
EDUCATIONAL ISSUES IN SOFTWARE ENGINEERING

Richard E. Fairley
Associate Professor

Computer Sceince Department
Colorado State University

Fort Collins, Colorado 80523

Introduction
The term "software engineering" came into

common us@ge as a result of the NATO Workshops on
Software Engineering in 1968 and 1969 (i). At
that time the term was intentionally chosen as a
provocation rather than as an indication of actual
practice. During the intervening decade software
engineering has evolved from a wish-into a major
subdiscipline of computer science and engineering.
Although much reamins to be done, a body of know~
ledge and a set of methodological guidelines are
emerging which embody the application of tradi-
tional engineering values to the production and
maintenance of software systems.

The statement of scope of the IEEE Trans-
actions on Software Engineering provides a de
facto definition of software engineering:

"The scope of this journal will cover all
areas which form the middle ground that lies
between the intiial step of basic research
and the end use of computer software. More
specifically, it includes the following
areas: requirement analysis and specifi-
cation, programming methodology, software
testing and validation, performance and
design evaluations, software project
management, and programming tools and
standards."
The demand for individuals trained in the

skills of software engineering becomes more
acute as computing systems become more
numerous, more complex, and more ingrained into
modern society. In recognition of this
demand, the IEEE Computer Society is sponsoring
the development of model curricula in software
engineering. The subcommittee charged with de~
veloping the curricula is preparing recommenda-
tions for both undergraduate and graduate pro-
grams in software engineering. The curricula
cover the core areas of software engineering,
namely:

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for Com-
puting Machinery, Inc. To copy otherwise, or to republish, requires a fee and/or
specific permission.

~) 1978 ACM 0-89791-000-1/78/0012/0058 /$00.75

Computer Science and Engineering
Software Methodology
Management and Communication Skills

Computer Science and Engineering comprises the
fundamental concepts of hardware and software, as
well as the analytical problem solving skills
acquired in the study of mathematics and theory of
computation. Software Methodology is the techni-
cal essence of software engineering. It includes
software life cycle concepts, the associated
methodologies, the software development tools and
techniques. Because software engineering is a
labor intensive activity, Management and
Communication Skills play a central (indeed,
crucial) role. In this area, we group management
science, porject management techniques, technical
cormnunication, and the legal aspects of software
engineering.

This paper briefly outlines the curricular
efforts of the Model Curricula Subcommittee;
however, the major thrust of the paper is a
discussion of the issues surrounding the develop-
ment of educational programs in software engineer-
ing.
The Undergraduate Curriculum

In order to satisfy diverse needs, the
following approach is advocated:

i. The undergraduate curriculum will consist
of a core of material that can be imple-
mented in diverse educational environ-
ments, plus additional material which
can be implemented at the option of local
institutions that desire a full scale
undergraduate curriculum.

2. The core will provide sufficient prepara-
tion for the Master's program in soft-
ware engineering, but will not, in itself,
provide adequate training for a profess-
ional software engineer.

3, The undergraduate core will be an
implementation based on the existing CSE
Model Curriculum (2).

In 1977, the Model Curriculum Subcommittee of the
Education Committee of the Computer Society pub-
lished a curriculum in computer science and engi-
neering which was intended to bridge the gap
between hardware and software. The present
curricular effort in software engineering is an
outgrowth of that subcommitteeVs work, and the
undergraduate core will be based on their report.

Figure 1 illustrates the structure of the
proposed undergraduate core. The content of the
courses is specified by referencing them to the
corresponding courses in the Model Curriculum

58

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800127.804069&domain=pdf&date_stamp=1978-12-04

Subcommittee Report.

Core Course Reference Course(s)

DL - Digital Logic DL-I, DL-2
DLab - Digital Lab L-I
CO - Computer Organization CO-I, C0-2, C0-3
MP - Microprocessors DL-3
MPLab L-3
ICP - Introduction to SE-I

Computer Programming
DSDA - Data Structures SE-2, SE-3, TC-2

and Design of
Algorithms

OSCA - Operating Systems SE-6, SE-7
and Computer
Architecture

DBS - Database Systems SE-4
SLC - Survey of Language SE~5

Concepts
LI - Language SE-8

Implementation
SDTO - Software Development SE-8

Tools
SDTE - Software Development

Techniques
DS - Discrete Structures TC-I
FLA - Formal Languages TC-3

and Automata

In addition, it is expected that a student woul@
complete a mathematics sequence consisting of diff-
erential and integral calculus, linear algegra, and
probability and statistics. The additional mater-
ial needed to implement a full undergraduate pro-
gram in software engineering is being developed
and will be presented in the committee report.
Note, for example, that there are no management
or communication skills courses prescribed in
Figure i.
The Graduate Curriculum

Specifying a professional Master's degree
program in software engineering is the primary
emphasis of our work. A graduate of the Master's
program should possess the following skills:

i. Broad based familiarity with computer
science and engineering concepts such
as digital logic, computer organization,
machine architecture, operating systems,
data structures, database systems,
programming languages, language imple-
mentation, discrete mathematics, formal
languages and automata, telecommunica-
tions, distributed processing, man-
machine interaction, and performance
measurement and evaluation -- in short,
the undergraduate core plus additional
course work at the graduate level.

2. The ability to use state-of-the-art tools
and techniques for analysis, design,
implementation, validation, maintenance,
and documentation of software systems.

3. The ability to manage small programming
teams (3 to 7 persons) and to provide
technical leadership for programming pro-
jects of long duration.

4. The ability to communicate, in both oral
and written form, with users, managers,
programmers, and persons in other
technical disciplines.

In order to achieve these objectives, we
have identified the graduate level topics in each
of the three core areas:

Computer Science and Engineering

System Design
DataBase Systems
Distributed Processing
Man-Machine Interaction
Performance Measurement and

Evaluation

Software Methodology

Problem Definition
Requirements Analysis
Design Techniques
Programming Methodology
Validation and Verification
Maintenance
Tools
Lab Sequence

Management and Communication Skills

Project Management Techniques
Management Science
Technical Communication
Legal Aspects of Software

Engineering

It should be emphasized that these topics are not
course titles, but rather modules that will be
elaborated and may become course or modules within
c o u r s e s .

Ideally, a student entering the Master's
program would have completed the undergraduate core
courses, plus two to three years work experience.
In reality, most students will have a more tradi-
tional computer science degree and no significant
work experience, or a few computing courses plus
some work experience. A student from a traditional
computer science and engineering program may be
deficient in some of the undergraduate core mater-
ial, while the student with work experience will
probably have a large number of deficiencies to
overcome, although work experience may be substitu-
ted for some of the courses.
Educational Issues

In this section of the paper, a number of
issues related to software engineering education
are discussed. The issues include: undergraduate
versus graduate education in software engineering,
the structure of a graduate program in software
engineering, maintaining a balance between funda-
mentals and techniques, providing realism in an
educational environment, teaching of pervasive
concepts, teaching of management and communication
skills, the lack of qualified faculty and adequate
textual materials, political considerations, and
continuing education of practicing software engi-
neers. Some of these issues have been discussed
previously in references 3 and 4.
i. Undergraduate versus Graduate Education in

Software Engineering
A continuing and unresolved controversy

surrounds the issue of the level at which software
engineering skills should be taught. On the one
hand, many individuals who will become practicing
software engineers will be Bachelor's level
graduates, and proponents of undergraduate educa-
tion in software engineering cite the success of
electrical engineering educators in training
electronic designers at the Bachelor's level.
Although the undergraduate electrical engineer
may not grasp the significance of various topics
in his training at the time, it is argued, he will

59

soon appreciate the need for particular skills dur-
ing his apprenticeship in industry. Opponents of
undergraduate education in software engineering
cite the need for maturity and experience as pre-
requisites to the study of software engineering.
The opponents of undergraduate software engineer-
ing argue that software engineering is not a
traditional engineering discipline in which con-
cepts and job assignments can be nearly compart-
mentalized. Instead, a software engineer is a
generalist who is concerned with computer science
and engineering concepts and software
engineering techniques, and is, in addition,
highly competent in management and communication
skills. The acquisition of these skills,
argue the opponents, requires motivation and an
understanding of the need for software engineering
skills that will not be found in undergraduates.

Recognizing that there is no single solution
to this controversy, the Software Engineering
Curricula Subcommittee will follow the approach
outlined in the previous section; namely,
development of an undergraduate core of material
that can be augmented into a full blown under-
graduate program, and that can also be used as the
undergraduate preparation for a Master's program
in software engineering.
2. Structuring a Professional M.S. Program in

Software Engineering
Determining the overall structure of a

Master's program in software engineering is a
difficult issue. One option is to require all
courses of all students, with no flexibility in
the program. The advantage of this approach is
that all students are exposed to the same complete
body of knowledge, as in professional programs
such as law and medicine. The major disadvantage
of this option is the long duration of the pro-
gram, which would be a minimum of two years,
assuming the student has satisfied all pre-
requisites before entering the program. A second
option is to structure the program as a core of
material, plus optional specializations. Thus,
a student might specialize in software design,
or validation, or project management. This
provides the opportunity for in-depth special-
ization, and results in a shorter duration
program, but presents the difficulty of
establishing a small core of material that
will provide the breadth of skills needed by a
professional software engineer.
3. Balancing Fundamentals and Techniques

Maintaining a proper balance between
fundamentals and techniques is a major issue in
technological education. A primary goal of the
university is to provide an education of lasting
value by teaching basic concepts and fundamental
principles which will form the basis for a
satisfying and productive career. On the other
hand, employers expect that new employees will
possess sufficient practical skills to contribute
to the mission of the organization without an
extensive apprenticeship. Both theory and techni-
que are essential components of a software engi-
neering curriculum; however, there is a very real
danger that software engineering programs will
overcompensate for the lack of attention to
practicalities in traditional computer science
programs. Because industry practices are not
standardized, skills of localized or short dura-
tion applicability, skills that cannot be

generalized or related to basic principles, and
skills that require extended periods of
practical experience to acquire must be the respon-
sibility of employers. Thus, an appreciation for
the value of precise specifications, for example,
can only be gained by learning and using a
particular notational scheme for stating specifi-
cations; however, the emphasis should be placed on
the need for, and the benefits of, formal specifi-
cations rather than on the pecularities of the
scheme utilized, because the employer will probably
not be using the particular scheme learned in
school.
4. Providing Realism in an Educational Environment

It is often difficult to convince students
that the methods of software engineering are
valuable, and indeed essential, to success in
software development and maintenance. The value
of many of the techniques of software engineering
become obvious only on large scale and/or long
duration projects which involve turnovers in
personnel, changing requirements, changes in
machine environments, etc. In addition, classroom
exercises lack true accountability for the end
product, students are at best involved in their
project assignments on a part-time basis, and
problems of cost estimation and budgeting are
difficult to convey in an academic environment.
Several techniques have been proposed to overcome
some of these problems. For example, it is
essential that students acquire some experience
in programming team techniques by working on a
semester long or year long team project. Teams
can be assigned different pieces of the project
(thus forcing them to interface with other teams),
partially completed work can be traded between
teams, specifications can be changed in the middle
of the project, and team members can be rotated
among teams. An interesting approach to providing
realistic experience in the university environment
is described by Horning and Wortman (5). In the
Software Hut approach, competing teams build
portions of a system and attempt to sell (for
course points) their portion to other teams who
need it to complete the project. Selling points
include the quality of the specification and
design documents, understandability of the code,
clarity of the interfaces, etc.
5. Teaching Pervasive Concepts

Many traditional engineering values pervade
a software engineering curriculum. Concepts such
as creative problem solving, reliability,
testability, maintainability, performance criteria,
design documentation, economics, and other
quality considerations cut across every topic in
software engineering. The problem facing soft-
ware engineering educators is to design courses
of study that insure proper emphasis on these
values. Many of these concepts can be introduced
in an immigration course, but they will need
constant reinforcement throughout the program of
study.
6. Teaching Management and Communication Skills

Management and communication skills are
crucial components of software engineering. The
high degree of interaction among people and
machines is one of the primary factors that
distinguishes software engineering from more
traditional engineering disciplines. Although
it is often possible to decompose a software
system into isolated segments, it is often the

60

case that design decisions within a low-level seg-
ment of a system will have major ramifications
throughout the system. Also, changes in high
level specifications often propagate to the lowest
levels of implementation. Thus, management and
communication skills are essential tools for
controlling complexity in a programming project.
The traditional approach to teaching management
and communications is to require courses in
Organization Behavior, Public Speaking, and
Technical Writing, which are taught by the
Business and English Departments. Such brief
exposure is not sufficient training for a
software engineer. Instead of (or perhaps
in addition to) a course in general technical
writing, the software engineering student needs to
know how to write requirements specifications,
users' manuals, and software maintenance reports,
Accuracy, precision, consistency, and completeness
of expression are extremely important attributes
of technical communication in software engineer-
ing, and the student needs specialized training in
these skills. Not only does the software engineer
need to know about PERT charts and CPM, but also
how to use those techniques within the context of
software production and maintenance. Thus, it is
recommended that special courses for software
engineers be developed in the management and
communications areas. The major issue is whether
the limited resources of most universities will
permit the development of these specialized
courses, and whether there are faculty members
with the interest and qualifications to develop
such courses.
7. Lack of Qualified Faculty and Textual

Materials
The field of software engineering is in it's

infancy; we predict that eventually software
engineering will occupy a position in relation to
computer science that electrical engineering
occupies with respect to physics. At this time,
however, there are very few faculty members who
have had substantial experience in designing,
constructing, and maintaining software systems in
a production environment. Similarly, textual
materials are inadequate, although the situation
is gradually improving. The differential
between university and industry salaries makes
it difficult to attract and retain pragmatically
oreinted teachers. University/industry exchange
programs for faculty, formal specification of
curricula in software engineering, and
establishment of formal programs in software
engineering will alleviate some of these pro-
blems.
8. Political Considerations

Software engineering is a multidisciplinary
field, ranging from computer science and
engineering techniques to management and communi-
cations. In most universities, the computer
science department is most likely to have the
most faculty expertise for teaching software engi-
neering. However, electrical engineering and
computer engineering groups have an orientation
to design issues, economic considerations, and
quality control. In addition, information
systems departments in business schools often
possess expertise in software project management
techniques, programming team dynamics, scheduling
and budgeting, accountability, and product
visibility. The political issue is that each

department has a legitimate interest in software
engineering, yet none of them may be willing to
allocate (or let anyone else allocate) the
resources required to support a field that each
regards as a subcomponent of their discipline.
Eventually, we predict, departments of software
engineering will be established with inter-
disciplinary faculties, although the departments
may carry names other than software engineering,
again due to the political consideration of the
college that the program resides in within the
university.
9. Continuing Education

This paper is primarily concerned with the
educational issues of undergraduate and graduate
programs in software engineering. There is, in
addition, a tremendous need for the continuing
education of practicing software engineers. The
popularity of short courses and tutorials in the
field are indicators of widespread interest in
software engineering. It is fair to say, however,
that continuing education can only be effective if
the techniques being taught conform to the
student's company policies and standards. A common
comment of students in short courses and tutorials
is that the material covered is interesting but
that it cannot be used in their programming
environment. One of the most effective approaches
to continuing education is a series of intensive
in-house training sessions that are incorporated
into the implementation of company practices.
Conclusion

This paper has reviewed the curricular efforts
of the Software Engineering Curricula Subcommittee,
and several major issues in software engineering
education have been discussed. Currently, the
committee is preparing detailed description of the
course material in a format similar to that of the
Model Curriculum Report (2). The proposed curri-
cula will be distributed to a review committee of
25 to 50 persons. Based on their comments, a
final draft will be prepared by January 1979, and
the report will be published in the spring of
1979.

This paper is quite obviously a report on
work in progress. Several difficult issues
are yet to be resolved by the committee. In
curriculum design, as in most human endeavors,
there is no single correct approach, but only the
differing opinions of well informed, well
intentioned individuals. We welcome your comments
and constructive criticism of this work, as well
as your opinions concerning the issues discussed
in the paper.
References
I. P. Naur, B. Randell, and J.N. Buxton (ed.),

Software Engineering: Concepts and Techniques,
Petrocelli/Charter, New York, 1976.

2. Committee Report, A Curriculum in Computer
Science and Engineering, IEEE Catalog No.
EH0199-8, January 1977.

3. P. Freeman and A.I. Wasserman, "A Proposed
Curriculum for Software Engineering Education",
in Proc. 3rd Intl. Conf. on Software Engineer-
ing, IEEE Catalog No. 78CH1317-7C, May 1978.

4. M. Shaw, "~king Software Engineering Issues
Real to Undergraduates", in Software Engineer-
ing Education: Needs and Objectives, Springer-
Verlag, New York. 1976.

61

5. J.J. Horning and D.B. Wortman, "Software Hut:
A Computer Program Engineering Project in the
Form of a Game". in IEEE Transactions on
Software Engineering, Vol. SE-3, No.4, July
1977.

Structure of the Proposed Undergraduate Core Figure i.

62

