
SYSTEMATIC INSTRUCTION IN SIMPLE PROGRAMMING GAMBITS 

Michael P. Barnett 
Department of Computer and Information Science 

Brooklyn College of the City University of New York 

I. Introduction 

This paper describes an approach to teaching 
programming that the writer follows in his sec- 
tions of the main introductory PL/I programming 
course at Brooklyn College, in a forthcoming 
text - An Introduction to PL/I Programming, and 
in material being prepared for use in the local 
public schools. The subject is developed by ref- 
erence to carefully paced examples of programs 
that use different programming "gambits", in 
isolation and in combination. The programs all 
relate to plausible applications. The gambits 
have been systematized, and an order of pre- 
sentation established that matches the developing 
needs of professionals in other disciplines, 
whose potential use of computers is dominated by 
information processing rather than numerical 
computation. 

The writer has been surprised by the extent 
to which gambits that seemed self-evident to 
people who learned to program in the past must 
now be pin-pointed and made the subject of in- 
dividual explicit explanation. An example is 
given in Section II. The depths of non-compre- 
hension are not always evident when a class of 
today's high school graduates are taught by me- 
thods that were ~iable a few years ago. The 
writer believes that his observations are not 
a local phenomenon, and that corresponding 
non-comprehension would he found quite widely 
if it was sought, among students and practicing 
programmers, with the potential for correction 
once it has been recognized. 

Major areas of software development today 
require no numerical computation, and further 
areas need Just the simplest arithmetical pro- 
cesses. The mainstream of the writer's approach 
to programming instruction requires no mathemat- 
ical knowledge beyond the simplest rules of arith- 
metic, and uses even these minimally, leaving 
success open to the many students of negligible 
mathematical skill and experience (though pos- 
sibly good but unfulfilled potential). 

Sections lll-V describe the successive 
modules of the writer's course, with the elements 
that can be added for the strong self-motivated 
student to allow immediate practical application 
of the knowledge that has been acquired, and to 
gain early insights into more advanced tactics 

of computer utilization. Section VI describes 
the kind of testing that the instructor uses at 
present, and comments on the results 

Although numeracy need not be a technical 
prerequisite to much programming, the writer is 
seriously concerned by the problem of innumeracy, 
and hopes that the programming approach may re- 
activate interest in numbers, by students pre- 
viously "turned off" by poor math instruction. An 
even greater problem, however, that may even sub- 
sume that of real mathematical comprehension is 
the area of poo r verbal skill. In this regard, 
the writer places heavy emphasis on word problems 
and verbal explanations of the actions of indi- 
vidual programs. The mixed attitudes of instruc- 
tors (whose training was math or math education) 
at the college and high school levels, to a verbal 
as opposed to a purely symbolic approach raises 
the question whether there exists a section of the 
math education community tending to project its 
own unease with words onto the new student gener- 
ation. This in turn raises the question of 
whether computer progr~ing in the schools should 
be Just an extension and preserve of mathematics 
as it is taught and possibly compartmentalized at 
present. 

Drill and reinforcement seem the key to suc- 
cess for many students. The writer is developing 
an approach to the mechanized production of in- 
structional materials that are personalized to 
the interests and background of different target 
groups with an elimination of routine clerical 
effort. These methods will be applied to the pro- 
duction of materials to teach several subjects 
that include programming, supported in part by a 
grant recently awarded by the National Science 
Foundation CAUSE (Comprehensive Assistance to 
Undergraduate Science Education) program. 

II. An example of incremental explanation 

Introductory courses and books on program- 
ming usually concentrate on the structural rules 
of a programming language. Most of the individ- 
ual examples and exercises in a typical account of 
programming make conjoint use of several concepts 
that, for many students today, really require sep- 
arate explanation, illustration and reinforcement. 
It can no longer be assumed that a student will 
rediscover or relnvent the multitudinous gambits 
which occurred "naturally" in the past to the 

108 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953028.804243&domain=pdf&date_stamp=1978-08-01


typical person who learned the commands of a lan- 
guage, illustrated by a few programs that con- 
tained branches and loops. 

The example of the need for incremental ex- 
planation that has surprised the writer most in 
the early part of his course follows the introduc- 
tion of the assignment statement. It is necessary 
to explain in succession: 

(i) initializing and incrementing the line number, 
in a program that reads a deck of cards, and 
prints one line for each card, consisting of 
the line number and card image; 

(2) writing a program to read a deck of cards and 
print Just the number of cards which were read; 

(3) writing a program to print the total of the 
items in a single field of successive cards of 
the input deck; 

(4) writing a program to print the average of 
these items. 

Many students understand the programming con- 
cepts used for (i) to (4) when these are explained 
in turn, but cannot extrapolate from one to the 
next. For these students, the ideas are separable 
and distinct that: 

(I) a line count can be initialized and incre- 
mented in each cycle of a program that reads 
a data card and prints what is in it; 

(2) the same incrementing tactic can be used, omit- 
ting printout from the main cycle, and trigger- 
ing printou{ at the end, to print what would 
have been the last line number, had the llne 
numbers been printed; 

(3) a variable can be incremented by a value read 
from an input card, instead of being incre- 
mented by 1 as it was for the llne number; 

(4) totalling and card counting tactics can be 
combined, using two variables that are incre- 
mented concurrently, to provide the two num- 
bers needed to compute the average. 

Once these ideas have been explained explicity, 
illustrated, and reinforced with a few variations, 
the students can use them effectively. The writer 
would like to believe that the inability of stun 
dents to progress from (i) to (4) without explicit 
instruction results from a prior lack of challenge 
in imaginative extension of ideas, and that pre- 
senting examples of this kind of progression devel- 
ops the ability of at least some students to ex- 
tend ideas. There is some evidence for this. 
Later in the course, the students are given a sim- 
ple program that reads the name of a customer, 
and the catalog number of a commodity, from each 
card of an input deck, and tallies the number of 
orders for each commodity by adding 1 to the element 
of an array that is indexed by the catalog number. 
Several students who took some time to grasp the 
progression from (2) to (3) were able to "invent" 
for themselves the tactic of reading the size of 
each order from its data card, and adding this to 
the appropriate element Qf the array, to compute 
the total quantities ordered. 

It is quite easy, when teaching programming, 
to be unaware of the limited comprehension of 
large numbers of students. Many instructors will 
assume that a student who has grasped the example 
(i) will be able to deal with (2) to (4) without 

further instruction, and never find that this was 
not the case. Programming assignments tend to 
test Just a small selection of concepts and, quite 
often, only the ability of the student to find 
someone else who can write the program. Proctored 
examinations and quizzes that go to an apprecia- 
ble level of detail are time consuming to prepare, 
conduct and grade. 

III. Strings, numbers, arithmetic and conditions 

i. Getting started: Students are given a prototype 
Job to keypunch and run on an IBM 370 from an RJE 
station, that contains a PL/C program to read and 
print the contents of a data card. This intro- 
duces the PROCEDURE, DECLARE~ GET and PUT EDIT 
statements, the idea of an identifier, the idea 
of attributes, and the specific details of the 
CHARACTER attribute and the A format item. 

EDIT I/0 is used at the outset instead of 
LIST I/0 for several reasons. The facility to 
format the output using PUT EDIT is satisfying and 
useful to students with even the minimum of pro- 
gramming knowledge. The appearance of floating 
point output of PUT LIST statements discourages 
many students. Making further progress contingent 
on an acceptance of floating point output causes a 
time consuming hangup over a detail that can be 
circumscribed and side-stepped, by use of PUT EDIT, 
for students to grasp independently, without limit- 
ing their exposure to other ideas. The further 
details of format lists can be presented for 
stronger students, without imposing this infor- 
mation on students who might be confused. 
Designing simple reference files for information 
processing is a widespread need among applications 
oriented personnel in practically every area of 
human endeavor. GET EDIT starts students in the 
right direction for this, and becomes effective 
for a surprising range of applications with little 
further instruction. From this strictly util- 
itarian standpoint, students will have to use 
EDIT I/O in the "real world", ana the writer sees 
no evidence that an initial exposure to EDIT 
rather than LIST I/O slows the progress of a class, 
or creates significant debugging problems. 

2. Producing printouts: The one-card printout is 
extended to listing a deck with one complete card 
image per output llne. This introduces statement 
labels, the GO TO, ON ENDFILE and STOP statements, 
and flow diagrams. Printing from individual card 
fields and reformatting the data for output re- 
quires explicit and reinforced explanation that 
the order o£ items on the input cards must be 
matched by the order of items in the input data 
llst; that the order in the output must be 
matched by the order in the output data llst; 
that the orders of input and output can be dif- 
ferent; that data items can be contiguous on 
input cards; and that punctuation can be elided 
in the input and inserted by the program in the 
output. Printing data from one card on succes- 
sive lines of output; combining data from sever- 
al cards in the same output llne; and treating 
data from successive cards in other cyclic ways 
require explanation - and the writer has found 
this with sophisticated practitioners of human- 
istic research, as well as with urban undergrad- 
uates. 

109 



The provision of headings, footings, and con- 
nective phrases in detail lines introduces string 
constants in data lists, the INITIAL option and 
assignment statements. The concept of cyclically 
updated predecessor values can be introduced by 
reading a chronologically ordered file about 
monarchs, and printing one line for each that con- 
tains his name and his predecessor's. 

The idea of a parameter card can be introduced, 
e.g. carrying a slogan to be printed after each 
message from successive data cards. Simple form 
document production, inclusion of page headings (in- 
troducing the ON ENDPAGE statement), and non trivial 
cyclic processes such as printing a seating ar- 
rangement in which spouses have two people be- 
tween them, from a deck in which each card contains 
the names of a married couple, can be presented at 
this point for students with stronger motivation. 

3. Introducing numbers: The module that has Just 
been described allows the student who is uneasy 
about computing a 5% discount on the price of a 
case of liquor or cosmetics to survive, uncom- 
pounded by arithmetical woes, the initial inter- 
aeLion with keypunches, JCL and overabundant print- 
out and to start on some numerical work with a 
degree of confidence in being able to get programs 
to run. The FIXED attribute, the F format item, 
and the + and - symbols are enough for a range of 
applications that include (i) performing a simple 
sum with the data from each input card, without 
holding data or results from one card to the next; 
(ii) totalling data from an entire deck; (iii) line 
numbering and card counting operations; (iv) using 
data from a parameter card in each of the contexts 
(i)-(iii); (v) using predecessor values, e.g. to 
compute the distance along a highway of each town 
from the town before it. Multiplying and d~vldlng 
lead into the use of decimals, consideration of 
size, accuracy and order of operations, and ex- 
amples that are a little more involved computa- 
tionally, again using the concepts of (i)-(v) ex- 
plicitly. The simple built-in functions give a 
good return on time invested in illustrating 
their application. 

Most students can grasp the ideas of float- 
ing point numbers without too much trouble. One 
class of exercise that interests the math ori- 
ented student, and which can also arouse the 
interest of other students in math, is exper- 
imental demonstration of the validity of math- 
ematical identities, using exponentiation and, 
for the stronger students, elementary functions. 
Many students respond well to the use of numbers 
in format items, e.g. to print pictures or to plot 
graphs using coordinates read from data cards in 
LINE and COLUMN items. ON condition statements, 
triggered by overflow and other arithmetic con- 
ditions can also be introduced here for the math 
oriented student, to teach their use as part of 
computation from the outset, rather than as a 
special item "left over" from the formal pro- 
gramming course, and possibly never learned as a 
result. 

4. The IF statement: The simple IF...THEN state- 
ment (without the ELSE clause) can be developed in 
the context of the earlier modules, with explicit 
attention to (i) uniform action for each input 

record (e.g. printing it conditionally) independ- 
ent of other records; (ii) counting records that 
satisfy different criteria; (iii) matching an item 
read from the card with a value set by the program; 
(iv) comparing sets of values read from each detail 
card; (v) getting critical values from a parameter 
card; (vi) comparing values read from successive 
detail cards. Finding an extreme value and 
explicit loop control can be introduced here. The 
ELSE clause and comparison of strings then follow 
in the contexts used for the simple IF statement, 
and also allow variant actions on a final result. 

The null DO group allows multl-statement 
success and fall actions. Simple examples 
include selection of data associated with extreme 
values of other items (setting the stage for later 
introduction of structures); use of group header 
cards; and the formation of group totals and cross 
footing, triggered by header cards and control 
breaks. Multiple IF statements open up further 
classes of application, including the use of 
propagating data in hierarchically structured 
files, and the interpretation of externally 
specified operations. 

IV Loops and arrays 

The DO-range statement is introduced with some 
inoffensively arithmetical examples (e.g.) printing 
a table of squares) and examples of cyclic 
formatting, (e.g. leaving blank lines at uniform 
intervals). The construction of a table of 
squares from second differences often intrigues an 
active class of even non~athematical students. 

Using limits of a DO loop that are read from cards 
helps reinforce the unified role of numerical 
constants and variables. Using DO loops to draw 
squares, circles and other shapes catches the 
interest of many students, and motivates their 
attention to simple formulas. 

The nesting of loops attunes many students to 
the power of generalization in a programming 
language. Cyclic spacing, formation of conversion 
tables (e.g. from miles, furlongs and yards into 
yards) without multiplication are well received. 
Computing tables of physical phenomena from simple 
scientific formulas can raise the interest of non- 
science majors in technical matters, particularly 
when these relate to environment, nutrition, energy 
and other topics of social concern. 

The use of variable limits in a DO loop is 
illustrated by printing number combinations (e.g. 
for a lottery to select finalists in a competition) 
and by Cantor enumeration, that also holds the 
interest of many nonmathematiclans. The use of 
DO loops in data lists should not be concealed 
from students who can benefit; neither should 
it be required knowledge. The DO WHILE 
statement provides an opportunity to 
demonstrate iteration - e.g. to computer a square 
root, to apply Euclid's algorithm, to find when 
increased frequency of compounding interest has 
no further significant 

ii0 



effect and, for the math oriented student, to find 
when numerical differentiation and integration 
converge to preset accuracy. 

Identifying and systematizing the gambits 
made possible by arrays is a challenge. The writer 
begins with examples that simply read a subscript 
value from each data card, and print either the 
corresponding element of an array of numbers, or a 
quantity computed from this element (e.g. the price 
of a commodity identified by a catalog number, the 
social security number of an employee identified 
by a badge number, the Gregorian day number cor- 
responding to given date). The introduction of 
arrays in this fashion needs to be illustrated 
liberally by examples from diverse situations. 

Array I/0 using DO loops around the GET and 
PUT statements are described and illustrated next. 
For the stronger students, the use of DO loops in 
the data lists, and unsubscrlpted array names, are 
described. Arrays of strings are illustrated by 
simple indexing examples, e.g. printing dates con- 
taining month names from purely numerical dates, 
printing verbalized car license information from 
numerical codes, and longer examples, e.g. verbal- 
izing numbers up to a million. 

Linear searching of arrays of numbers or 
strings is illustrated by examples from a variety 
of situations, and followed by examples of trans- 
lation by table lookup (e.g. from an English to a 
Spanish month word). Tallying (e.g. finding the 
number of peopl4 born in different years fromcards 
containing ~heir birthdates) requires careful ex- 
planation and reinforcement. Tactics to store 
data that occupies variable portions of an array 
are described next. 

Combinatorial examples using nested DO loops 
are popular and provide a good medium for inven- 
tiveness - tourney rosters, menus and the like; 
and calendars to illustrate non-commensurable 
cycles. For stronger students, the algorithmic 
processes of binary searching, merging and bubble 
sorting; simple examples of pointer lists, and rep- 
resentations of trees are mentioned here. 

Multi-dlmenslonal arrays are introduced in a 
parallel way to that used for one dimensional 
arrays. Multi-dimensional tallying seems to be an 
abstraction that gives difficulty to a significant 
proportion of students, and needs extensive drill 
and reinforcement. 

V. Strings, structures and subprograms 

The concatenation operator is introduced as 
a way to construct a string in an assignment 
statement for repeated use, so reducing the prog- 
rams length. The SUBSTR function opens up a range 
of text manipulating examples, for cosmetic and 
other purposes. The STRING function and STRING 
option of the GET and PUT EDIT statements are 
mentioned for stronger students. Simple scanning 
tactics are described using the substring function 
and DO loops. The INDEX function is then intro- 
duced. 

Internal representations, and the TRANSLATE 
and UNSPE~ functions are mentioned for stronger 

students. The uses of bit strings as profiles of 
binary attributes, requirements and prohibitions 
are mentioned. 

The usefulness of structures, and the syntac- 
tic conventions for them, are illustrated by the 
reduction of effort that structures permit in a 
program that prints an extensive body of data, 
selected by one item having an extreme value with- 
in a file of similar records. 

Subprograms are developed likewise as a means 
of making programs shorter. User defined func- 
tions are presented as an extension of the kind of 
convenience that built-in functions provide. Ex- 
amples are given in turn of numeric functions of a 
single numeric argument, numeric functions of a 
single string argument, string functions of a 
single numeric or string argument, functions of a 
single array or structure, functions of several 
arguments, functions that alter one or more of 
their arguments, and subroutine subprograms. 

Considerable attention must be given to re- 
inforcing students comprehension of the relation- 
ship between arguments and parameters, and their 
ability to invoke subprograms. It is possible for 
students to demonstrate an apparent understanding 
of the grsmmatical rules and actual output of sub- 
programs in artificial examples, without really 
understanding what subprograms are about (beyond 
their use being a sign of virtue). 

Vl. Reinforcement and testing 

Most students of programming in previous 
years would have deriged little or no benefit from 
examples and exercises that were repetitious and 
patently isomorphous. Once a gambit was grasped 
it was not likely to be forgotten. Many students 
today seem to need precisely the opposite approach 
- massive sets of examples and exercises that are 
close parallels, for a tactic to come through as a 
general principle applicable say to any set of 
words identified by a numerical code, rather than 
something specific to eye color on driving 
licenses. 

For testing purposes, the writer tends at 
present to use questions that describe a simple 
"real world" problem (or a humorous prototype), 
display the skeleton of a program for it, and ask 
the studentsto fill in any details or statements 
that they believe were omitted. There is merit to 
making sure that a student can write a complete 
program that starts with a PROCEDURE statement 
and ends with an END statement, and exam condi- 
tions provide the only assurance. Unfortunately 
this penalizes the slow writer if too many com- 
plete programs are required. Questions tha~ Just 
require the completion of a skeleton program help 
in this respect but make the papers lengthy. Some 
students, however, are disinclined to tackle a 
paper if it seems lengthy, a problem better re- 
solved by training them to improved attitudes 
rather than mandating short papers. 

The use of verbal frameworks for such prob- 
lems has also been questioned in relation to poor 
readers. Here again it seems that programming and 
literacy will both be helped by setting and main- 

Iii 



taining standards. In any event, programmers who 
cannot work to written directives or explain what 
they have done are of doubtful usefulness. Another 
style of question that the writer has used displays 
a simple program, asks the student to explain 
briefly what it does (in the hope that the student 
will state "print a conversion table from pouads 
and ounces to ounces" rather than trying to write 
the complete output) and then give the speci- 
fications of another program that uses the same 
theme, and ask the student to write it. This again 
does not work with a student who does not know how 
to write a simple description, which does not 
mean that it should be abandoned. 

The writer hopes that in fact by pursuing 
this kind of approach in programming instruction, 
standards of literacy can be raised, and that 
parallel tactics in mathematics and other techni- 
cal areas may help reverse the tide of creeping 
illiteracy which is perhaps the most serious 
educational problem of today. 

112 


