
IMPLEMENTING A COMPUTER 
SCIENCE CURRICULUM 

MERGING TWO CURRICULUM 
MODELS 

WILLIAM MITCHELL 
BRUCE MABIS 

UNIVERSITY OF EVANSVILLE 

ABSTRACT. 
While many curriculum recommendations have 

been proposed, (1,3,4,5,9), there remain gaps in 
the specification of 4-year programs, one being in 
the area of the applied B.S. degree. This paper 
presents one attempt to fill this gap with a 
program whose goal is to produce competent computer 
professionals, not candidates for graduate schools. 
Within the constraints of a limited faculty, the 
quarter calendar, and an applied orientation, it 
still incorporates much of the thrust and content 
of the more theoretically oriented recommendations. 

We believe that this effort may serve as a model 
for other schools who share our charge to train 
applications oriented professionals, and that the 
curriculum design process which we illustrate may 
be useful iD even broader contexts. 

RISTORY 
The computing science program at the 

University of Evansville began in 1962 with a 
single course entitled "Principles of Data 
Processing", offered on the University's IBM 1620. 
Four years later a two-year degree was offered in 
the Evening School called Computer Technology with 
scientific (mathematics) or conmaercial emphasis. 
Ten courses, each 3 quarter hours credit, were 
available, ranging from "Introduction to EDP" 
through "Assembly Language Programming" and "COBOL" 
to "Systems Analysis I & II". In 1969 the University 
installed an IBM 360/20, and in 1970 the Evening 
school offered a B.S. degree in Computing Science. 
This degree required 32 quarter hours of computing 

science (upgraded courses from the associate 
program), 33 quarter hours of mathematics (calculus 
and numerical analysis), and 36 quarter hours of 
business. The University moved up to an IBM 
370/135 in 1972, and the computing science program 
was transferred from the Evening School to the 
School of Arts and Science. 

Growing concern for the appropriateness of 
the major requirements, both within and without 
the University, led in 1973 to the request by the 
Academic Vice President that the program be 
radically upgraded. In 1974 a new major was 
implemented which required 54 quarter hours in 
computing science through the addition of 8 new 
courses to the offerings. The senior level 
sequence in systems analysis was changed to a 
sequence in information and management information 
systems, and the mathematics requirement was cut 
by two-thirds. The business component became the 

usual choice for a "related area" of 40 quarter 
hours. Although the new courses included 
introductory architecture, computer electronics, 
compiler design and digital logic, the required 
courses of the major continued to be heavily 
language oriented. A third faculty member was 
added to the department in 1975 to make the 
additional offerings available. The curriculum 
revision was formulated with scant attention to 
the ACM 1968 recommendations (5), which were seen 
as irrelevant to the objectives and commercial 

orientation of the program. 

In 1976 the program underwent a second crisis 
when the Academic Vice President transferred the 
program to the School of Engineering and Applied 
Science. This resulted in the eventual resigna- 
tion of the two seniom members of the department, 
and provoked a systematic evaluation of the 
program by their replacements. Under the direction 
of the Dean of the School of Engineering and 
Applied Science and an advisory committee appointed 
by the President, the department produced a new 
curriculum. Both department members were active in 
SIGCSE and had for guidance the ACM Curriculum'78 
recommendations (3) and the IEEE Computer Science 
and Engineering curriculum report(9). What follows 
is the account of how the curriculum was built 
upon these models within the restraints of 
available staff, program orientation, and the 
quarter calendar. 

ASSESSMENT 
The first step was an analysis of how the 

current offerings compared with the ACM recommend- 
ations. In terms of course titles, there was a 
wide variance, but it was concluded that many of 
the topics suggested for the core recommendations 
were covered to some degree. Clearly the existing 
offerings were not oriented toward graduate 
preparation, nor did they require mathematical 
competence beyond algebra. There was a partial 
overlap with topics in the Information System 
recommendations of 1973 (4). The most serious 
weaknesses were in the introductory sequence (which 
contained very little programming) and the absence 
of formal treatment of file and data structures. 

The second step was to consider the opportun- 
ities of the program to interface with other 
departments. The School of Business already re- 
quired the introductory course in BASIC progranmning 

151 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953028.804250&domain=pdf&date_stamp=1978-08-01


which was offered as a service course to the 

University. They were unhappy, however, with th6 
low level of programming experience provided due 
to the time devoted to surveying historical and 
societal phenomena. The department of Electrical 
Engineering, on the other hand, had formulated a 
major in Computer Engineering with an emphasis on 
microcomputers. It encouraged its majors to take 
several upper division computing science courses 
while skipping their prerequisites. Despite the 

maturity of these students and their excellent 
mathematical preparation, they lacked the 
practical experience of getting several programs 
completed in a quarter. The other departments in 
the University which might be expected to 
encourage students to seek a minor or at least a 
programming proficiency in some language were 
discouraged by the fact that all language 
instruction had a full year of prerequisite data 
processing courses (both the school of Engineering 
and the Mathematics Department offer FORTRAN 
courses for their own students). Clearly better 
access to the computing science courses was needed, 
with minimum but enforceable prerequisites. 

The third step in our assessment was to 
consider the nature of the major itself and the 
students it Was intended to serve. In spite of 
the recent relocation, the students in the forsee- 
able future would continue to be commercially 
oriented and continue to be employed in the inmnedi- 
ate area after graduation. What specific 
characteristics were desired for these students? 
Since they were training to be computer profession- 
als, they should be skilled language users, 
practiced in all aspects of their craft, and 
familiar with the role they would occupy in the 
corporate effort. They should be like compent and 
versatile musicians, understanding the mechanics 
of their instrument, the circumstances under 
which they perform, and the repertoire which will 
be expected. 

Our final constraint centered on program 
resources. We enjoyed the support of the Engineer- 
ing School, but it was not prepared to subsidize 
program expansion. Current student enrollment 
could not justify increasing the full time comput- 
ing science faculty beyond three. Since we could 
continue to employ a full-time equivalent in part 
time help (in service areas), the curriculum had 
to be structured in 144 quarter contact hours per 
academic year. The new curriculum had to be 

reasonably coherent with the existing program in 
order to accommodate the transition period, and it 
could not require significantly more computer 
resources than the existing program. Insofar as 
our curriculum could better serve electrical 
engineering, we could expect instructional 
assistance in the cross listed courses. We had 
no similar arrangement with the School of Business. 
We also had no expectation of any graduate level 
offerings. These limitations were subject to 
change, and could conceivably change rapidly in 
response to a spurt in enrollment, but they were 
ever present in the background as we began the 
redesign process. 

DESIGN 

Following the Engles and Austing "stages" 
curriculum model (2), we divided the proposed 
offerings into the categories of service offerings, 
major core and major electives. Service courses 
were divided into general education offerings 
which would not count toward the major and other 
offerings which would be taken by majors but 
taught in a manner to attract science and business 
minors. The major core was divided among three 

areas of emphasis, similar to the IEEE design: 
systems, applications programming, and computer 
hardware and software. The superposition of the 
two category systems resulted in the model 
specified in figure i. 

This diagram suggests several things we feel 
are true about our program. It makes evident our 
interfaces with the School of Business, the 
Department of Electrical Engineering, and the 
University in general. In the center, as is 
appropriate for us, is the emphasis on programming 
competence. The spread of the major core through 
all three areas insures breadth and balance in our 
students. The overlap of the major core and the 
service area reflects not only the scarcity of our 
faculty resources, but speaks to our goal of 
providing a broad range of service offerings to 
the University and thereby increasing our 
visibility. Thus, out of a total of 122 quarter 
hours of offerings, one third are in the service 
area and may be taken with (at most) one pre- 
requisites. 

Figure i. Computing Science Curriculum 
Category StructurE. Numbers 
are the total hours available 
in each region (for example, 
of the 24 hours in the systems 
area, 20 are part of the major's 
care, and 8 of those are also 
service oriented. 

152 



Since the major's core is the backbone of a 
degree which serves a variety of professional 
orientations, the content of that core was care- 
fully chosen and organized. Particularly important 
was the recognition that a significant portion of 
our students are unsure of their interests and 
capabilities when they enroll, and that there is a 
fundamental difference between amateur and 
professional programming, whatever similarities 
might also exist. 

We designed the core to include the content 
of ACM '78 curriculum's 8 core courses (equivalent 
to 36 quarter hours). Beyond that material we have 
20 quarter hours in the systems area, emphasized 
more heavily by IEEE, including the 8 hours in the 
senior design project. The remaining 8 hours of 
the 64 hour core requirement cover some material 
of a more elementary nature, and reflect the over- 
all slower pace appropriate to a less theoretically 
sophisticated clientele (as indicated by the low 
level of mathematical prerequisites). 

The core materials (see figure 2) is organized 
along the 3 curriculum threads so that both 
maturity and integration will be achieved. During 
the freshman year two courses in prograrmning 
(161-2), one in hardware (1511, and one in systems 
(121) are speclfied. The programming sequence 
employs PL/C and emphasizes problem solving and 
professional progran~ning methodology (7,8,11,12). 
At the end of the freshman year a second language 
is elected from the introductory language group 
according to professional interests. Although 
these languages are service oriented, they are all 
taught as second languages, and hence move rapid- 
ly through syntatical features and achieve 
significant exposure to the language's capabil- 

ities in one quarter's time- 

The sophomore sequence prescribes a 3 course 
sequence in programming (261-2,361), which 
develops PL/C and PL/I to the point where a 
quarterlong small group project can be executed 
efficiently. ConcUrrently, the student takes the 
introductory systems software course (241) and the 
second systems course (221). By the end of the 
sophomore year the major knows a very powerful 
language very well, and has begun to appreciate 
the difficulties inherent in large programs and 
meaningful applications~ 

The junior sequence in the core (371-2,375) 
is aimed at developing multi-lingual capabilities 
and an understanding of the roles and interations 
of a variety of high-level and low-level 
languages. The major is also ready to appreciate 
the economic and management aspects of running a 
computer facility (320). 

The core is completed in the senior year 
with a computer architecture course (421) and 
the senior software engineering project. This 
project is the synthesis of the lessons learned 
in applications programming and systems design. 
Projects aim at solving real problems and are 
usually industrially sponsored. 

The packaging of the curriculum in quarter 
courses forced us to distribute topics over more 

FIGURE 2. Computing Science Course Titles 
(* Indicates A Core Course) 

SYSTEMS 

121" Introduction to Systems/4 hrs. 
221" Information Systems/4 hrs. 
320* Software Engineering and Computer Management 

/4 hrs. 
421 Data Base Design and Implementation/4 hrs. 
494-7* Software Engineering Project/l,2,3,1 hrs. 

PROGRAMMING AND LANGUAGES 

General Education 
101 Survey of Computer Applications/2 hrs. 
105 Algorithmic Processes/2 hrs. 
106 Introduction to BASIC/2 hrs. 

Introductory Languages 
271 FORTRAN Progranuning/4 hrs. 
272 COBOL Programming/4 hrs. 
273 RPG II Programming/4 hrs. 
274 PL/I programming/4 hrs. 
275 S/370 Assembler Language Programming/ 4 hrs~ 
279 JCL and Utilities/4 hrs. 

PL/I Sequence 
161-2" Introduction to Programming/4,4 hrs. 
261" Data Structures/4 hrs. 
262* File Structures/4 hrs. 
361" Advanced Programming Techniques/4 hrs. 

Advanced Languages 
371-2" Comparative Programming Languages/4,4 hrs. 
375* Assembly Level Programming/4 hrs. 
425 Modeling and Simulation/4 hrs. 

HARDWARE/SOFTWARE 
151" Introduction to Computer Hardware/4 hrs. 
241" Introduction to Systems Software/4 hrs. 
341 Compiler Design/4 hrs. 
345 Operating Systems/4 hrs. 
350 Digital Logic/4 hrs. 
355 Introduction to Microcomputers/4 hrs. 
450 Introduction to Data Communications/4 hrs. 
451" Computer Architecture/4 hrs. 

TOPICS AND SEMINARS 
i00" Computer Science Orientation Seminar/0 hrs. 
499 Topics in Computer Science/l-4 hrs. 

courses, but it also allowed us to collect enough 
elementary material ~o offer three entry points 
into the curriculum through the service area. The 
overlap of major core courses and the service area 
(which does not include the major's programming 
sequence (13)) required a stratified curriculum 
rather than the spiral packaging illustrated by 
ACM'78. Central concepts are repeated and 
amplified as one rises through the curriculum, 
but technical concepts of concern only to the 
professional are minimized in the service area. 

153 



While the core unifies the computing science 
majors, the degree requirements heed the recommend- 
ation of both IEEE and ACM to provide experiences 
outside the discipline and outside the classroom. 
Majors pursue a related area comprising at least 
40 hours in some other discipline, and then base 
their senior project in this area. The majority 
of students opt for a related area in business. 
In addition to the computing science core they 
will complete most of the School of Business core 
(32 quarter hours) and then take at least 16 more 
hours in computing science (including COBOL, RPGI~ 
and JCL) and 8 upper division hours in business. 
The mathematics requirement for this major is 
college algebra and finite mathematics, as well as 
the 3 course sequence in statistics and quantita- 
tive methods included in the business core. 

A second computing science major involves a 
related area in Applied Mathematics in a specific 
discipline. Along with the computing science core 
and 8 additional C.S, hours, the student ~orapletes 

27 quarter hours of calculus, differential 
equations, linear algebra and numerial analysis, 
and 36 quarter hours in a discipline such as 
Physics, Psyschology, or Biology. The premise is 
that the graduate will be conversant with the 
techniques of analysis and modeling which utilize 
the computer, as well as having significant know- 

ledge in a discipline which employs such models. 
The senior project provides the opportunity to 
synthesize these experiences. 

The third option is an individualized major 
defined by the student, his advisor in the depart- 
ment, and other faculty members according to the 
student's interests. Cross disciplinary special- 
izations in engineering areas, political science 
or philosophy might be built upon the computing 
science core under this option. Also possible 
is the selection of courses which would best 
equip a student to pursue a particular graduate 
program in computer science or a related dis- 
cipline. 

A further benefit of this design is that 
various levels of emersion in the computing 
science curriculum can be identified short of a 
major. The service area offers a variety of 
courses with minimal prerequisites so that an 
emphasis or minor can be obtained by say, a 
business major, without competing with upper 
division majors or focusing on narrow, technical 

topics. The two year degree requires the fresh- 
man and sophomore core sequences and provides 
a solid introduction to progranmning. A major 
may, if necessary, leave the program at the end 
of any year and take with him a useful, balanced 
exposure to the discipline. 

CONCLUSION 
In summary, we found both the ACM '78 rec- 

ommendation and the IEEE computer Society report 
invaluable in our curriculum design efforts both 
in terms of content suggestions and organizational 
models. Moreover, we had little difficulty mesh- 
ing what we felt were the strengths of these rec- 
ommendations within the constraints imposed by our 
particular environment--which speaks to the 

appropriate centrality of the concepts they both 
identify (6). Adopting these central concepts did 
not inhibit us from incorporating the additional 
emphases which meet the needs of our students. We 
feel the distinctive features which are exhibited 
in our curriculum: the integrated related area, 
the core language emphasis, and the senior design 
project are compatible with the curriculum 
reports. 

As our program grows, the offerings can be 
extended naturally and consistantly due to the 
fundamental strength of the underlying curriculum 
structure. We have well defined interfaces, a 
clear prerequisite structure, and descernable 
levels of technical development. Evaluation of 
the program is therefore relatively easy and the 
places where adjustments must be made can be 
readily identified. Likewise, the competencies 
of our majors in the various areas of our program 
can be more easily monitored so that we have a 
greater degree of quality control. 

We therefore offer this curriculum as an 

example of the usefulness of curriculum models and 
as one illustration of how a model can be 
implemented in spite of outward differences im- 
posed by environment. We also recommend the 
process of design which has been illustrated as a 
useful model for productive results. 

i. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

REFERENCES 

Aiken, R.M. "Summary of Comments Following 
SIGCSE Panel Discussion on 'Computer Science 
Graduates--An Industry/University Gap'," 
SIGCSE Bulletin (ACM) 4, 3 (Oct 1972), 37. 

Austing, R.H., and G.L. Engel, "A Computer 
Science Course Program For Small Colleges," 
COMM. ACM 16,3 (March 1973), 139-147. 

Austing, R.H., et. al, "Curriculum Recommend- 
ations for the Undergraduate Program in 
Computer Science," SIGCSE BULLetin (ACM) 9,2 
(June 1977), 1-16. 

Couger, J.D. "Curriculum Recommendations for 
Undergraduate Programs in Information 
Science," COMM. ACM 16,12 (Dec. 1973),727-749. 

Curriculum Committee on Computer Science 
"Curriculum '68, Recommendations for Academic 
Programs in Computer Science," COMM. ACM 11,13 
(March 1969), 151-197. 

Engle, Gerald L. "A Comparison of the ACM/C3S 
and the IEEE/CS Model Curriculum Subcommittee 
Recommendations," COMPUTER 10,12 (Dec. 1977), 
121-123. 

Gries, David "What Should We Teach In An 
Introductory Progranuning Course?" SIGCSE 
Bulletin 6,1 (Feb. 1974), 81-89. 

Holt, R.C. et. i, "SP/k: A System for Teaching 
Computer Programming," COMM. ACM 20,5 
(May 1977), 301-309. 

154 



9. 

i0. 

ii. 

12. 

13. 

IEEE Computer Society Education Conmnittee, 
Model Curricula Subcommittee, A Curriculum 
i_n_Cgm~uter Science and En@ineerin@, 1977. 

Mitchell, William, Design of Mathematics 
Curricula For The Small College, University 
Microfilms 74-291-80. 

Powers, Michael J., "Structuring an Applied 
Computer Science Program," College Cur- 
riculum in Computer Scienge, Eh~ineerin ~ 
and Data Processing, IEEE, 1978. 

Schneider, G. Michael, "The Introductory 
Programming Course in Computer Science-- 
Ten Principles," SIGCSE Bulletin (ACM) i0,i 
(Feb. 1978), 107-114. 

Fisher, Hankley, Wallentine, "Seperation 
of Introductory Programming and Language 
Instruction," SIGCSE Bulletin (ACM) 5,1 
(Feb. 1973), 9-13. 

155 


