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ABSTRACT

The problem of deciding whether a given prop-
ositional formula in conjunctive normal form is
satisfiable has been widely studied. It is known
that, when restricted to formulas having only two
literals per clause, this problem has an efficient
(polynomial-time) solution. But the same problem
on formulas having three literals per clause is
NP-complete, and hence probably does not have any
efficient solution.

In this paper, we consider an infinite class
of satisfiability problems which contains these
two particular problems as special cases, and show
that every member of this class is either polynomi-
al-time decidable or NP-complete. The infinite
collection of new NP-complete problems so obtained
may prove very useful in finding other new NP-com-
plete problems. The classification of the polyno-
mial-time decidable cases yields new problems that
are complete in polynomial time and in nondetermin-
istic log space.

We also consider an analogous class of prob-
tems, involving quantified formulas, which has the
property that every member is either polynomial-
time decidable or complete in polynomial space.

1. INTRODUCTION -- A GENERALIZED SATISFIABILITY
PROBLEM

We start with an introductory example. Let
R{x,y,z) be a 3-place logical relation whose truth-
table is {(1,0,0),(0,1,0),(0,0,1)} -- that is,
R(x,y,2z) is true iff exactly one of its three argu-
ments is true. Consider the problem of deciding
whether an arbitrary conjunction of clauses of the
form R(x,y,z) is satisfiable. We call this the
ONE-IN-THREE SATISFIABILITY problem. For example,
the formula R(x,y,z) AR{x,y,u) AR(u,u,y) is satis-
fiable, because it is made true by assigning the
values 0,1,0,0 to the variables x,y,z,u respective-
ly. As will be seen, the ONE-IN-THREE SATISFIABIL-
ITY problem is NP-complete.

The similarity between this problem and the
standard satisfiability problem for propositional
formulas in conjunctive normal form leads to the
generalization which is the subject of this paper.
Consider the problem of deciding whether a given
CNF formula with 3 Titerals in each clause is
satisfiable --.a well-known NP-complete problem.
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Since a clause may contain any number of negated
variables from 0 to 3, there are four distinct
relations among variables which occur as conjuncts
in the formulas of this prob]em -- namely, the re-
lations Ry, R] Ry,R3 defined by R (x,y,z) = XVyvz,
Ri(x,y,2z) = AXVYVZ, Ro(X,¥,2) =2 Axv-Aayvz
and Ra(X,y,2) = Axv “yv-1z. An input to this
sat1s¥1ab1a11ty problem is just a conjunction of
clauses of the form R;(£,£',£") for various vari-
ables £,£',&" and various i¢{0,1,2,3}.

This sets the stage for the following general-
ization. Let S = {R ,Rp} be any finite set of
Togical relations. IA 1og1ca] relation is defined

to be any subset of {0,1} for some integer k>1.
The integer k is called the rank of the relation.)
Define an S-formula to be any conjunction of
clauses, each of the form Bi(£y,En, ), where
£1,8p,... are variables whose num er matches the
rank of Rj,1e{l,...,m}, and R; is a relation sym-
bol represent1ng the relation” Rj. The S-satisfi-
ability problem is the probliem of deciding whether
a given S-formula is satisfiable. We denote by
SAT(S) the set of all satisfiable S-formulas.

The main result of this paper characterizes
the complexity of SAT(S) for every finite set S
of logical relations. The most striking feature
of this characterization is that for any such S,
SAT(S) is either polynomial-time decidable or
NP-complete. This dichotomy is somewhat surprising,
since one might expect that any such large and di-
verse class of problems, that includes both polyno-
mial-time decidable and NP-complete members, would
also contain some representatives of the many in-
termediate degrees of complexity which presumably
lie between these two extremes.

Furthermore, we give an interesting classifi-
cation of the polynomial-time decidable cases. We
show that (assuming P#NP) SAT(S) is polynomial-time
decidable only if at least one of the following
conditions holds:

(a) Every relation in S is satisfied when all
variables are 0.

(b) Every relation in S is satisfied when all
variables are 1.

(c) Every relation in S is definable by a CNF
formula in which each conjunct has at most
one negated variable.

(d) Every relation in S is definable by a CNF
formula in which each conjunct has at most
one unnegated variable.
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(e) Every relation in S is definable by a CNF
formula having at most 2 literals in each
conjunct.

(f) Every relation in S is the set of solutions
of a system of linear equation over the two-
element field {0,1}.

Sections 2-4 are devoted to the statement and
proof of this Dichotomy Theorem. (Although we use
the word "dichotomy" to describe this result, it
should be borne in mind that the dichotomy holds
only if P#NP; 1if P=NP, the dichotomy would col-
lapse.)

A variation of the problem consists of allow-
the constants 0 and 1 to occur in input formulas
(e.g. a clause R{x,0,y) is allowed). We denote
this "satisfiability-with-constants" problem by
SAT (S) Our results for SAT.(S) are sharper than
for SAT(S) we obtain a comp?ete characterization
up to log-space equivalence. For any finite set S
of logical relations, SAT:(S) lies in one of seven
log-space equivalence classes, described as follows:

1. SAT:(S) is decidable deterministically in log
space.

2. The complement of SAT (S) is log-equivalent to
the graph reachab111ty problem (g1ven a graph G
and nodes s,t of G, do s and t Tlie in the same
connected component of G?).

3. The complement of SATC(S) is log-equivalent to
the digraph reachability problem (given a direc-
ted graph G and nodes s,t of G, is there a di-
rected path from s to t?). In this case,
SATC(S) is log~complete in co-NSPACE(log n).

4. SAT:(S) is log-equivalent to
the prob]em of deciding whether a graph is
bipartite.

5. SAT~(S) is log-equivalent to the problem of
whe%her an arbitrary system of linear equations
over the field {0,1} is consistent.

6. SAT.(S) is log-complete in P.
7. SATC(S) is log-complete in NP.

This result is presented in Section 5. For "most"
sets S, SATC(S) is essentially identical to, and

has the samé complexity as, SAT(S). (See Lemma 4.2.)
Of course, it is not known that the above seven
classes are distinct.

In Section 6, we present a polynomial-space
analogue of the Dichotomy Theorem, involving quan-
tified formulas. We define QF;(S) to be the analog
of SAT~(S) in which formulas conta1n universal and
existential quantifiers quantifying the proposition-
al variables. The main theorem of this section
states that for any finite set S of logical rela-
tions, QF¢ (S) is either polynomial-time decidable
or log- comp]ete in polynomial space. For both
QF¢ (S) and SAT¢ (S) the polynomial-time decidable
cases are Just the cases (c)-(f) listed above;
cases (a) and (b) are excluded.

We mention here a few particular completeness
results which follow from these general theorems.
Problems NP1,NP2 and NP3 are NP-complete.

NP1. ONE-IN-THREE SATISFIABILITY

Given sets Sy,. each having at most 3 mem-
bers, is there a sugset T of the members such
that for each i, |TnaS;| =

NP2. NOT-ALL-EQUAL SATISFIABILITY

Given sets S each having at most 3
members, can the members be colored with two
colors so that no set is all one color?

NP3. TWO-COLORABLE PERFECT MATCHING

Given a graph G, can the nodes of G be colored
with two colors so that each node has exactly
one neighbor the same color as itself? (G may
be restricted to be planar and cubic.)
(Theorem 7.1)

Problems P1 and P2 are log-complete in P.

P1. SAT3W (Weakly Positive Satisfiability)

Given a CNF formula having at most 3 literals
in each clause, and having at most one negated
variable in each clause, is it satisfiable?
(Corollary 5.2)

P2. NOT-EXACTLY-ONE SATISFIABILITY

Given sets S., ,S_each having at most 3
members, and a d1stmngu1shed member s, can one
choose a subset of the members, containing s,
so that no set has exactly one member chosen?
(Corollary 5.2)

This paper contains a full proof of the
Dichotomy Theorem. The other results are, for the
most part, stated without proof.

Technical Note. The definition of "logical relation"”
given above is deficient in that it fails to differ-
entiate between empty relations of differing ranks.
Therefore, we formally define a logical relation to
be a pair (k,R) with RE{0,1}K; but informally we
shall continue to regard R 1tse1f as being the
relation.

2. THE DICHOTOMY THEOREM

This section states and discusses the main
result of this paper, the following theorem.

Theorem 2.1. (Dichotomy Theorem for Satisfiability).
Let S be a finite set of logical relations. If S
satisfies one of the conditions (a)-(f) below, then
SAT(S) is polynomial-time decidable. Otherwise,
SAT(S) is log-complete in NP. (See below for

definitions).
(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.

(c) Every relation in
(d) Every relation in

is weakly positive.
is weakly negative.
(e) Every relation in S is affine.

(f) Every relation in

v »nm n n n o wm

is bijunctive.

Definitions.

(The following definitions were all invented for
this paper and should not be assumed to agree with
terminology used elsewhere.)

The logical relation R is 0-valid if (0,...,0)
€ R. The logical relation R is 1-valid if
(1,...,1) eR.
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The logical relation R is weakly positive
(resp. weakly negative) if R(x X]5 .) is Togically
equivalent to some CNF formula hav1ng at most one
negated (resp. unnegated) variable in each con-
junct.

The 1ogica1 relation R is bijunctive if
R{xy,...) is Togically equivalent to some CNF for-
mula having at most 2 1iterals in any conjunct.

The logical relation R is affine if R(x], L)
is logically equivalent to some system of linear
equations over the two-element field {0,1}; that

is, if R .) is Togically equivalent to a con-
Junct1on o} formu]as of the forms £, ® . .®8&,=0
and £18.. .®&,=1, where ® denotes add1t10n
modulo 2.

Complexity-theoretic notions, such as P, NP,
log-space reducibility, etc. are defined briefly in
the Appendix.

Examples

The retation R]-{(1 0,0,0),(0,1,1 0) (0,1,0,1),
(1,0,1,1)} is affine, since Rq(u, x,y,z) is equ1va1-
mtto(u@x-])A(x®y®z-d

The relation Rp=1{(0,0,0),(0,0,1),(0,1 O),
(1 1,0)} is bijunctive and weakly negative, since

X,¥,z) is equivalent to (mixvy)A(yyv-2z).
I% is also, obviously, O-valid.

The relation R3={(0,1),(1,0)} is defined by
the formula (xvy)A(~ xv—-:y), or equivalently,
x®y=1. Hence this relation is bijunctive and
affine. It is not, however, weakly positive or
weakly negative -- this can be shown using Lemma
3. 1W.

The relation Rq = {(0,0,0),(1,1,1)} is defined
by the formula (x=y) A(y=z), or equivalently,
(Xvay)a(yvax)aly V—\Z)I\(ZY—\_Y). Hence, it
is 0-valid, 1-valid, weakly positive, weakly nega-
tive, affine and bijunctive.

The re]at1on Re = {(0,0,1),(0,1,0),(0,1,1),
(1,0,0),(1,0,1) ? ,0)} is the complement of Rg-
It does not have any of the six properties listed
for Rq -- this can be proved using Lemmas 3.1A,
3.1B, and 3.1W. Thus, this example shows that none
of these properties is preserved under complement.

The relation Rg={(0,0,1),(0,1,0),(1,0 0)} is
the relation "exact?y one of three" mentioned in

the Introduction. It can be shown, using Lemmas
3.1A, 3.1B and 3.1W, that it is not weakly positive,
not weakly negative, not affine and not bijunctive.

By applying Theorem 2.1 with S={Rg} and S= {R6}
respectively, it can be deduced that tﬁe NOT-ALL-
EQUAL and ONE-IN-THREE satlsf1ab111ty prob]ems,
defined in Section 1, are log-complete in NP We
omit the proofs.

Method of Proof

The key question on which the proof of the
Dichotomy Theorem centers is: For a given S, what
relations are definable by ex1stent1a11y quant1f1ed
S-formulas? For example, is S={R}, where R is the
relation "exactly one of x,y,z," then the existen-
tially quantified S-formula (Hu »up,u3) (R(x,uy,u3)
AR(y,u JA B{u7,u2,2)) defmes the relation
(i 1; (? 0,0), ZO 1,0),(0,0,1)}, which in the
notat1on of Section 3 could be written [x®y®z=1].

Moreover, for this particular S, it turns out that
every logical relation is definable by some exis-
tentially quantified S-formula. This fact readily
implies the NP-completeness of SAT(S).

Another way to state this fact is as a closure
property: The smallest set of relations which con-
tains S and is closed under certain operations (con-
junction and existential quantification) is the
set of all logical relations. From this point of
view, the general problem can be phrased as fol-
lTows: What sets of logical relations are closed
under these operations? If we can obtain a reason-
ably succinct classification of the sets of rela-
tions that are closed in this way, then this may
serve as a basis for classifying the complexity of
SAT(S) for various S.

We do in fact obtain a classification theorem
along these lines. Section 3 is devoted to its
statement and proof, and a refinement of it is
given in Section 5. This theorem classifies the
sets of logical relations that are closed under
composition, substitution of constants for varia-
bles, and existential quantification. Although the
classification is not so thorough as to give a com-
plete enumeration of the sets having this closure
property, it does permit the complexity of the
corresponding satisfiability problem to be deter-
mined up to log-space equivalence in all cases.

The closure of the set S under these three
operations is denoted Rep(S). It is interesting
to note that the correspond1ng satisfiability-with-
constants prob]em SATC(S), is NP-complete just
when Rep(S) is the set of all logical relations.
Thus, NP-completeness is closely tied to a kind of
functional completeness. (In Section 3 of [Sch]
we observed and exploited a similar "logical com-
pleteness property" which is probably exhibited in
some form by all known NP-complete problems.)

Relation to Earlier Work

The work presented here is similar in spirit
to the classification by Post [P] of the sets of
logical functions that are closed under functional
composition. In both cases, it is shown that “func-
tional compieteness" holds provided that the gener-
ating set is not included in one of a finite number
of restricted classes of functions or relations.
But the generating operations are quite different,
and to the best of our knowledge, none of the par-
ticulars of Post's proof carry over to this work.

Our generalized satisfiability problem em-
braces, as particular cases, a number of previously
studied problems. Of the NP-complete cases, so far
as we know, only the standard CNF satisfiability
problem with 3 literals per clause has appeared in
the literature [C]. Of the polynomial-time decid-
able cases, all are either trivial or previously
known. The satisfiabi]ity problem for weakly nega-
tive formulas is essentially identical to the prob-
lem called UNIT which is shown to be complete in P
in [JL]. A restricted form of weakly positive
satisfiability is equivalent (under complement) to
the digraph reachability problem, a complete prob-
lem in nondeterministic log space [Sav]. Our work
makes use of all these earlier completeness re-
sults.
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3. CLASSIFICATION OF LOGICAL RELATIONS

This section presents the classification the-
orem (Theorem 3.0) which is the essential part of
the proof of the Dichotomy Theorem. This theorem
classifies the sets of logical relations that are
closed under certain operations {(conjunction, sub-
stitution of constants for variables, and existen-
tial quantification), showing that any such set
consists exclusively of relations which are in one
of the four classes weakly positive, weakly nega-
tive, affine or bijunctive, or else is the set of
all logical relations.

A key part of the proof, which is also of in-
dependent interest, is a series of lemmas {Lemmas
3.1A, 3.1B and 3.1W) which characterize these four
classes of relations in semantic terms, that is,
in terms of what elements are in the relation,
rather than in terms of defining formulas as in
the definitions.

The results of this section deal purely with
logical relations; no complexity-theoretic notions
are involved. ’

Definitions

The definition of S-formula was given in Sec-
tion 1. We use the term formula in a larger sense,
to mean any well-formed formula, formed from vari-
ables, constants, logical connectives, parentheses,
logical relation symbols and existential and uni-
versal quantifiers -- the intent here is to in-
clude whatever notation is handy for expressing a
relation among propositional variables.

To clarify these terms: (a) A variable, for
purposes of this paper, is an element of the set
{XaXaXTs 0o s sYs¥1oYT s ve0ZsZsennsUsliseessVsVasVTs

.}9 Jariab]es? llke formu?as, are gtrings 09 !
symbols; and we construe, e.g., the variable xig
to be a string of length 3. (b) A constant is one
of the symbols 0,1 (1=true, O=false). (c) A log-
ical connective 1is one of the symbols —,A,V,
+, =, # which have their usual meanings of "not",
"and", "or", "implies", "equals", “does not equal."
(d) Each logical relation R has associated with it

a logical relation symbol, denoted R, as in Section

1. (e) The quantifiers (3x) and (¥X) are inter-
preted to mean "for some x e {0,1}" and "for all
xe{0,1}".

A literal is a variable or a negated variable,
i.e., £ or =& for some variable &.

The notation B(X],...) is shorthand for
R(x75...,% ) wherek 1s the rank of R.

If A is a formula, then Var(A) denotes the
set of free (i.e., unquantified) variables occur~
ring in A. An assignment for A is a function

s:Var(A) ~{0,1}. We say the assignment s satisfies

A if s makes A true under the usual rules of inter-
pretation.

We define Sat(A) to be the set of all assign-
ments s:Var(A) >{0,TJ which satisfy A. Two formu-
las A and B are logically equivalent if Var(A) =
Var(B) and Sat({A) = Sat(B).

Let A be a formula, V&Var(A), and ie {0,1}.

Then K? v denotes the assignment s:Var(A)»{0,1}

" defined by s{£)=i iff £eV. Usually we write just
Ki v and let the domain be inferred from context.
K:*"denotes the assignment which has the constant
vadlue i; again the domain is inferred from context.
If A is a formula, £ is a variable, and w is

a literal, then A[g] denotes the formula formed
from A by rep]acing each occurrence of £ by w. If

V is a set of variables, then A[V] denotes the re-
sult of substituting w for every occurrence of
every variable in V. Multiple substitutions are
denoted by expressions such as A[x ,x. ’w"] with
obvious meaning.

The set of existentially quantified S-formulas
with constants is denoted Gen(S). Specifically,
Gen(S) is the smallest set of formulas such that
(a) for all ReS, R(Xy,...) €Gen(S), and (b) for
all A,B eGen(S) and a11 variables £,n, the follow-

ing are all in Gen(S):
AnB, ALE], ALED, AL
and (3JE)A.

Gen*(S) denotes the set of all formulas which
are logically equivalent to some formula in Gen(S).

If A is a formula, then we denote by [A] the
logical relation defined by A, when the variables
are taken in lexicographic order. For example,
[z#(xvy)] is the 3-place relation {(0,0,1),(0,1,0),
(1,0,0),{(1,1,0)1.

Finally we define Rep(S) := {[A] : AcGen(S)}.
Rep(S) is the set of relations that are "represent-
able" by quantified S-formulas with constants. Ob-
serve that if S€S', then Rep(S)€ Rep(S').

Classification Theorem for Rep(S)

Theorem 3.0. Llet S be any set of logical relations.
If S satisfies one of the conditions (a)-(d) below,
then Rep(S) satisfies the same condition. Other-
wise, Rep(S) is the set of all logical relations.

(a) Every relation in S is weakly positive.
(b) Every relation in S is weakly negative.
(c) Every relation in S is affine.

(d) Every relation in S is bijunctive.

The remainder of this section is devoted to
the proof of Theorem 3.0.

Lemma 3.1A. Let R be a logical relation and Tet

A:= R(x7,...). Then R is affine if and only if
for all sy,s),s3eSat(A), sy@s,®s3eSat(A).

Proof. MWe use the following fact, which can be
proved using elementary linear algebra. If K is a
field, then a subset DEKN is the solution set of a
system of linear equations over K iff for all
b],bz,b3e:D and all €1,Cp,c3eK with cytcpte =1,
cybytcobp+cgbzeD. ~ In case K is the f1e]a 10,1},
this condition is equivalent to "“the sum of any
three elements of D is in D." Since R is affine
iff A is equivalent to a system of linear equations
over {0,1}, the Temma follows from this fact.[]

Remark. The cardinality of an affine relation is

always a power of 2. (This follows from standard
results in Tinear algebra.) This fact is often of
use for showing that a relation is not affine.

We now define some terminology for the next
Temma.

If £ is a variable, we use the notation <&,i>
to denote the literal & if i=1 and ~¢ if i=0. As
is customary, o denotes the complementary literal
of a, that is, the literal <£,1-i> where a=<g&,i>.
We say the literal a=<&,i> is consistent with a
formula A if s(£)=i for some s e Sat{A}. We say-the
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assignment s agrees with the literal o if o=
<g,s(g)> for some variable £. A set of literals
is consistent if it does not contain o and § for
any literal q.

If s is an assignment and Q is a consistent
set of literals, we denote by s#Q the assignment
which differs from s just on the set {g :
<£9]'S(E)> EQ}.

Let o be a literal and A a formula. We define
Impp(a) to be the set of all literals B8 such that
every s e Sat(A) which agrees with o also agrees
with 8. Thus, Impy{a) is the set of literals which
are "implied" by tﬁe literal a. For example, if
A=xwvy, then <y,1>¢ ImpA(<x,0>).

Let A be a formula and s eSat{A). A change
set for (A,s) is any set VEVar(A) such that
s @Ky yeSat(A). That is, V is a change set for
(A,s) > iff the assignment which differs from s
Just on V satisfies A.

Lemma 3.1B. Let R be a logical relation and let
R:=R(x7,...). Then the following are equivalent:

(a) R is bijunctive.

(b) For every seSat(A), if V-I and Vo are change
sets for (A,s) then so is VinVy.

(c) For every s e Sat{A) and every literal o

which is consistent with A, s#Impy(a) e Sat(A).

(See Note on last page of this section.)
Proof.(a)=>(b): Assume R is bijunctive. Thus, A
is logically equivalent to some formula B which is
a conjunction of clauses of the form (a—+B), where
a,B are literals. Let s e Sat(A) be given, and let
V],VZ be change sets for (A,s). Let Q be the small-
est set of literals such that (a) {<n,1-s(n)> :
neVinVsleQ, and (b) whenever aeQ and (a~g) or
(B ~ @) Ts a conjunct of B for some literal 8, then
BeQ. Clearly, any assignment te Sat(B) which dif-
fers from s on all of VinVy must agree with every
literal in Q. Since s@K],V is such an assign-

ment, Q is consistent and Q cannot contain any 1lit-
eral <n,1-s(n)> with ngVy. Similarly, Q cannot

contain any literal <n,1-s{n)> with n¢V,. Hence,
s#Q = SQK],V]nV . It is straightforward to show

that s#Q satisfieS every conjunct of B; hence
SQK],V](\V eSat(B) = Sat(A). Hence VinV, is a

change set gor (A,s).

(b)=(c): Assume that (b) holds. Let seSat(A),
and let o be a literal consistent with A. We want
to show that s#Imp,(a) e Sat(A). AssumeTthat s dis-
agrees with a; that is, o=<g,1-s(g)> for some
variable £. Let W:={n : <n,1-s(n)>e Impy(a)};
that is, W is the set of variables on which Impy(a)
clashes with s. We claim that W =(}{V:V is a
change set for (A,s) & £<V}. To prove this claim,
first note that any change set containing £ must
also contain all of W, since W consists of all var-
iables which are forced to change as a result of
changing £. On the other hand, if some variable n
is not contained in W, then there is some assign-
ment t such that t(£)#s(&) but t(n)=s(n), so that
n is not contained in the change set {t :
t(z)#s(z)}. This proves the claim.

Now by multiple application of hypothesis {b),
W is itself a change set for (A,s). Thus, SOK; |
= s#Impp(a) € Sat(A), as was to be shown. ?

(¢)=(a): Assume that for every s e Sat(A) and
every literal a which is consistent with A,

s#Impp (o) e Sat(A). Define B to be the conjunction
of {(a>B): a,B are literals & Be Impp(a)}. Note
that Var(B)=vVar(A), since B has the conjunct (£-+£)
for each £eVar(A). We claim that B is logically
equivalent to A, and hence R is bijunctive.

We must show that Sat(B)=Sat(A). Clearly,
Sat(A)E Sat(B), since any assignment satisfying A
must satisfy each conjunct of B.

It remains to show Sat(B)S Sat(A). Suppose,
for sake of contradiction, that Sy e Sat(B) - Sat(A).
Choose s, € Sat(A) such that |W| is maximum, where
W= {n :"sy(n)=s5(n) . Choose &eVar(A)-W, and let
a :=<£,s](é)>. ?he lTiteral o is consistent with A,
because 1f a were inconsistent with A, then B would
have a conjunct asserting this fact (that is, if
o=<g,0> is inconsistent with A, then B has a con-
junct (= &~E), and if a=<£,1> is inconsistent
with A, then B has a conjunct (§-+=£&)), and this
would force sp{£)=s1(£). Let $3:= sz#ImpA(a). By
hypothesis sj3 satis}ies A.

We claim that for all neW, s3(n)=sa2(n). To
see this, suppose neW with s3(n)#s,(n). Since now
<n,1-s5(n)>¢e Impp(a), B has a"conjunct
(a><n,1-s5(n)>), or equivalently (<€,si(€)> -+
<n,1-s7{n)>). This conjunct is not satisfied by 1,
contragﬁcting the assumption that S satisfies B.
This proves the claim.

Thus, s, agrees with s; on all of Wuw{g}.

This contradicts the fact that sp was chosen to
maximize |W|.- The contradiction completes the
proof. []

Let A be a formula, let ie {0,1}, and let
Ve&var(A). Define the i-closure of V with respect
to A to be the set C]i’A(Vi :={E&eVar(A) : for all

seSat(A) such that s|V=1, s(g)=i}. In other
words, Clg a(V) (resp. Cly a(V)) is the set of
variables which are forced to be false (resp. true)
by all variables of V being false (resp. true).
It is easy to see that VEC1; a(V), and that
VEV' implies Cl; a(V)&€C1; a(V'),” for all V,V'
cvar(A), ie {0,130 call ihe set VEvar(A)
i-closed for A if V=C1; a(V). Also, call V
i-consistent for A if tﬁere is some s e Sat(A)
such that s[V=1i. We say V is i-nonclosed (resp.
j-inconsistent) for A if V is not i-closed (resp.

i-consistent) for A.

Lemma 3.1W. Let R be a logical relation and let

A:= le],...). Then (a) R is weakly positive if
and only if whenever V&Var(A) is O-consistent and
0-closed for A, Kj VeSat(A); and (b) R is weakly
negative if and only if whenever V&Var(A) is 1-con-
sistent and 1-closed for A, KLVeSat(A).

Proof. We just prove part (a). The proof of (b) is
similar. If R is empty, the lemma holds trivially,
so assume R is nonempty.

(=>): Assume that R is weakly positive. Thus A is
logically equivalent to some CNF formula A' having
at most one negated variable per conjunct. It suf-
fices to show that if V&Var(A') is O-consistent
and 0-closed for A', then Ky yeSat(A'). Let V be
such a set and suppose to tRé contrary that Ko v £
Sat(A'). Let C be a conjunct of A' on which
Kg.y fails. Let U be the set of unnegated variables
ofVc." since Ko,y fails on C, U€V. If C has no
TIf s agrees with a, the conclusion is immediate,
since then s#Impp(c) = s.
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negated variable, then this contradicts the fact
that V is O-consistent for A'. Otherwise, let n
be the unique negated variable of C. It can be
seen that neClg 51 (U). Also, since K y fails on
C, n£V. This céntradicts the fact thgt V is
0-closed for A'. This proves that in fact
K0 yE Sat(A').

L]

(=). Assume that K VeSat(A) for all O-closed,
0-consistent sets Vs—0\7ar(A). Let A' be the con-
junction of all the clauses {(g)v...v&,) :
{gl,...,gn} is O-inconsistent for A}u{(—mvg]v
... ¥V En) T nelly A({F_,l,...,sn})}. Since every
variabtlle'is contained in its own O-closure, A' has
a conjunct (m&wvE) for each £eVar(A); hence,
Var(A')=var(A). We claim that A' is logically
equivalent to A.

To show Sat(A)ESat(A'), suppose that s¢Sat(A).

Let C be a conjunct of A' on which s fails. If C
is of the form (£;v...v£,), then 5(51)="'=5(5n)
=0 and, by the definition of A', {E,,...,E,} is,
O-inconsistent for A; hence, stSaul.(A). Bther-
wise C is of the form (- nvéyv...vE), and so
s(n)=1, s(&;)=...=5(£,)=0. Then by the definition
of A', nsd A({«E1,...,£n}), hence s ¢Sat(A).
This proves gﬁat Sat(A) € Sat(A').

Next we show that Sat(A')& Sat(A). Suppose
s¢Sat(A). Let V:={g : s(&)=0}. By the property
assumed for A, V is either 0O-inconsistent of 0-non-
closed for A. If it is O-inconsistent, then
(Eyv...v gp) is a conjunct of A', where V = {g],
veosknls ang hence s ¢Sat(A'). If V is 0-non-
closed, Tet neCly (V) - V. Then (anvijv...v
£,) is a conjunct”’"of A', and hence s ¢ Sat(A').
This proves that Sat(A')€Sat(A).

Thus Sat(A)=Sat(A') and so A' is logically
equivalent to A. Hence R is weakly positive. []

Lemma 3.2, Let R be a logical relation. If R is
not weakly negative, then Rep({R})n {[x2y],[xvyl}
# ¢. If R is not weakly positive, then Rep({R})n
{Ixgyl,[~xv ayl} # ¢.

Corollary 3.2.1. If S contains some relation which
is not weakly positive and some relation which is
not weakly negative, then [xZy] e Rep(S).

Proof of Corollary. Assume R,R'eS with R not
weakly positive and R' not weakly negative. Sup-
pose, for sake of contradiction, that [xzy] ¢
Rep(S). Then, by Lemma 3.2, [xvy] and [~ xV ~¥]
are in Rep(S). Hence, Rep(S) contains [(xvy)}a

( axv 2y)], which is just [xzyl, contrary to
assumption. []

Proof of Lemma 3.2. Let R be a logical relation

which is not weakly negative, and let A :=R(x7,...).

By Lemma 3.1W, there is a set V&Var(A) which is 1-
consistent and 1-closed such that Ky y#Sat(A).

Let V:= Var(A)-V. Choose WEV of maximum cardi-
nality such that Ky e Sat(A). It can be seen
from the definitiond that 1<|W|<|V|. Choose
EeV-W, and let s be an assignment satisfying A
such that s{V=1 and s(£)=0. Such an s exists be-
cause V is 1-closed and l-consistent.

_ For j=0,1 define WJ- :={neW : s(n)=i},
W.:={ne Var(A) -W : s(n)=j}, and let

J
o W W Wy W
B := AL g0, 1. 10, 1.

W, is nonempty by maximality of [W|. WO is non-

empty since it contains &. Thus x and y both actual-
1y occur in B.

Clearly [B] e Rep({R}). Also, [B] contains
(0,1) and (1,0), because A is satisfied by Kq y and
s respectively. And [B] does not contain (0,0‘;‘, by
maximality of |W|. Thus, depending on whether (1,1)
is in [B], [B] is either [xZy] or [xwvy]. This
proves the lemma for the case where R is weakly
negative.

The proof of the weakly positive case is sim-
ilar. []

The following lTemma is of frequent use in what
follows.

Negated Substitution Lemma. Assume [xZy]e Rep(S).
Then Gen+(S) is closed under negated substitution;
that is, if AeGen*(S) and £,n are variables,

A[fn] £ Gen+(S).

Proof. By hypothesis Gen*(S) contains the formula

xfy. Observe that A[_:En] is logically equivalent to
(Hu)(A[E]Anfu),gwhere u is a variable not occurring
in A. “Hence,A[ T]]t:(ien+(S). [l

e ]

By a "3-element binary logical relation" we
mean a 2-place logical relation having exactly 3
elements. It is easy to verify that there are
exactly four such relations, and that these are
[xvyl,[axvyl,[x¥vy] and [ xv-y].

Lemma 3.3. Let R be a relation which is not affine.

Then Rep({R ,[x#y]}) contains all 3-element binary
logical relations.

Proof. It suffices to show that Rep({R,[xzyl}) con-
tains some 3-element binary relation, since the
others can then be obtained by use of the Negated
Substitution Lemma.

Let A:= R(xy,...). Using Lemma 3.1A, let
$0»57,S2 be assignments satisfying A such that
sg®s10sy does not satisfy A. Form A' from A by
negating all occurrences of variables in the set
{n : sg(n)=1}. By the Negated Substitution Lemma,
A' ¢ Gent({R,[x2y]}). Define s, := s;®sg, for
i=1,2. Observe that an assignﬂlent t satisfies A'
iff t®sqg satisfies A. Thus, Ky (the all-zero as-
signment], sy, sp' all satisfy A', but s]' ® sy
does not.

For i,j = 0,1, let V; . := {geVar(A') :
sy (g)=1 & sy (£)=j}, and et

B := A[ ‘éo,o , :’(0,1 ,;’,1 ,o,‘ém].

Clearly, BeGent({R,[x2y]}). Assume without loss
of generality that x,y,z all actually occur in B.
(For example, if x does not occur, one can add a
conjunct (3w)(wzx) just to make it occur.)

By the statement just made about satisfaction
of A', [B] contains (0,0,0),(0,1,1) and (1,0,1),
but not (1,1,0).

Assume, for sake of contradiction, that
Rep({R,[xzy]}) does not contain any 3-element bin-
ary relation. Then [B] must contain (0,1,0), or
else [(3x)B] is {(0,0),(1,1),(0,1)}. Also, [B]
must contain (1,0,0), or else [(3y)B] is{(0,0),

(0,]),(],])}. But then [B[Z]] is {(0’0)’(0’])’
(1,0)}, and this contradictign completes the
proof. []
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Lemma 3.4. Let R be a logical relation which is
not bijunctive. Then Rep({R,[xzy],[xvy]}) con-
tains the relation "exactly one of x,y,z."

Proof. Let A:=R(xj,...). By part (b) of Lemma
3.1B, there exist sOE:Sat(A) and U,V €Var(A) such
that U and V are change sets for (A s), but UaV
is not a change set for (A,s).

Form A' from A by negating all occurrences of
each variable in the set {n : sg(n)=1}. By the
Negated Substitution Lemma, A' € Gent({R,[x#y]}).
Observe that U and V are change sets for (A', K ),
where Ky is the all-zero assignment, but Uer 1s
not. (%150 Ko satisfies A'.) Define

- A [Var(AO)-(UuV) ) uf;v , U)-/V V—U]

By the above remarks about change sets for (A',K.),
[B] contains (0,0,0), (1,1,0) and (1,0,1), but ngt
(1,0,0). Now define

B' := B[, 1 A ((xvay) a(ayvaz) A(azvax)

By the Negated Substitution Lemma, B' e Gent({R,
[xzyl,[xvyl}). It is easy to check that
[8']={(1,0,0),(0,1,0),(0,0,1)}. That is, [B']
is the relation "exactly one of x,y,z." []

Lemma 3.5. Let R be the logical relation "exactly
one of x,y,z." Then Rep({R}) is the set of all
logical relations.

Proof. Define

A := (3u1,up,u3sug,us,ug) (R(x,uy,ug) AR(Y,up,ug)
A R(u] au2au5) I\R(U3,U4,U6) A R(Z,U3,0)
B := R(x,y,0)

It is straightforward to verify that A is logical-
1y equivalent to {xvyvz) and that B is logically
equivalent to xZy.
Let a logical relation Q be given and let
Q=[C] for some standard propositional formula C.
By introducing a new existentially quantified var-
iable for each binary logical connective of C, one
can form a formula (3y s.--s¥m) D, equivalent to C,
where D is a conJunct10n of cTauses each involving
atmost 3 variables (and hence D can be expanded to
CNF form with at most 3 literals per conjunct. )
Details of this process can be found in [St,Lemma
6.4] or [BBFMP]. It is now straightforward,
using the formulas A and B, to convert D into an
equivalent formula in Gen({R}) It follows that
QeRep({R}).
Thus Rep({R}) is the set of all logical rela-
tions. []
Note. Condition (b) of Lemma 3.1B can also be ex-
pressed in the following pleasantly symmetric
form:
(b') For all sy,s,,s eSat(A) (s1vsp) A(spvss)
(53\151) € Sa%
This is der1ved from condition (b) by setting sy=s,
=s®K S ®Ky,y, and observing that
%526951; 6951))@5] is equivalent to (syv 52)
A 52VS3)A(S3VS])
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Proof of Theorem 3.0. First we show that if S

does not satisfy any of the conditions (a)-(d) of
Theorem 3.0, Rep(S) is the set of all logical rela-
tions.

Assume that S does not satisfy any of (a)-(d).
Then S contains some relation Ry which is not weak-
ly positive, some relation R, which is not weakly
negative, some relation R ﬁ1ch is not affine,
and some re]at1on R whicﬁ is not bijunctive. By
Corollary 3.2.1, y]e:Rep({R Ro,}). Now by
Lemma 3.3, [xVy]eRep {R }§ Hence, by
Lemma 3.4, Rep({R1 Rs,R3, }5 contains the rela-
tion "exact]y one of x,y, z," and hence is the set
of all logical relations, by Lemma 3.5. Thus,
Rep(S) is the set of all logical relations.

It remains to show that if S satisfies one of
the conditions (a)-(d), so does Rep(S). The proof
of this part does not involve any new techniques,
and we leave it as an exercise for the reader.
(This part is not needed in the proof of the Di-
chotomy Theorem.) []

4. PROOF OF DICHOTOMY THEOREM

This section finishes the proof of the Dichot-
omy Theorem (Theorem 2.1).

Lemma 4.1. (Dichotomy Theorem for Satisfiability-
with-Constants) Let S be a finite set of logical
relations. If S satisfies one of the conditions
(a)-(d) of Theorem 3.0, then SATq(S) is polynomial-
time decidable. Otherwise,SATC?S)is tog-complete
in NP.

Proof. (a) Suppose that every relation in S is
weakly positive. Then SAT(S) is decidable using
the following algorithm:

1. Given an S-formula A, replace each conjunct of
A by an equivalent CNF formula A' having at
most one negated variable in each conjunct.

2. If every conjunct of A' contains an unnegated
variable, ACCEPT.

3. Otherwise, let (—1&) be a conjunct of A'. If
() is also a conjunct of A', REJECT. Otherwise,
drop every conjunct in which - & occurs and
drop £ from every conjunct in which £ occurs
unnegated. (If A' becomes empty, ACCEPT.)

4. Go to step 2.

We leave verification to the reader.

(b) The case where every relation in S is weakly
negative is similar to (a).

{c) Suppose that every relation in S is affine.
Then to decide whether a given S-formula A is
satisfiable, convert A to an equivalent system
of linear equations over {0,1} and solve the
system by Gaussian elimination. (Eliminate
one variable at a time until either all varia-
bles have been eliminated or 0=1 has been
deduced.) This is a well-known poiynomial-
time algorithm.

(d) Suppose that every relation in S is bijunctive.
Then to decide whether a given S-formula is
satisfiable, convert it to an equivalent CNF
formula with at most 2 literals per conjunct
and use the Davis-Putnam procedure [DP], which
as noted in [C] decides satisfiability of such
formulas in polynomial time.



In (a)-(d) above, we have sketched polynomial-time
algorithms for SAT(S). For SATC(S), that is if
the formulas contain constants, it is obvious how
to modify the algorithms.

Assume now that S does not satisfy any of the
conditions (a)-(d). We will show that SAT¢(S) is
NP-complete by showing SAT3 < SATC(S), where
SAT3 is the set of sat1sf1ab1é CNF formulas hav-
ing at most 3 literals per conjunct, a known
NP-complete problem [C].

Let Rg,Ry,Ro,R3 be the 3-place 1og1ca1 rela-
tions def1ned by R ?x,y z) = (xvyv z), Ri(x,y,z)
= (nxvyvz), R ,yz)_(1XVﬂyvz) B3(x,y,2)
E(ﬂXVﬂyVﬂﬁ For i=0,1,2,3, MtF(myz)
be a formula in Gen(S) which is 1og1ca11y equiva-
lent to Rj{x,y,z). Such formulas exist by Theorem
3.0.

Given a CNF formula A with at most 3 literals
in each conjunct, form an equivalent formula A' by
replacing each conjunct of A by one of the formu-
las F; with appropriate variables substituted.
Form A” from A' by deleting all quantifiers, after
making sure that all quantified variables are dis-
tinct from each other and from all free variables.
Observe that A" is satisfiable iff A is satisfia-
ble. It is not hard to show that A" is log-space
computable from A. This proves that SAT3 $
SAT(S). 09

Since clearly SAT-(S)e NP, it follows that
the problem SAT((S) 1S log-complete in NP. []

We define "no-constants" analogues of Gen(S)
and Rep(S), as follows. Let Genyc(S) := {AeGen(S)
: no constants occur in A}, RepNC(S) = {[A] :

Ae Genye(S)).

The logical relation R is omg]ement1ve if it

1s closed under complement, that is, if for all
(ay,...,ap) €R, (1-a7,...,1-ay) eR.

The ?0]10w1ng eas11y proved lemma clarifies

the relation between SAT(S) and SAT.(S).

Lemma 4.2. If Rep?g S) contains [x] and [-x],

then RepIS =Reppc(S), and hence SAT(S) and
SAT(S) have the same complexity.

As the next lemma shows, the hypothesis of
Lemma 4.2 fails only under very restricted condi-
tions. Thus, for "most" sets S, SAT(S) and
SAT(S) have the same complexity.

nonempty
Lemma 4.3. Let S be a set of ,logical relations.
Then at least one of the f0110w1ng holds:

(a) Every relation in S is 0-valid.

(b) Every relation in S is 1-valid.

(c) [x] and [~ x] are contained in Repyc(S).
(d) [x#y]eRepyc(S).

Moreover, if (c) fails and (d) holds, every rela-
tion in S is complementive.

Proof. Assume as noted above that all
relations in S are nonempty. Assume that (a) and
(b) fail. We will show that (c) or (d) holds.

CASE 1. Every relation in S is 0-valid or 1-valid.
In this case, since (a) and (b) fail, there is
some RgeS that is 0-valid but not 1-valid, and
some RyeS that is 1-valid but not 0-valid. Let-
ting A; :=Ri(x7,...), we have [Var(A )]]

{(3)} for i=0,1; hence, [x] and [-1x] are in
RepNC(S), S0 (c) holds.
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CASE 2. S contains some nonempty relation R that
is neither 0-valid nor 1-valid. In this case, let
A F=B(X],.. } and choose seSat(A). Set

1 -1
({0}) s ({1})
= A s
[ Xy ]

Since R is ne1ther O-valid nor 1-valid, X and X3
both occur in B and [B] is either {(0, 1)} or
{(0,1),(1,0)}. 1In the former case, [( )B1 = [x]
and [(3x )B] = [~ x], so (c) holds. he latter
case, [Bﬁ = [xzyl, so (d) holds.

Thus (c) or (d) holds in all cases.

Now assume (c) fails and (d) holds. We claim
that [x]# Repye For if [x]eRepyc(S), we
would have [( yx) {(xA xzy}] = [ y], contradicting
(c) failing. Similarly, [ x]# RepNC(S) Assume
for sake of contradiction that Re S and R is not
complementive. Let A R(x7,...) and choose
seSat(A) such that § tSat(A}, where § is the com-
plementary assignment of s. Define the formula B
as_in CASE 2. Now xg must occur in B, or else
[B]=[x]. Similarly xj must occur in B. Thus
Var(B)={x7,x2} and [B] contains (0,1) but not (1,0).
Now [B] must contain (0,0), or else [(3x )B] is
[x]. And [B] must contain (1,1), or e]se [(3x])B]
is [-4x]. Thus, [B] is [x—+y] But then
[(Ix(x>y)A (xzy)] is [y], and this contradiction
cempletes the proof that every relation in S is
complementive. []

Finally, we are able to prove the Dichotomy
Theorem for SAT(S).

Proof of Theorem 2.1. Assume that not every rela-
tion in S is 0-valid and not every relation in S
is 1-valid (that is, conditions (a) and (b) of
Theorem 2.1 fail). By Lemma 4.3 there are two
cases to consider.

CASE 1. [x] and [-x] are in Repyc(S).

In this case, it is easy to replace any given S-
formula with constants by an equivalent S-formula
without constants, so the conclusion follows by
Lemma 4.1.

CASE 2. [x#y] cRepNC(S), and every relation in S
is comp]ement1ve

In this case, let an S-formula with constants, A be
given. Let A' be A"A.(y #Y1 ), where A" is formed
from A be replacing each occurrence of 0 by yg and
each occurrence of 1 by ¥1s and yy,y] are new
variables. Thus, A' is an S-formula without con-
stants, and, by comp]ementarity, A' is satisfiable
iff A is satisfiable. So again the conclusion
follows by Lemma 4.1. []

5. REFINEMENT TO LOG-SPACE EQUIVALENCE

This section classifies the complexity of
SAT(S) up to log-space equivalence. Results are
presented without proof. The definition of (<k)-
weakly positive is found later in this section.

Classification Theorem for SAT~(S)

Theorem 5.1. Let S be a finite set of logical re-
Tations. Then SAT:(S) lies in one of seven log-
space equivalence ¢lasses, as follows: (SATC(S)
denotes the complement of SAT(S).)

L1. If every relation in S is (<0)-weakly positive,
then SATC(S) is decidable deterministically in



log space. Actually, the proof that SAT3W is complete in

L2. If every relation in S is (<1)-weakly positive, ? cancbe 91ven n a manner gg?; completely para]-
and S contains some non{<0)-weakly positive re- els Cook's proof [C] that SAT3 (the set of satis-
fisble CNF fornulas with 3 iterals per conpinct)

. . C .
(a) éﬁ:géggi}?t;ogr§g$;;a}g?teﬁoatgﬁag:aghand of instantaneous machiqe descriptions and writes a
nodes s,t, do s and t lie in the same con- CNF formula that describes the sequence. A1l that
nected Gomponent.of G?): is necessary to 9et o comploteness result in 7
: : - o observe that, machine ed is r-
or (b) ézzggigi}?t}ogrgg#;;a}g?teﬁoatgigg;g;agh ministic, the CNF formula constructed has at most
and nodes s.t, is there a directed path one pos1t1ve.var1ap1e 1n.each conjunct. (This re-
from s to t;)’ and hence is log-complete quires certain m0d1fic§t1ons of Cook's argument,
in nondeterﬁiﬁistic Tog space which are carried out in the UNIT proof of [JL].)
: The reduction to formulas with 3 literals per con-

L3. If every relation in S is weakly positive, and junct again completely parallels Cook's proof --
S contains some relation that is not (<1)-weak- one has just to observe that this reduction pre-
1y positive, then Rep(S) is the set of all serves the property of having at most one positive
weakly positive relations, and SATC(S) is log- variable per conjunct. (One can then reverse the
complete in P. negativity of all variables so as to get at most

one negated variable per conjunct, i.e. SAT3W.)
The proof of statement L2(b) uses the result
of Savitch [Sav] (later refined by Jones [J]) that

Statements L1-L3 also hold when "negative" is sub-
stituted for "positive."

L4. If S contains some relation that is not weakly the digraph reachability problem is complete in
positive and some relation that is not weakly nondeterministic log space. Jones [J] asks whether
negative, and every relation is S is affine and the undirected graph reachability problem is also
bijunctive, then Rep(S)=Rep([xzy]), and SAT((S) complete in nondeterministic log space.
is log-equivalent to the problem of deciding The completness of the satisfiability problem
whether a graph is bipartite. for bijunctive formulas (cf. L6), which follows

from the completeness of the digraph reachability

L5. If S contains some relation that is not weakly problem, was noted in [JLI.

positive, some relation that is not weakly neg-
ative, and some relation that is not bijunctive,
and every relation in S is affine, then Rep(S)

= Rep([x®y®z=0]), and hence SAT.(S) is log-
equivalent to the problem of deciding whether
an arbitrary system of linear equations over
the field {0,1} is consistent.

Definitions

Let k be a nonnegative integer or «. The re-
lation R is (<k)-weakly positive iff R(xy,...) is
equivalent to some formula B A g1sg1)A... A(EnzE,) s
where &y,..,&, are variables and B 1s a CNF formula

Remark. The latter problem is log-equivalent in which each conjunct has at most one negated var-
to its own complement, since a set of linear jable and every conjunct which has a negated varia-
equations is inconsistent iff there is some ble has at most k unnegated variables. (Note: The
subset of them which sums to 0=1, a condition clauses (£;=£4) serve no function except to make
which itself can be written as a set of linear the variable £; occur vacuously in the formula.
equations. Thus for this case, any class in Actually this 1s necessary only if k=0.)

which SAT~(S) is complete is closed under Note that "weakly positive" is the same as
comp]emeng. "(<e)-weakly positive.” ’

L6. If S contains some relation that is not weakly Let A bika formula, V&¥ar(A), k as above.
positive,dsome re1?tion thﬁt is not weakly neg- We define 016 A(V) := {& : AIWEV, |W|<k, such that
ative, and some relation that is not affine, [ _ <00 .
and every relation in S is bijunctive, then Vs eSat(A), s|W=0 = s(£)=0}. Thus C15,A(V) 15
Rep(S)=Rep([x +y]) and SAT:(S) is log-complete the same as C1 A(V). We say V is (0,<k)-closed
in nondeterministic log space. . <k gt =

forA if C]a’A(V) = V.

(Similar definitions are given with "negative" in-
stead of "positive" and "1" instead of "0".)

L7. If S contains some relation that is not weakly
positive, some relation that is not weakly neg-
ative, some relation that is not bijunctive,
and some relation that is not affine, then
Rep(S) is the set of all logical relations,
and SATC(S) is log-complete in NP.

The analysis of weakly positive relations in
Theorem 5.1 is based on the following lemma, which
generalizes Lemma 3.1W.

Corollary 5.2. SAT3W and NOT-EXACTLY-ONE SATISFIA- . .
BILITY (defined in Section 1) are log-complete in Lemma 5.3. Let R be a logical relation and let
P. (This follows from statement L3.) . A J-B‘X],.-.) and let k be a nonnegative integer

or ». Then R is (<k)-weakly positive iff whenever
vV €var(A) is 0-consistent and (0,<k)-closed for A,

The proof of L3 relies on the result of dJones Ko.v € Sat(A).

and Laaser [JL] that the problem UNIT (the set of
CNF formulas that yield a contradiction from unit
resolution) is log-complete in P. Although [JL]
does not give any explicit syntactic characteriza-
tion, we believe that UNIT is just the set of un-
satisfiable CNF formulas having at most one posi-
tive variable in each conjunct.

Lemma 5.4. If R is affine and bijunctive, then
Bix],...i is logically equivalent to a CNF formula
composed of conjuncts of the forms (xzy),(xzy),

x and -1 x.
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6. EXTENSION TO POLYNOMIAL SPACE

This section gives a polynomial-space analogue
of the Dichotomy Theorem, involving quantified for-
mulas. The result is presented without proof.

A quantified S-formula with constants is a
member of the smallest set of formulas T such that
(a) for each ReS, B(Xl’--') eT, and (b) whenever
A,BeT and g£,n are variables, the following are in
T: AAB: (HE)As (VE)A’ A[TE]]’ A[g]’ A[%]. Define

QFc(S) :={A : A is a quantified S-formula with
constants, Var(A)=¢, and A is true}.

Theorem 6.1. Let S be a finite set of logical re-

Tations. 1If one of the four conditions (c)-(f) of

Theorem 2.1 holds, QF~(S) is polynomial-time decid-
able. Otherwise, QFC?S) is log-complete in polyno-
mial space.

The proof relies on the result of Stockmeyer
and Meyer [StM]that the problem B,a 3CNF (decide
the truth of a quantified CNF formula with 3 liter-
als per conjunct) is log-complete in polynomial
space, (See also [St]).

7. APPLICATIONS

The results presented here are potentially
very useful in expediting NP-completeness proofs,
for the reason that they give one a much broader
"target cross-section" for use in reductions.
Traditionally, a researcher has had to aim his re-
duction at a specific NP-complete problem, such as
the CNF satisfiability problem. By virtue of The-
orem 2.1, the researcher's aim no longer has to be
so specific. Once he has set up the framework for
simulating conjunctions of clauses, he has great
latitude regarding the specific content of those
clauses.

To illustrate this idea, we prove that the
TWO-COLORABLE PERFECT MATCHING problem, defined in
Section 1, is NP-complete. With the help of Theo-
rem 2.1, the proof is rather simple, whereas pre-
viously the author had tried without success to
prove this problem NP-complete.

Theorem 7.1. TWO~COLORABLE PERFECT MATCHING is log-
complete in NP.

Comment. With additional arguments, which we do
not give here, it can be shown that this problem
restricted to planar cubic graphs in also NP-com-
plete.

Proof (sketch). Consider the graph shown in Figure
T(a), three of whose nodes are labeled with the
variables x,y,z. Any coloring of this graph with
the colors "0" and "1" can be interpreted as as-
signing truth values to the variables x,y,z. The
requirement that the coloring be a solution to the
2-colorable perfect matching problem is thus inter-
preted as imposing a certain relation on these 3
variables. It is straightforward to verify that
this relation is [(xvyvz)A(axyayv ~z)] --
the only values the triple (x,y,z) cannot assume
are (0,0,0) and {1,1,1). Call this relation R and
observe that SAT({R}) is the NOT-ALL-EQUAL SATISFI-
ABILITY problem, which, as noted in Section 2, is
NP-complete as a consequence of Theorem 2.1.
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% z
Figure 1(a)

Figure 1(b)

A=R(x,x,y) AR(y,z,u)
z

Figure 1(c)

We will reduce SAT{{R}) to the 2-célorable
perfect matching problem.

Let an {R}-formula A be given. Construct a
graph G as follows. Let G, be the union of dis-
joint copies of Figure 1(a9, one copy for each con-
junct of A. On each copy label the nodes "x","y"
and "z" with the names of the variables occurring
in the corresponding conjunct of A. Then, for each
pair ny,np of nodes that are labeled with the same
variable, join nj to n, by means of the structure
shown in Figure 1(b). It may be verified that
this structure forces n; and np to have the same
color. Call the resulting graph G. Figure 1{c)
shows a simple example of this construction. It
can be seen that G has a two-colorabie perfect
matching iff A is satisfiable. Hence, TWO-COLOR-
ABLE PERFECT MATCHING is NP-complete. [] ’

The point we wish to make is that, in the
above proof, “"almost any" graph could have been
used for Figure 1(a). We suspect that if one sim-
ply randomly generated a graph having 10 or 15
nodes, within a certain range of arc probability,
the result would be, with very high probability, a
graph representing a relation satisfying the condi-
tions of Theorem 2.1 for NP-completeness, which
would therefore serve just as Figure 1(a) for a
proof of NP-completeness.

This raises the-intriguing possibility of
computer-assisted NP-completeness proofs. Once
the researcher has established the basic framework
for simulating conjunctions of clauses, the rela-
tional complexity could be explored with the help
of a computer. The computer would be instructed
to randomly generate various input configurations
and test whether the defined relation was non-af-
fine, non-bijunctive, etc. The fruitfulness of
such an approach remains to be proved: the enumer-
ation of the elements of a relation on 10 or 15
variables is surely not a light computational task.



8. PROBLEMS FOR FURTHER RESEARCH

1. Generalize the Dichotomy Theorem from 2-valued
variables to k-valued variables (i.e., a rela-
tion of rank n is a subset of {0,1,...,k-13").
An analogue for k=3 would imply the (already
known) NP-completeness of the graph 3-colorabil-
ity problem. It would be interesting to see if
any new polynomial-time decidable cases arise,
which are not obvious generalizations of the
case k=2.

2. Study the complexity of deciding whether a re-

lation is affine, bijunctive, or weakly positive.

From Lemmas 3.1A and 3.1B, it can be seen that
it can be decided in polynomial time whether a
given relation, presented as a list of its ele-
ments, is affine or bijunctive. But we do not
know of any efficient algorithm for recognizing
weakly positive relations.

9. CONCLUSION

We have studied the complexity of an infinite
class of satisfiability problems and obtained
classification theorems which include and extend
various previous complexity results, thereby unify-
ing these earlier results within a larger frame-
work.

By way of exploring this problem, we were led
to a fairly rich theory of classification of logi-
cal relations, which is independent of, although
motivated by, complexity-theoretic notions. It
seems likely that this theory will lead to a
heightened understanding of the inherent complexity
of various classes of logical relations.

Since Cook's NP-completeness proof [C], the
standard CNF satisfiability problem has become a
kind of canonical NP-complete problem, being proba-
bly used more widely in reductions than any other
NP-complete problem. We feel that the usefulness
of this problem for reductions is a property which
is probably shared to some degree by other conjunc-
tive satisfiability problems, such as those we have
considered. Thus we feel that problems such as
ONE-IN-THREE SATISFIABILITY and NOT-ALL-EQUAL SAT-
ISFIABILITY will Tikewise prove to have wide appli-
cability in completeness proofs.

APPENDIX

Complexity-Theoretic Definitions

Inputs to all decision problems are assumed
to be presented as strings of symbols from some
fixed finite alphabet .

A log-space bounded Turing machine is a Tur-
ing machine, having a two-way read-only input tape,
a one-way write-only output tape, and a single
work tape, which, on any input we Z*, never visits
more than ¢ log(|w|) frames of its work tape, for
some constant c depending on the machine. The
machine is assumed deterministic unless otherwise
stated.

A function f:z*->I* is log-space computabie
if there is some log-space bounded Turing machine
which on input we £* outputs f(w) and halts.

Let A,BEX*. Then A51 B ("A is log-space
reducible to B") iff there “is a log-space comput-
able function f such that for all we*, weA iff
f(w) eB. This is a transitive relation. A is
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log-equivalent to B if AslogB and Bs]ogA' A set B

is log-complete in a class C if BeC and for all

AeC, AS]OgB'

Log space (resp. nondeterministic log space)
is the class of all sets ASI* such that there is
some deterministic (resp. nondeterministic) log-
space bounded Turing machine that recognizes A.

Polynomial time (denoted P), nondeterministic
polynomial time (denoted NP) and polynomial space
(denoted PSPACE) are the classes of sets that are
recognized by deterministic and nondeterministic
polynomial-time bounded and polynomial-tape bound-
ed Turing machines respectively. (These are stan-
dard one-tape Turing machines, and the bounds are
expressed as a function of the length of the input
string.) In this paper, "NP-complete" means "log-
complete in NP."

More detailed explanations can be found in

[K],[stM],[St].
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