
ON y-REDUCIBILITY VERSUS POLYNOMIAL TIME MANY-ONE REDUCIBILITY*
(Extended Abstract)

Timothy J. Long

Department of Computer Science
New Mexico State University
Las Cruces, New Mexico 88003

ABSTRACT

We prove that a class of functions (denoted

by NPC~), whose graphs can be accepted in non-

deterministic polynomial time, can be evaluated

in deterministic polynomial time if and only if

y-reducibility is equivalent to polynomial time

many-one reducibility. We also modify the proof

technique used to obtain part of this result to

obtain the stronger result that if every y-reduc-

tion can be replaced by a polynomial time Turing

reduction then every function in NPC~ can be

evaluated in deterministic polynomial time.

INTRODUCTION

In this paper we prove the equivalence of

two open questions in computational complexity

theory. The first question was raised by

Adleman and Manders [i] and asks whether a

particular nondeterministic version of polyno-

mial time many-one reducibility, which they call

y-reducibility, is equivalent to polynomial time

many-one reducibility. The second question was

raised by Valiant [6] and asks whether a class

of functions, which he calls NPcP, whose graphs
t

*This work represents a portion of the author's
doctoral dissertation [S] completed at Purdue
University and was partially supported by NSF
Grant No. MCS-76-09212.

can be accepted in nondeterministic polynomial

time is contained in a class of functions, which

he calls PE p , which can be evaluated in determin-

polynomial time; that is, whether NPC~ c PE P. istic

The motivation for examining this equivalence

comes from the rather obvious observation that any

y-reduction is realized by an element of NPC~

while any polynomial time many-one reduction is

realized by an element of PE P. In fact, the re-

NPC~ =PE P implies that y-reducibility is sult that

equivalent to polynomial time many-one reducibi-

lity follows immediately from this observation.

It is the other half of the equivalence which we

feel is interesting and in Theorem 2 we prove that

if y-reducibility is equivalent to polynomial time

many-one reducibility then NPC~ c PE p.

This l a s t r e s u l t may be thought of as say ing

t h a t i f any y - r e d u c t i o n can be rep laced by a

polynomial time many-one reduction then NPC~ c PE p.

One way to strengthen this statement is to allow

the y-reductions to be replaced by more general

types of polynomial time reduction procedures.

This is exactly the type of strengthening which

we achieve in Theorem 4 where we prove that if

every y-reduction can be replaced by a polynomial

time Turing reduction then NPC~ cPE P. Since

polynomial t ime Tur ing r e d u c i b i l i t y seems to be

278

© 1979 A C M 0 -89791 -003 -6 /79 /0400 -278 $00.75
See page ii

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800135.804421&domain=pdf&date_stamp=1979-04-30

the most general form of polynomial time reducibi-

lity (Ladner, Lynch, and Selman [4]), Theorem 4

seems to be the strongest obtainable form where

the y-reductions are to be replaced by polynomial

time reduction procedures. Obviously Theorem 2

is an easy corollary to Theorem 4. However be-

cause the proof of Theorem 4 uses a modification

of the ideas used to prove Theorem 2, we include

an independent proof of Theorem 2 in order to

motivate the more involved construction used to

prove Theorem 4.

BASICS

The three types of reducibilities used in

this paper are polynomial time many-one reduci-

bility which was introduced by Karp [3], polynomial

time Turing reducibility which was introduced by

Cook [2], and y-reducibility which was introduced

by Adleman and Manders [i]. A set A is poly-

time many-one reducible to a set B (A~B) nomial

if there is a function g which is computable in

polynomial time such that for all x, x~A if and

only if g(x)eB. A set A is polynomial time Turing

reducible to a set B (A~B) if there is an oracle

Turing machine H which runs in polynomial time

such that M, with oracle set B, recognizes A.

For any nondeterministic transducer M which

runs in polynomial time, let

G(M) = (<x,y>] some computation sequence of M on

input x halts with y on its output tape}.

A set A is y-reducible to a set B (A~yB) if there

is a nondeterministic transducer M which runs in

polynomial time such that:

i: Vx~y (<x,y>~G(M))

ii:gxvy (<x,y>eG(M) => (xcA <=> yeB)).

Part i of this definition requires M to produce

at least one output value for every input value.

Part ii requires all of the output values pro-

duced by M to be in B if the input value is in A

and all of the output values to be in B otherwise.

Thus, one can view y-reducibility as a nondeter-

ministic version of ~P-reducibility.
m

It is clear from the definitions that for any

sets A and B, if A~PB then A~yB. The converse
m

of this statement is one of the open questions

with which we are concerned here; that is, does

A~yB imply that A~PB for all sets A and B.
m

We now discuss, following Valiant [6], the

second open question with which we are concerned.

An evaluator for a function f (which is possibly

multi-valued and not necessarily total) is a

transducer which takes as input a string x and

outputs on its output tape a value of f(x) if fix)

is defined and outputs the special symbol

otherwise. PE is the class of functions which

can be evaluated by transducers whose running

time is bounded BY a polynomial function of the

sum of the lengths of the input and output. The

restriction of the class PE to functions whose

output length is polynomially bounded by the input

length is denoted by PE P . It is easy to verify

that PE P is precisely the class of functions that

can be computed by transducers which run in poly-

nomial time.

A checker for a function f is a Turing

machine (possibly nondeterministi¢) which takes

as input the string <x,y> and accepts <x,y> if

and only if y~f(x); that is, if and only if y is

a value of f(x). NPC denotes the class of func-

tions which can be checked by nondeterministic

279

Turing machines whose running time is bounded by a

polynomial function of the length of the input

<x,y>. The superscript p is again used to denote

the restriction of this class to functions whose

output length is polynomially bounded by the

input length and the subscript t is also intro-

duced to denote the additional restriction of NPC

to total functions. Thus, the class NPC~ is the

class NPC with the two extra restrictions denoted

by the subscript t and the superscript p. We

take the notation NPC~ ~ PEP to mean that if

f~NPC~ - then there is a function gcPE P such that

g(x) cf(x) for all x. In this case we say that

g is a restriction of f which is computable in

deterministic polynomial time. The second open

question with which we are concerned is whether

NPC~ ~ PE P.

MAIN THEOREMS:

PROPOSITION i: If NPC% p ~ PE p then for all sets

A and B, A~yB implies that A~PB.
m

Proof: The proof is actually a trivial conse-

quence of the observation that if A~yB via

transducer M, then the function which M computes,

is an element of NPC~. Then if NPC~ ~ PE P , f, say

a restriction of f computable in deterministic

polynomial time witnesses A~PB.
m

Theorem 2 establishes the converse of

Proposition 1 and the equivalence of these two

questions.

THEOREM 2: If ANyB implies that ANPB for all
m

sets A and B, then NPC~- ~ PE P .

Sketch of Proof: Let feNPC~ and let nondeter-

ministic transducer M compute f in polynomial

time. The proof is done by constructing recur-

sire sets A and B such that

(I) A~MB

(II) If AsPB then there is a gePE p such that
m

g(x)ef(x) for all x.

Thus, under the assumption that A~yB imples that

A~PB, we can conclude the fepE p .
m

Recalling the definition of G(M), let

G(M,x) = {u I ~l (u) = x and ueG(M)}.*

In order to meet condition (1), whenever the

construction assigns a string x to A it assigns

all of G(M,x) to B and whenever it assigns x

to A it assigns all of G(M,x) to B. Based on

this assignment of strings to A, A, B and B, the

following is an informal description of a non-

deterministic transducer M" which witnesses AayB:

On input x, begin simulating M on

input x. On any simulated path of

M which produces output, say y,

output <x,y>.

The construction meets condition (II) by

building A and B so that if AaPB then there must
m

be a function gePE p which not only witnesses

this reduction but also has the property that

g(x)eG(M,x) for all but finitely many x. Notice

that such a function g can be used to compute

a restriction of f (with at most finitely many

exceptions) in deterministic polynomial time

by first computing g(x) and then computing

~2(g(x)). The complete proof of Theorem 2 is

given in the appendix.

COROLLARY 3: ASyB implies that AsPB for all
m

sets A and B if and only if

NPC~ ! PEP.

*Projection functions are denoted by ~i"

280

Beginning wi th an feNPC~, t he c o n s t r u c t i o n o f

Theorem 2 produces s e t s A and B such t h a t AgyB and

if A~B then there is a gcPE p such that A~B via

g and g(x)cG(M,x) for all but finitely many x. In

other words, A and B are constructed so that if

AgPB then there is a special ~P-reduction of
m m

A to B which, on input x (with at most finitely

many exceptions), queries a string from which an

element of f(x) can be obtained in deterministic

polynomial time. In Theorem 4 we use this same

idea again to prove the stronger result that if

A~yB implies that A~B for any sets A and B, then

NPC~- ~ PE P. This time, beginning with f¢NPC~,
i

A and B are constructed so that A~yB and if

A~ B then t h e r e i s a p a r t i c u l a r i T - r e d u c t i o n o f

A to B which, on input x (for all but finitely

many x), eventually queries a string from which

an element of f(x) can be obtained in deterministic

polynomial time. Thus, if oracle Turing machine

P
M" witnesses this special gT-reduction of A to B,

we can then use M" to compute a restriction of

f (with at most finitely many exceptions) in

deterministic polynomial time by simulating M"

with oracle set B on input x until M" queries a

string from which an element of f(x) can be

obtained in deterministic polynomial time. When

this happens, the simulation of M" stops and a

value of f(x) is produced.

There are two particular difficulties to

deal with in carrying through this construction

<P
using _T-reductions which did not have to be

dealt with in Theorem 2 where we used ~P-reduc-
m

tions. For all but finitely many x, the special

~P- reduction of A to B in Theorem 2 queries, on
m

input x, only one element which we know to be in

G(M,x). This means that deciding membership in

G(M,x) un i fo rmly in x, i s not n e c e s s a r y in o r d e r

to o b t a i n an e lement o f f (x) . However, t he spe-

P
cial iT-reduction of A to B which M" witnesses

may, on input x, query strings not in G(M,x).

This implies the need to decide membership in

G(M,x) uniformly in x. Since we do not know if

G(M) is in P for arbitrary nondeterministic

transducers M which run in polynomial time, we

do not know if membership in G(M,x) can be decided

in deterministic polynomial time uniformly in x.

Therefore, we do not know if a simulation of M"

on input x can decide in deterministic polynomial

time, uniformly in x, when M" is querying a string

in G(M,x) in order to then obtain an element of

f(x) from such a string.

To overcome this difficulty we introduce new

sets. For any nondeterministic transducer ~

which runs in polynomial time, let

T(M) = {<x,y,z> I Y is the sequence of instan-

taneous descriptions on a

computation path of M which

halts with z on its ouput tape

when started with input x}

and l e t T(M,x) = {u [ucZ(M) and ~l(U) = x}.

I t i s easy to v e r i f y t h a t T(M) i s in P and t h a t

i f ucT(M,x) then =3(u)c f (x) when M computes f .

Thus, membership in T(M,x) can be dec ided in

d e t e r m i n i s t i c polynomial t ime un i fo rmly in x and,

g iven ueT(M,x), an e lement o f f (x) can be p ro -

duced in d e t e r m i n i s t i c polynomial t ime when M

computes f . The c o n s t r u c t i o n o f Theorem 4 b u i l d s

P
A and B so t h a t A~yB and, i f AgTB , then t h e r e i s

<P a s p e c i a l _T- r educ t i on o f A to B which, on inpu t

x f o r a l l but f i n i t e l y many x, q u e r i e s an e lement

o f T(M,x) a t some p o i n t in i t s computa t ion .

281

The second difficulty to overcome is that

when simulating M" on input x with oracle set B

P
(where M" witnesses the special sT-reduction of

A to B), any queries which M" generates before

querying an element of T(M,x) must be answered

correctly with B being the oracle set so that the

simulation of M" proceeeds as if M" were witness-

As~B. Thus, if the simulation of M" is to be ing

used to compute a restriction of f in determin-

istic polynomial time, B must be constructed so

that the simulation of M" can answer queries about

B correctly in deterministic polynomial time.

This problem is solved by the way in which strings

are assigned to B or B. Specifically, if A~$B

P
with M" witnessing the special iT-reduction of

A to B, then it will be the case (for all but

finitely many x) that T(M,x) c B if the first

string queried by M" on input x is an element of

T(M,x) and T(M,x) c B otherwise. Also, all of

T(M) is assigned to B. This implies that the

simulation of M" on input x can process all queries

about all strings u (with at most finitely many

exceptions) correctly with B being the oracle set

using the following rules:

i. If uET(M,x) then do not answer the query.

Instead, output ~3(u)ef(x) and halt.

2. If u~T(M) then answer NO.

3. If ueT(M,y) where y ~ x then answer YES if

the first string queried by M" on input y

is in T(M,y) and answer NO otherwise.

Note that all of these conditions can be checked

in deterministic polynomial time.

We now present the strengthened version

of Theorem 2.

P
THEOREM 4: If A~yB implies that A~B for all sets

A and B, then NPC~
I

pE P"

Sketch of Proof: Let fcNPC~ and let nondetermin-

istic transducer M compute f in polynomial time.

The proof is done by constructing recursive sets

A and B so that

(1) A~yB

If A~$B then there is a gePE p such that (II)

g(x)ef(x) for all x.

Thus, under the assumption that ANyB implies that

P
A~TB, we can conclude that fePE p.

In order to meet condition (I), whenever the

construction assigns a string x to A it assigns

all of T(M,x) to B and whenever it assigns a

string x to A it assigns all of T(M,x) to B.

Based on this assignment of strings to A, A,

B, and B, the following is an informal description

of a nondeterministic transducer M" which wit-

nesses As~B:

On input x, H" simulates M on input

x. On any simulated path of M which

produces output, say z, M" outputs

<x,y,z> where y is the sequence of

instantaneous descriptions on the

simulated path producing z.

The construction meets condition (II) by

building A and B so that if A~$B then there is

an oracle Turing machine M" which not only

witnesses A~$B but also has the property that

it queries an element of T(M,x) at some point

in its computation on input x (for all but

finitely many x) with oracle set B. We then

use M" to compute a restriction of f (with at

most finitely many exceptions) in deterministic

polynomial time by simulating M" on input x with

282

oracle set B until an element of T(H,x) is queried.

When this element, say u, is queried, ~3(u)

yields an element of f(x) in deterministic poly-

nomial time. The complete proof of Theorem 4 is

given in the appendix.

CONCLUSION

We have shown that NPC~ ~ PE P if and only if

ASyB implies that AsPB for all sets A and B. By
m

modifying the technique used to prove half of this

equivalence we obtained the result that if A~yB

that As~B for all sets A and B then implies

NPC~ ~ PE P.

Valiant [6] related the NPC[~ PEP? question

to the P = NP? proving that:

(I) If P = NP then NPC~ pE P"

(I I) I f NPC p c pEp t h e n P = NP n co -NP .
t --

It is easy to prove directly that these same

relations hold between the P = NP? question and

the question of y-reducibility being equivalent

P
to ~ -reducibility. Alternatively, these rela-

m

tions follow from Corollary 3 and Valiant's

results. An interesting open question remaining

from Valiant's work is whether the converse of

either (I) or (II) holds; in fact, this question

was reformulated by Adleman and Manders [i] who

asked if P ~ NP implies that y-reducibility is

not equivalent to ~P-reducibility.
m

ACKNOWLEDGEMENT

I would like to thank my thesis advisor,

Paul Young, for his encouragement and guidance.

REFERENCES

[i] Adleman, L. and K. Manders, "Reducibility,
Randomness, and Intraetibility," Proc, 9th
ACM STOC, 1977, pp. 151-163.

[2] Cook, S., "The Complexity of Theorem Proving
Procedures," Proc. 3rd ACM STOC, 1971,
pp. 151-158.

[3] Karp, R., "Reducibility Among Combinatorial
Problems," Complexity of Computer Computa-
tions," Miller and Thatcher, eds., Plenum
Press, NY, 1972, pp. 85-103.

[4] Ladner, R., N. Lynch, A. Selman, "A Compari-
son of Polynomial Time Reducibilities,"
Theoretical Computer Science, vol. 1(1975),
pp. 103-123.

[5] Long, T., "On Some Polynomial Time Reducibi-
lities," Ph.D. Dissertation, Purdue Univer-
sity, 1978.

[6] Valiant, L., "Relative Complexity of Checking
and Evaluating," Information Processing
Letters, vol. 5, no. 2(1976), pp. 20-23.

APPENDIX

P
THEOREM 2: If AayB implies that A~B for all sets

A and B, then NPC~ pE P .

Proof: The construction assigns strings to A, A,

B, and B in stages with string x being assigned to

A or A at or before stage x and string yEG(M,x)

being assigned to B or B at or before stage x.

To start the construction assign~ to A, let

= ~, assign G(H,~) to 8, let B = G(M), and GOTO

stage 0.

STAGE X :

i. If x was assigned to A or A during

an earlier stage, then GOTO stage

x@l.

2. Otherwise, find the smallest index

not cancelled at an earlier stage,

say j. (We let g0,gl,g2,.., be an

effective enumeration of the class

of functions which are computable

in polynomial time.)

3. Compute gj(x).

CASE i: gj(x)~G(M,x)

There are three mutually exclusive

possibilities under case I.

I. l: gj(x) was assigned to B during

an earlier stage. In this case

do the following:

AssignxtoA; Assign G(M,x) to B;

283

Cance l i n d e x j ; GOTO s t a g e x@l.

1 . 2 : g j (x) was a s s i g n e d t o B d u r i n g an

e a r l i e r s t a g e .

In this case do the following:

Assign x to A; Assign G(M,x) to B;

Cancel index j; GOTO stage xSl.

1.3: gj(x) ha§ not yet been assigned to Bor B.

In this case since G(M) ~ B, gj(x) =

<u,v>aG(M) and since the construction

is in case I, u ~ x. In this case do

the following:

Assign x to A: Assign G(M,x) to B;

Assign u to A; Assign G(M,u) to B;

(Notice that his assigns gj(x) to B)

Cancel index j; GOT0 stage x@l.

CASE II: gj(x)¢G(M,x).

In this case do the following:

Assign x to A; Assign G(M,x) to B;

GOTO stage X@I.

END OF STAGE X

From the construction it is clear that for

all x, xsA if and only if G(M,x) c B and x¢~ if

and only if G(M,x) c B. Thus, ~yB via the

nondeterministic transducer M" which was inform-

ally described earlier in the sketch of the proof

of Theorem 2.

We will now argue that if A~PB then some
m

restriction of f can be computed in deterministic

polynomial time. Notice that when the construction

cancels an index, say j, at some stage, say x,

this cancellation occurs either at I.l, 1.2, or

1.3 inside of case I. In each of these places

x is assigned to A or A in such a way that xcA

if and only if gj(x)¢B is not true. Thus, when

j is cancelled x witnesses A~B via gj. It

follows that if the construction cancels every

index then A~PB. Conversely, if A~.PB then some
m m

index is not cancelled by the construction.

Now assume that A~PB and let j be the
m

smallest index not cancelled by the construction.

Let J0 be the first stage where the construction

enters step 2 and discovers that j is the smallest

uncaneelled index. Let F be the set of elements

not assigned to A or A during all stages prior

to stage J0"

CLAIM: If xcF then x and only x is assigned to A

or A during stage x.

Proof: The proof is by induction on the elements

of F. The smallest element in F is in fact J0

and by the choice of J0' stage J0 enters step 3.

All possible cases inside of step 3 assign J0

to A or A so that J0 is assigned to A or

during stage J0'

If stage J0 assigns some string y # J0 to

A or A, this assignment would have to be made at

case 1.3. But at casel.3, stage J0 would cancel

j. By assumption j is never cancelled, so only

J0 is assigned to A or A during stage J0"

Now assume that the claim is true for the

first k elements of F, say x I, x2,...,x k and

consider the k+l element in F, Xk+ I. By the

induction assumption and the definition of F,

stage Xk+ I has to enter step 3. The proof for

Xk+ I now proceeds just as the proof for J0" QED

It follows from the claim that for all xsF,

s t a g e x e n t e r s s t e p 3. Because j i s n e v e r c a n -

c e l l e d each o f t h e s e s t a g e s must go to c a s e I I .

Thus , f o r a l l x sF , g j (x) s G (M , x) . T h e r e f o r e ,

gj can be u s e d to compute a r e s t r i c t i o n o f a i n

deterministic polynomial time in the following

way:

284

On input x, if x~F then output an

element of f(x) using a finite table.

If xeF, compute n2(gj(x)) to obtain

an element of f(x).

Hence, if A~PB then there is a gEPE P such that
m

for all x, g(x)ef(x).

THEOREH 4: If A~yB implies that A~B for all sets

A and B, then NPC~ pE P .

Proof: The construction assigns strings to A,

A, B, and B in stages with string x being assigned

to A or A at or before stage x and string yeT(M,x)

being assigned to g or B at or before stage x.

To start the construction assignXto A, let

= ~, assign all of T(M,X) to B, let B = T(H),

and GOTO stage 0.

STAGE X:

(i) If x was assigned to A or A at an earlier

stage then GOTO stage x@l.

(2) Otherwise, find the smallest index not

cancelled at an earlier stage, say j.

(We let H0,Hi,M 2 be an effective

enumeration of the oracle Turing machines

which run in polynomial time.)

(3) Begin simulating M. on input x.
]

(*) If the first string queried by H. is an
J

element of T(H,x) then:

Assign x to A and all of T(M,x) to B;

GOTO stage x@l.

Otherwise, proceed with the simulation of

M. answering all queries about any strings
]

u according to the following rules:

(a) if u ff T(M) then answer NO. (Recall

that B ~ T(M).)

(b) If u e T(M) and u was assigned to B or

at an earlier stage, answer the query YES

if ueB and answer NO if ucB,

(c) If u e T(M,x) then:

Assign x to A; Assign all of T(M,x) to

B; Release all temporary assignments

made during stage x; GOT0 stage x~l.

In this case u is not the first string

queried by M. on input x or else (*) would
3

have applied and the construction would have

left stage x. Also, because (i) did not

apply, (b) did not apply and x and T(M,x)

had not yet been assigned, respectively, to

A and B or A and B.

(d) If u = <y,z,w>eT(M,y) and (b) and (c)

do not apply (that is, y # x), then do

the following:

Begin simulating M. on input y. If the
]

first string queried during this new

simulation is an element of T(M,y) then

temporarily:

Assign y to A; Assign all of T(M,y)

including u, to B.

If the first string queried is not an

element of T(M,y) then temporarily:

Assign y to A; Assign all of T(M,y),

including u, to B.

Answer YES to the query about u generated

by the simulation of M. on input x if
]

u was just temporarily assigned to B and

answer NO if u was just temporarily

assigned to B.

In this case, because uET(M,y) and (b)

did not apply, y and T(M,y) had not yet

been assigned, respectively, to A and B or

and B.

If the outer simulation which began in step

(3) completes the computation of M. on]

input x without (*) or (c) applying, then

no member of T(M,x) was queried during the

COMMENT:

COMMENT:

(4)

2 8 5

simulation. In this case do the following:

(i) Make all temporary assignments in

(d) permanent assignments.

COMMENT: This guarantees that the simulation

of M. on input x answered all queries
J

consistently with the oracle set being B.

(ii) If the simulated path of M. on input
3

x accepted, then assign x to A and

all of T(M,x) to B. If the simulated

path rejected, then assign x to A

and all of T(M,x) to B.

COMMENT: In this case, because Ci), (*),

and (c) never applied, x and T(M,x) had

not yet been assigned, respectively, to

A and B or A and B. Also, we have just

made x a witness to A~[B via M..
T J

(iii) CANCEL j and GOTO stage xSl.

END OF STAGE X

It is clear from the construction that for

any string x, xeA if and only if T(M,x) c B and

and x~A if and only if T(M,x) c ~. Therefore,

A~yB via the transducer M ~ described earlier in

the sketch of the proof of Theorem 4.

By the comments in the construction, if

index j is cancelled then A~B via M i . Thus,
J

A~B, some index is not cancelled by the if

construction. Assuming that A~[B, let j be
T

the smallest index not cancelled in the

construction. We now show that M. can be used
J

to compute a restriction of f in deterministic

polynomial time.

Let J0 be the first stage where the construc-

tion enters step 2 and discovers that j is the

smallest uncancelled index. Let F be the set of

elements not assigned to A or A during stages

prior to stage Jo"

PROPERTY i: If xeF then x and only x is assigned

to A or A during stage x.

Proof: Property 1 is proved by induction on the

elements of F. J0 is the smallest element in F

and by the definition of J0' stage J0 enters

step (3). The construction leaves stage Jo at

(*), (c), or in step (4). In each of these

places Jo is assigned to A or A during stage J0"

Additionally, only in (d) could a string

other than J0 be assigned to A or A. But the

assignments in (d) are only temporary and if

they become permanent during stage J0' then stage

J0 entered step (4) and cancelled j. Since, by

assumption, j is never cancelled, the assignments

in (d) are not made permanent during stage Jo"

Thus, only Jo is assigned to A or ~ during stage

J0"

Assume that property 1 holds for the first

k elements of F, x I, x2, x3,...,x k, and consider

the element Xk+ I. By the induction assumption

and the definition of F, stage Xk+ 1 enters step

(3). The argument that Xk+ 1 and only Xk+ 1 is

assigned to A or A during stage Xk+ 1 is now the

same as the argument for Jo" QED

PROPERTY 2: If xEF then xcA if and only if x is

assigned at (*) during stage x and xcA if and

only if x is assigned at (c) during stage x.

Proof: Let xeF. By Property 1 x is assigned to

A or A during stage x. x can only be assigned at

(*), (c), or in (4). If x is assigned in (4)

then j is cancelled. By assumption, j is never

cancelled so x is assigned at (*) or (c). The

proof is now immediate from the way in which

strings are assigned to A orA at (*) and (c). QED

286

Now consider the following description of a

transducer, say M. ~.
J

On input x, if x~F, then output an element

of f~x) using a finite table. If xcF, then

begin simulating ~4. on input x. If M.
J J

queries a string uET~,x), then compute

~3(u) to obtain an element of f(x). If

~I~ queries a string u~T(M,x) then answer

the query according to the following rules

and proceed with the simulation.

(i) If u~T(M) then answer NO.

(ii) If u = <y,z,w>~T(M) where y ~ x and

y c F, then begin simulating M. on
J

input y. If the first string queried

is an element of T(H,y) then answer

YES, otherwise answer NO. If y~F then

answer the query about u YES if y was

assigned to A and answer NO if y was

assigned to A.

By Property 2, the answers in (i) and (ii)

are consistent with B. Also, these answers can

be decided in deterministic polynomial time. To

have M. ~ computing a restriction of f in deter-
J

ministic polynomial time, it only remains to show

that when xcF then some element of T(~4,x) is found

during the computation of M. ~ on input x. But,
J

by Properties 1 and 2, M ~ on input xcF decides
J

answers in (i) and (ii) just as the construction

does during stage ×. Thus, M. ~ follows the same
J

computation path of M. as does stage x and stage
J

x has to find an element of T(M,x) or else j is

cancelled in step (4). Therefore, M. ~ can be
J

used to compute a restriction of f in determin-

istic polynomial time. QED

287

