scientists on a statt, and the

217

tirst one should pe employed prior to ottering
the Sottware Structures course. Further, when
natural vacancies occur within a department, an
etrort must be made to hire a second or third
computer scientist, Under no circumstances
should a degree program be undertaken with tewer
than two tormally trained computer scientists,
since it is not reasonable to assume that any one
Person can handle all, or even the majority, of

the advanced courses with a high level of compe-—
tence.

The computing facilities of a college where
a computer sclence program is to be initiated
needs to be caretftully scrutinized. With the de-
velopment of a program, the facilities may not be
able to cope with the additional load. Estimates
ot increases in connect time and CPU time should
be studied so that it additional equipment 1is
needed, it can be planned for ahead of time.

Dur ing the past several years the ACM has
had committees reviewing curriculum proposals and
accreditation guidelines., Intentionally or oth-
erwise, the plight of the small (tewer than 250U
undergraduates) liberal arts colleges has been
ignored. We feel our curriculum does, in fact
satisty all appropriate guidelines, but we also
teel that our situation is somewhat unique. We
would like either for the ACM to form a committee
which can develop a realistic curriculum and ac-
creditation guidelines for small colleges or tor
a working committee made up or representatives
rrom small colleges to do the job for the ACM.
It is obvious that many colleges are presently
entering the Computer Science field; it would be
a tragedy it there is no practical guidance ava-
ilable trom our professional society on how to do
1t properly.

Appendix A

Summary ot Courses Required for a Degree in
Computer Science at Denison University

a. All candidates must take the ftollowing core
courses:
1. Introduction to Computer Science
2. Introduction to Statistics and Data &na-

lysis
3. Sottware Structures (2 semesters)

4. Systems Programming and Design (2 semes-—
ters)

b. BA candidates must take at least two of the
following:

1. Computer Architecture

2. Data Base Systems

3. Modeling and Computer Simulation
4. Programming Languages

c. BS cardidates must take at least four ot:
1. Discrete Algebraic Structures

2. Automata and Computability (Discrete
Algebraic Structures is the prerequisite)

3. Numerical Analysis (Ditterential Equa- .

tions 1S a co-requisite)
4, Computer Architecture
5. Modeling and Computer Simulation
6. Programming Languages
7. Data Base Systems

d. Prerequisites (not noted earlier)

1. Discrete Algebraic Structures has a Cal-
culus I and Linear Algebra as prerequi-
site \

2. Ditterential Equations (co-requisSite for
Numerical Analysis) has Calculus III and
Linear Algebra as prerequisites

3. All other advanced courses have Sottware
Structures Il as a prerequisite

e. General Comments

1. The Bachelor of Science degree 1is de-
signed for students who wish either to
pursue a career in a scientitic environ-
ment or to pursue an advanced degree in
Computer Science. Thus, a BS major must
have either an analysis (calculus) or an
algepbraic (Automata and Computability)
sequence.

2. The Bachelor ot Arts degree 1is designed
for those whose primary interest is in-
dustrial employment culminating a manage-
ment position. Many ot our BA majors
take either a second major or a minor 1in
another field, frequently Economics.
Although not required, it is recommended
that BA candidates take at least one sem-
ester of Calculus and one semester ot Li-
near Algebra.

Appendix B

Course Descriptions

Most of the courses listed in Appendix A,
have the usual content of courses with similar
titles ottered at most colleges and universities.
This Appendix describes three courses which, we
believe, have some unique features.

a) Software Structures

Computer programs are representations ot al-
gorithms or computational procedures, and
are theretore amenable to rigorous analysis.
A logically correct program may not be the
most etticient one in either run time or use
of resources due to poor program or data
structure. This course is designed to bring
together the concepts ot rigorous algorithm
development, program atructures, and data
structures tor students who have had one
previous Computer nscience course.

The first semester consists ot an in-
troaduction to a structured language (PAS-
CAL), the analysis of algorithms, and a tor-
mal description of standard data types such
as arrays, stacks, queues, etc.. Laboratory

218

b

—

c)

problems are designed to get students to im-
plement various data structures. The second
Semester introduces such diverse topics as
polynomial algebra, sparce matrices, gener-
alized lists, trees, graphs, sorting and
searching, hashing and memory management.
The laboratory exercises in most ot these
areas require students to develop specitic
algorithms or study the relative merits ot
various techniques.

1. Horowiz, E. and Sahni, S., Fundamentals

ot Data Structures, Computer Science
Press, 1976.

2. Schneider, G. and Weingart, S. and Perl-
man, D., Introduction to Programming and
Problem Solving, With PASCAL, John Wiley
and Sons, 1978.

Systems Programming and Design

This two semester sequence examines the de-
sign and implementation of operating sys-
tems. Considerable time is spent in devel-
oping skills in assembly language program-—
ming both as an end in itself and as a vehi-
cle ftor studying the organization of com-
puter systems. The variety of systems pro-
gramming tasks studied include the design
and implementation of assemblers, macro pro-
cessors, loaders, and compilers. A third
component of the course is the study of the
structure and implementation of operating
systems with an examination of possible mem-
ory, processor, and information management
schemes.

Systems programming is also viewed as
an important source of relevant and more
complicated programming problems. Students
are given experience in large scale group
and individual projects which emphasize
sound design, implementation, evaluation,
and documentation techniques.

Modeling and Computer Simulation

Simulation courses in most Computer Science
programs deal essentially with discrete
event models and the use of special
languages tor the simulation of these mo-
dels. 'The emphasis generally is on the sim-~
ulation rather than model construction. We
feel our course strikes a better balance
model design and simulation methodology by
investigating the underlying mathematical or
statistical structure ot the model. For ex-
ample, the consideration of queuing models
includes a discussion of statistical impli-
cations ot Poisson processes. Simulation
courses oftered by Operations Research de-
partments traditionally have emphasized
these ideas. Our course may be considered a
hybrid of computer science and operations
research simulation courses.

The general topics include a discussion
of the statistical quality ot algorithms tor
the generation of random numbers and other
random variates, queuing theory and the use

ot GPSS in sumulating queuing models, and
the use ot DYNAMU for the simulation ot con-
tinuous models including models detined by
ditterence equations. We have not tound any
one text which tits our needs and have had
to rely on notes specially prepared tor the
course. The tollowing texts, however all
have some of the content that we need.

1. Fishman, G. S., Concepts and Methods in
Discrete Event Digital Simulation, .John
Wiley and Sons, 1973.

2. Gordon, G., The Appiication of GPSS to
Discrete System Simulation, Prentice Hall
Inc., 19/>.

3. Yakowitz, S. J., Computational Probapbili-
ty and Simulation, Addison Wesley, 197/.

Appendix C
Course Schedule Uver a Cycle of Otterings

The core courses are taught every vyear.
Multiple section of Introductory Computer Science
and Introductory Statistics are ottered each sem-
ester. A single section ot Sottware Structures
and Systems Programming and Design courses are
oftered starting in the Fall Semester. The sche-
dule tor the remaining courses 1S:

rall 1978
Computer Architecture
Discrete Algebraic Structures

Spring 1979
Modeling and Computer Simulation
Automata and Computability

219

Fall 1979
Data Base Systems
Discrete Algebraic Structures

Spring 198U
Programming Languages
Numerical Analysis

For statting purposes it should be noted that one
ot the two courses each semester is mathematical
in nature and is trequently taught by a mathema-
tician with some background in computing.

Reterences

1. "Curriculum Recommendation tor the Undergra-
duate Program in Computer Science —--A WOrk-
ing Report ot the ACM Committee on Curricu-
lum 1n Computer Science," SIGCSt Bulletin 9,
2 (June 1977), 1-16.

2. Curriculum Committee on Computer Science,
*Curriculum '68, Recommendation tor Academic
Programs in Computer Science,” CAUM 11, 13
(March 1968), 151-197/.

3. Hunter, B., Academic Computing at Denison

University -~ A Case Study, Human Resources
Research Organization, 197/8.

4. Worland, B. P., "Using the ACM Computer Sci-
ence Recommendations in a Liberal Arts Col-

lege,” SIGCSE Buletin 10, 4 (December 1978),
16-19.

