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ABSTRACT 

We prove that a class of functions (denoted 

by NPC~), whose graphs can be accepted in non- 

deterministic polynomial time, can be evaluated 

in deterministic polynomial time if and only if 

y-reducibility is equivalent to polynomial time 

many-one reducibility. We also modify the proof 

technique used to obtain part of this result to 

obtain the stronger result that if every y-reduc- 

tion can be replaced by a polynomial time Turing 

reduction then every function in NPC~ can be 

evaluated in deterministic polynomial time. 

INTRODUCTION 

In this paper we prove the equivalence of 

two open questions in computational complexity 

theory. The first question was raised by 

Adleman and Manders [i] and asks whether a 

particular nondeterministic version of polyno- 

mial time many-one reducibility, which they call 

y-reducibility, is equivalent to polynomial time 

many-one reducibility. The second question was 

raised by Valiant [6] and asks whether a class 

of functions, which he calls NPcP, whose graphs 
t 

*This work represents a portion of the author's 
doctoral dissertation [S] completed at Purdue 
University and was partially supported by NSF 
Grant No. MCS-76-09212. 

can be accepted in nondeterministic polynomial 

time is contained in a class of functions, which 

he calls PE p , which can be evaluated in determin- 

polynomial time; that is, whether NPC~ c PE P. istic 

The motivation for examining this equivalence 

comes from the rather obvious observation that any 

y-reduction is realized by an element of NPC~ 

while any polynomial time many-one reduction is 

realized by an element of PE P. In fact, the re- 

NPC~ =PE P implies that y-reducibility is sult that 

equivalent to polynomial time many-one reducibi- 

lity follows immediately from this observation. 

It is the other half of the equivalence which we 

feel is interesting and in Theorem 2 we prove that 

if y-reducibility is equivalent to polynomial time 

many-one reducibility then NPC~ c PE p. 

This  l a s t  r e s u l t  may be thought  of  as say ing  

t h a t  i f  any y - r e d u c t i o n  can be rep laced  by a 

polynomial time many-one reduction then NPC~ c PE p. 

One way to strengthen this statement is to allow 

the y-reductions to be replaced by more general 

types of polynomial time reduction procedures. 

This is exactly the type of strengthening which 

we achieve in Theorem 4 where we prove that if 

every y-reduction can be replaced by a polynomial 

time Turing reduction then NPC~ cPE P. Since 

polynomial  t ime Tur ing  r e d u c i b i l i t y  seems to be 
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the most general form of polynomial time reducibi- 

lity (Ladner, Lynch, and Selman [4]), Theorem 4 

seems to be the strongest obtainable form where 

the y-reductions are to be replaced by polynomial 

time reduction procedures. Obviously Theorem 2 

is an easy corollary to Theorem 4. However be- 

cause the proof of Theorem 4 uses a modification 

of the ideas used to prove Theorem 2, we include 

an independent proof of Theorem 2 in order to 

motivate the more involved construction used to 

prove Theorem 4. 

BASICS 

The three types of reducibilities used in 

this paper are polynomial time many-one reduci- 

bility which was introduced by Karp [3], polynomial 

time Turing reducibility which was introduced by 

Cook [2], and y-reducibility which was introduced 

by Adleman and Manders [i]. A set A is poly- 

time many-one reducible to a set B (A~B) nomial 

if there is a function g which is computable in 

polynomial time such that for all x, x~A if and 

only if g(x)eB. A set A is polynomial time Turing 

reducible to a set B (A~B) if there is an oracle 

Turing machine H which runs in polynomial time 

such that M, with oracle set B, recognizes A. 

For any nondeterministic transducer M which 

runs in polynomial time, let 

G(M) = (<x,y> ] some computation sequence of M on 

input x halts with y on its output tape}. 

A set A is y-reducible to a set B (A~yB) if there 

is a nondeterministic transducer M which runs in 

polynomial time such that: 

i: Vx~y (<x,y>~G(M)) 

ii:gxvy (<x,y>eG(M) => (xcA <=> yeB)). 

Part i of this definition requires M to produce 

at least one output value for every input value. 

Part ii requires all of the output values pro- 

duced by M to be in B if the input value is in A 

and all of the output values to be in B otherwise. 

Thus, one can view y-reducibility as a nondeter- 

ministic version of ~P-reducibility. 
m 

It is clear from the definitions that for any 

sets A and B, if A~PB then A~yB. The converse 
m 

of this statement is one of the open questions 

with which we are concerned here; that is, does 

A~yB imply that A~PB for all sets A and B. 
m 

We now discuss, following Valiant [6], the 

second open question with which we are concerned. 

An evaluator for a function f (which is possibly 

multi-valued and not necessarily total) is a 

transducer which takes as input a string x and 

outputs on its output tape a value of f(x) if fix) 

is defined and outputs the special symbol 

otherwise. PE is the class of functions which 

can be evaluated by transducers whose running 

time is bounded BY a polynomial function of the 

sum of the lengths of the input and output. The 

restriction of the class PE to functions whose 

output length is polynomially bounded by the input 

length is denoted by PE P . It is easy to verify 

that PE P is precisely the class of functions that 

can be computed by transducers which run in poly- 

nomial time. 

A checker for a function f is a Turing 

machine (possibly nondeterministi¢) which takes 

as input the string <x,y> and accepts <x,y> if 

and only if y~f(x); that is, if and only if y is 

a value of f(x). NPC denotes the class of func- 

tions which can be checked by nondeterministic 
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Turing machines whose running time is bounded by a 

polynomial function of the length of the input 

<x,y>. The superscript p is again used to denote 

the restriction of this class to functions whose 

output length is polynomially bounded by the 

input length and the subscript t is also intro- 

duced to denote the additional restriction of NPC 

to total functions. Thus, the class NPC~ is the 

class NPC with the two extra restrictions denoted 

by the subscript t and the superscript p. We 

take the notation NPC~ ~ PEP to mean that if 

f~NPC~ - then there is a function gcPE P such that 

g(x) cf(x) for all x. In this case we say that 

g is a restriction of f which is computable in 

deterministic polynomial time. The second open 

question with which we are concerned is whether 

NPC~ ~ PE P. 

MAIN THEOREMS: 

PROPOSITION i: If NPC% p ~ PE p then for all sets 

A and B, A~yB implies that A~PB. 
m 

Proof: The proof is actually a trivial conse- 

quence of the observation that if A~yB via 

transducer M, then the function which M computes, 

is an element of NPC~. Then if NPC~ ~ PE P , f, say 

a restriction of f computable in deterministic 

polynomial time witnesses A~PB. 
m 

Theorem 2 establishes the converse of 

Proposition 1 and the equivalence of these two 

questions. 

THEOREM 2: If ANyB implies that ANPB for all 
m 

sets A and B, then NPC~- ~ PE P . 

Sketch of Proof: Let feNPC~ and let nondeter- 

ministic transducer M compute f in polynomial 

time. The proof is done by constructing recur- 

sire sets A and B such that 

(I) A~MB 

(II) If AsPB then there is a gePE p such that 
m 

g(x)ef(x) for all x. 

Thus, under the assumption that A~yB imples that 

A~PB, we can conclude the fepE p . 
m 

Recalling the definition of G(M), let 

G(M,x) = {u I ~l (u) = x and ueG(M)}.* 

In order to meet condition (1), whenever the 

construction assigns a string x to A it assigns 

all of G(M,x) to B and whenever it assigns x 

to A it assigns all of G(M,x) to B. Based on 

this assignment of strings to A, A, B and B, the 

following is an informal description of a non- 

deterministic transducer M" which witnesses AayB: 

On input x, begin simulating M on 

input x. On any simulated path of 

M which produces output, say y, 

output <x,y>. 

The construction meets condition (II) by 

building A and B so that if AaPB then there must 
m 

be a function gePE p which not only witnesses 

this reduction but also has the property that 

g(x)eG(M,x) for all but finitely many x. Notice 

that such a function g can be used to compute 

a restriction of f (with at most finitely many 

exceptions) in deterministic polynomial time 

by first computing g(x) and then computing 

~2(g(x)). The complete proof of Theorem 2 is 

given in the appendix. 

COROLLARY 3: ASyB implies that AsPB for all 
m 

sets A and B if and only if 

NPC~ ! PEP. 

*Projection functions are denoted by ~i" 
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Beginning wi th  an feNPC~, t he  c o n s t r u c t i o n  o f  

Theorem 2 produces  s e t s  A and B such t h a t  AgyB and 

if A~B then there is a gcPE p such that A~B via 

g and g(x)cG(M,x) for all but finitely many x. In 

other words, A and B are constructed so that if 

AgPB then there is a special ~P-reduction of 
m m 

A to B which, on input x (with at most finitely 

many exceptions), queries a string from which an 

element of f(x) can be obtained in deterministic 

polynomial time. In Theorem 4 we use this same 

idea again to prove the stronger result that if 

A~yB implies that A~B for any sets A and B, then 

NPC~- ~ PE P. This time, beginning with f¢NPC~, 
i 

A and B are constructed so that A~yB and if 

A~ B then  t h e r e  i s  a p a r t i c u l a r  i T - r e d u c t i o n  o f  

A to B which, on input x (for all but finitely 

many x), eventually queries a string from which 

an element of f(x) can be obtained in deterministic 

polynomial time. Thus, if oracle Turing machine 

P 
M" witnesses this special gT-reduction of A to B, 

we can then use M" to compute a restriction of 

f (with at most finitely many exceptions) in 

deterministic polynomial time by simulating M" 

with oracle set B on input x until M" queries a 

string from which an element of f(x) can be 

obtained in deterministic polynomial time. When 

this happens, the simulation of M" stops and a 

value of f(x) is produced. 

There are two particular difficulties to 

deal with in carrying through this construction 

<P 
using _T-reductions which did not have to be 

dealt with in Theorem 2 where we used ~P-reduc- 
m 

tions. For all but finitely many x, the special 

~P- reduction of A to B in Theorem 2 queries, on 
m 

input x, only one element which we know to be in 

G(M,x). This means that deciding membership in 

G(M,x) un i fo rmly  in  x, i s  not  n e c e s s a r y  in  o r d e r  

to  o b t a i n  an e lement  o f  f ( x ) .  However, t he  spe-  

P 
cial iT-reduction of A to B which M" witnesses 

may, on input x, query strings not in G(M,x). 

This implies the need to decide membership in 

G(M,x) uniformly in x. Since we do not know if 

G(M) is in P for arbitrary nondeterministic 

transducers M which run in polynomial time, we 

do not know if membership in G(M,x) can be decided 

in deterministic polynomial time uniformly in x. 

Therefore, we do not know if a simulation of M" 

on input x can decide in deterministic polynomial 

time, uniformly in x, when M" is querying a string 

in G(M,x) in order to then obtain an element of 

f(x) from such a string. 

To overcome this difficulty we introduce new 

sets. For any nondeterministic transducer ~ 

which runs in polynomial time, let 

T(M) = {<x,y,z> I Y is the sequence of instan- 

taneous descriptions on a 

computation path of M which 

halts with z on its ouput tape 

when started with input x} 

and l e t  T(M,x) = {u [ ucZ(M) and ~l(U) = x}. 

I t  i s  easy to  v e r i f y  t h a t  T(M) i s  in  P and t h a t  

i f  ucT(M,x) then  =3(u )c f (x )  when M computes f .  

Thus, membership in  T(M,x) can be dec ided  in  

d e t e r m i n i s t i c  polynomial  t ime un i fo rmly  in  x and, 

g iven ueT(M,x), an e lement  o f  f ( x )  can be p ro -  

duced in  d e t e r m i n i s t i c  polynomial  t ime when M 

computes f .  The c o n s t r u c t i o n  o f  Theorem 4 b u i l d s  

P 
A and B so t h a t  A~yB and, i f  AgTB , then  t h e r e  i s  

<P a s p e c i a l  _T- r educ t i on  o f  A to  B which,  on inpu t  

x f o r  a l l  but  f i n i t e l y  many x, q u e r i e s  an e lement  

o f  T(M,x) a t  some p o i n t  in  i t s  computa t ion .  
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The second difficulty to overcome is that 

when simulating M" on input x with oracle set B 

P 
(where M" witnesses the special sT-reduction of 

A to B), any queries which M" generates before 

querying an element of T(M,x) must be answered 

correctly with B being the oracle set so that the 

simulation of M" proceeeds as if M" were witness- 

As~B. Thus, if the simulation of M" is to be ing 

used to compute a restriction of f in determin- 

istic polynomial time, B must be constructed so 

that the simulation of M" can answer queries about 

B correctly in deterministic polynomial time. 

This problem is solved by the way in which strings 

are assigned to B or B. Specifically, if A~$B 

P 
with M" witnessing the special iT-reduction of 

A to B, then it will be the case (for all but 

finitely many x) that T(M,x) c B if the first 

string queried by M" on input x is an element of 

T(M,x) and T(M,x) c B otherwise. Also, all of 

T(M) is assigned to B. This implies that the 

simulation of M" on input x can process all queries 

about all strings u (with at most finitely many 

exceptions) correctly with B being the oracle set 

using the following rules: 

i. If uET(M,x) then do not answer the query. 

Instead, output ~3(u)ef(x) and halt. 

2. If u~T(M) then answer NO. 

3. If ueT(M,y) where y ~ x then answer YES if 

the first string queried by M" on input y 

is in T(M,y) and answer NO otherwise. 

Note that all of these conditions can be checked 

in deterministic polynomial time. 

We now present the strengthened version 

of Theorem 2. 

P 
THEOREM 4: If A~yB implies that A~B for all sets 

A and B, then NPC~ 
I 

pE P" 

Sketch of Proof: Let fcNPC~ and let nondetermin- 

istic transducer M compute f in polynomial time. 

The proof is done by constructing recursive sets 

A and B so that 

(1) A~yB 

If A~$B then there is a gePE p such that (II) 

g(x)ef(x) for all x. 

Thus, under the assumption that ANyB implies that 

P 
A~TB, we can conclude that fePE p. 

In order to meet condition (I), whenever the 

construction assigns a string x to A it assigns 

all of T(M,x) to B and whenever it assigns a 

string x to A it assigns all of T(M,x) to B. 

Based on this assignment of strings to A, A, 

B, and B, the following is an informal description 

of a nondeterministic transducer M" which wit- 

nesses As~B: 

On input x, H" simulates M on input 

x. On any simulated path of M which 

produces output, say z, M" outputs 

<x,y,z> where y is the sequence of 

instantaneous descriptions on the 

simulated path producing z. 

The construction meets condition (II) by 

building A and B so that if A~$B then there is 

an oracle Turing machine M" which not only 

witnesses A~$B but also has the property that 

it queries an element of T(M,x) at some point 

in its computation on input x (for all but 

finitely many x) with oracle set B. We then 

use M" to compute a restriction of f (with at 

most finitely many exceptions) in deterministic 

polynomial time by simulating M" on input x with 
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oracle set B until an element of T(H,x) is queried. 

When this element, say u, is queried, ~3(u) 

yields an element of f(x) in deterministic poly- 

nomial time. The complete proof of Theorem 4 is 

given in the appendix. 

CONCLUSION 

We have shown that NPC~ ~ PE P if and only if 

ASyB implies that AsPB for all sets A and B. By 
m 

modifying the technique used to prove half of this 

equivalence we obtained the result that if A~yB 

that As~B for all sets A and B then implies 

NPC~ ~ PE P. 

Valiant [6] related the NPC[ ~ PEP? question 

to the P = NP? proving that: 

(I) If P = NP then NPC~ pE P" 

( I I )  I f  NPC p c pEp t h e n  P = NP n co -NP .  
t -- 

It is easy to prove directly that these same 

relations hold between the P = NP? question and 

the question of y-reducibility being equivalent 

P 
to ~ -reducibility. Alternatively, these rela- 

m 

tions follow from Corollary 3 and Valiant's 

results. An interesting open question remaining 

from Valiant's work is whether the converse of 

either (I) or (II) holds; in fact, this question 

was reformulated by Adleman and Manders [i] who 

asked if P ~ NP implies that y-reducibility is 

not equivalent to ~P-reducibility. 
m 
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APPENDIX 

P 
THEOREM 2: If AayB implies that A~B for all sets 

A and B, then NPC~ pE P . 

Proof: The construction assigns strings to A, A, 

B, and B in stages with string x being assigned to 

A or A at or before stage x and string yEG(M,x) 

being assigned to B or B at or before stage x. 

To start the construction assign~ to A, let 

= ~, assign G(H,~) to 8, let B = G(M), and GOTO 

stage 0. 

STAGE X : 

i. If x was assigned to A or A during 

an earlier stage, then GOTO stage 

x@l. 

2. Otherwise, find the smallest index 

not cancelled at an earlier stage, 

say j. (We let g0,gl,g2,.., be an 

effective enumeration of the class 

of functions which are computable 

in polynomial time.) 

3. Compute gj(x). 

CASE i: gj(x)~G(M,x) 

There are three mutually exclusive 

possibilities under case I. 

I. l: gj(x) was assigned to B during 

an earlier stage. In this case 

do the following: 

AssignxtoA; Assign G(M,x) to B; 
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Cance l  i n d e x  j ;  GOTO s t a g e  x@l. 

1 . 2 :  g j ( x )  was a s s i g n e d  t o  B d u r i n g  an 

e a r l i e r  s t a g e .  

In this case do the following: 

Assign x to A; Assign G(M,x) to B; 

Cancel index j; GOTO stage xSl. 

1.3: gj(x) ha§ not yet been assigned to Bor B. 

In this case since G(M) ~ B, gj(x) = 

<u,v>aG(M) and since the construction 

is in case I, u ~ x. In this case do 

the following: 

Assign x to A: Assign G(M,x) to B; 

Assign u to A; Assign G(M,u) to B; 

(Notice that his assigns gj(x) to B) 

Cancel index j; GOT0 stage x@l. 

CASE II: gj(x)¢G(M,x). 

In this case do the following: 

Assign x to A; Assign G(M,x) to B; 

GOTO stage X@I. 

END OF STAGE X 

From the construction it is clear that for 

all x, xsA if and only if G(M,x) c B and x¢~ if 

and only if G(M,x) c B. Thus, ~yB via the 

nondeterministic transducer M" which was inform- 

ally described earlier in the sketch of the proof 

of Theorem 2. 

We will now argue that if A~PB then some 
m 

restriction of f can be computed in deterministic 

polynomial time. Notice that when the construction 

cancels an index, say j, at some stage, say x, 

this cancellation occurs either at I.l, 1.2, or 

1.3 inside of case I. In each of these places 

x is assigned to A or A in such a way that xcA 

if and only if gj(x)¢B is not true. Thus, when 

j is cancelled x witnesses A~B via gj. It 

follows that if the construction cancels every 

index then A~PB. Conversely, if A~.PB then some 
m m 

index is not cancelled by the construction. 

Now assume that A~PB and let j be the 
m 

smallest index not cancelled by the construction. 

Let J0 be the first stage where the construction 

enters step 2 and discovers that j is the smallest 

uncaneelled index. Let F be the set of elements 

not assigned to A or A during all stages prior 

to stage J0" 

CLAIM: If xcF then x and only x is assigned to A 

or A during stage x. 

Proof: The proof is by induction on the elements 

of F. The smallest element in F is in fact J0 

and by the choice of J0' stage J0 enters step 3. 

All possible cases inside of step 3 assign J0 

to A or A so that J0 is assigned to A or 

during stage J0' 

If stage J0 assigns some string y # J0 to 

A or A, this assignment would have to be made at 

case 1.3. But at casel.3, stage J0 would cancel 

j. By assumption j is never cancelled, so only 

J0 is assigned to A or A during stage J0" 

Now assume that the claim is true for the 

first k elements of F, say x I, x2,...,x k and 

consider the k+l element in F, Xk+ I. By the 

induction assumption and the definition of F, 

stage Xk+ I has to enter step 3. The proof for 

Xk+ I now proceeds just as the proof for J0" QED 

It follows from the claim that for all xsF, 

s t a g e  x e n t e r s  s t e p  3. Because  j i s  n e v e r  c a n -  

c e l l e d  each  o f  t h e s e  s t a g e s  must  go to  c a s e  I I .  

Thus ,  f o r  a l l  x sF ,  g j ( x ) s G ( M , x ) .  T h e r e f o r e ,  

gj can  be u s e d  to  compute  a r e s t r i c t i o n  o f  a i n  

deterministic polynomial time in the following 

way: 
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On input x, if x~F then output an 

element of f(x) using a finite table. 

If xeF, compute n2(gj(x)) to obtain 

an element of f(x). 

Hence, if A~PB then there is a gEPE P such that 
m 

for all x, g(x)ef(x). 

THEOREH 4: If A~yB implies that A~B for all sets 

A and B, then NPC~ pE P . 

Proof: The construction assigns strings to A, 

A, B, and B in stages with string x being assigned 

to A or A at or before stage x and string yeT(M,x) 

being assigned to g or B at or before stage x. 

To start the construction assignXto A, let 

= ~, assign all of T(M,X) to B, let B = T(H), 

and GOTO stage 0. 

STAGE X: 

(i) If x was assigned to A or A at an earlier 

stage then GOTO stage x@l. 

(2) Otherwise, find the smallest index not 

cancelled at an earlier stage, say j. 

(We let H0,Hi,M 2 .... be an effective 

enumeration of the oracle Turing machines 

which run in polynomial time.) 

(3) Begin simulating M. on input x. 
] 

(*) If the first string queried by H. is an 
J 

element of T(H,x) then: 

Assign x to A and all of T(M,x) to B; 

GOTO stage x@l. 

Otherwise, proceed with the simulation of 

M. answering all queries about any strings 
] 

u according to the following rules: 

(a) if u ff T(M) then answer NO. (Recall 

that B ~ T(M).) 

(b) If u e T(M) and u was assigned to B or 

at an earlier stage, answer the query YES 

if ueB and answer NO if ucB, 

(c) If u e T(M,x) then: 

Assign x to A; Assign all of T(M,x) to 

B; Release all temporary assignments 

made during stage x; GOT0 stage x~l. 

In this case u is not the first string 

queried by M. on input x or else (*) would 
3 

have applied and the construction would have 

left stage x. Also, because (i) did not 

apply, (b) did not apply and x and T(M,x) 

had not yet been assigned, respectively, to 

A and B or A and B. 

(d) If u = <y,z,w>eT(M,y) and (b) and (c) 

do not apply (that is, y # x), then do 

the following: 

Begin simulating M. on input y. If the 
] 

first string queried during this new 

simulation is an element of T(M,y) then 

temporarily: 

Assign y to A; Assign all of T(M,y) 

including u, to B. 

If the first string queried is not an 

element of T(M,y) then temporarily: 

Assign y to A; Assign all of T(M,y), 

including u, to B. 

Answer YES to the query about u generated 

by the simulation of M. on input x if 
] 

u was just temporarily assigned to B and 

answer NO if u was just temporarily 

assigned to B. 

In this case, because uET(M,y) and (b) 

did not apply, y and T(M,y) had not yet 

been assigned, respectively, to A and B or 

and B. 

If the outer simulation which began in step 

(3) completes the computation of M. on ] 

input x without (*) or (c) applying, then 

no member of T(M,x) was queried during the 

COMMENT: 

COMMENT: 

(4) 
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simulation. In this case do the following: 

(i) Make all temporary assignments in 

(d) permanent assignments. 

COMMENT: This guarantees that the simulation 

of M. on input x answered all queries 
J 

consistently with the oracle set being B. 

(ii) If the simulated path of M. on input 
3 

x accepted, then assign x to A and 

all of T(M,x) to B. If the simulated 

path rejected, then assign x to A 

and all of T(M,x) to B. 

COMMENT: In this case, because Ci), (*), 

and (c) never applied, x and T(M,x) had 

not yet been assigned, respectively, to 

A and B or A and B. Also, we have just 

made x a witness to A~[B via M.. 
T J 

(iii) CANCEL j and GOTO stage xSl. 

END OF STAGE X 

It is clear from the construction that for 

any string x, xeA if and only if T(M,x) c B and 

and x~A if and only if T(M,x) c ~. Therefore, 

A~yB via the transducer M ~ described earlier in 

the sketch of the proof of Theorem 4. 

By the comments in the construction, if 

index j is cancelled then A~B via M i . Thus, 
J 

A~B, some index is not cancelled by the if 

construction. Assuming that A~[B, let j be 
T 

the smallest index not cancelled in the 

construction. We now show that M. can be used 
J 

to compute a restriction of f in deterministic 

polynomial time. 

Let J0 be the first stage where the construc- 

tion enters step 2 and discovers that j is the 

smallest uncancelled index. Let F be the set of 

elements not assigned to A or A during stages 

prior to stage Jo" 

PROPERTY i: If xeF then x and only x is assigned 

to A or A during stage x. 

Proof: Property 1 is proved by induction on the 

elements of F. J0 is the smallest element in F 

and by the definition of J0' stage J0 enters 

step (3). The construction leaves stage Jo at 

(*), (c), or in step (4). In each of these 

places Jo is assigned to A or A during stage J0" 

Additionally, only in (d) could a string 

other than J0 be assigned to A or A. But the 

assignments in (d) are only temporary and if 

they become permanent during stage J0' then stage 

J0 entered step (4) and cancelled j. Since, by 

assumption, j is never cancelled, the assignments 

in (d) are not made permanent during stage Jo" 

Thus, only Jo is assigned to A or ~ during stage 

J0" 

Assume that property 1 holds for the first 

k elements of F, x I, x2, x3,...,x k, and consider 

the element Xk+ I. By the induction assumption 

and the definition of F, stage Xk+ 1 enters step 

(3). The argument that Xk+ 1 and only Xk+ 1 is 

assigned to A or A during stage Xk+ 1 is now the 

same as the argument for Jo" QED 

PROPERTY 2: If xEF then xcA if and only if x is 

assigned at (*) during stage x and xcA if and 

only if x is assigned at (c) during stage x. 

Proof: Let xeF. By Property 1 x is assigned to 

A or A during stage x. x can only be assigned at 

(*), (c), or in (4). If x is assigned in (4) 

then j is cancelled. By assumption, j is never 

cancelled so x is assigned at (*) or (c). The 

proof is now immediate from the way in which 

strings are assigned to A orA at (*) and (c). QED 
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Now consider the following description of a 

transducer, say M. ~. 
J 

On input x, if x~F, then output an element 

of f~x) using a finite table. If xcF, then 

begin simulating ~4. on input x. If M. 
J J 

queries a string uET~,x), then compute 

~3(u) to obtain an element of f(x). If 

~I~ queries a string u~T(M,x) then answer 

the query according to the following rules 

and proceed with the simulation. 

(i) If u~T(M) then answer NO. 

(ii) If u = <y,z,w>~T(M) where y ~ x and 

y c F, then begin simulating M. on 
J 

input y. If the first string queried 

is an element of T(H,y) then answer 

YES, otherwise answer NO. If y~F then 

answer the query about u YES if y was 

assigned to A and answer NO if y was 

assigned to A. 

By Property 2, the answers in (i) and (ii) 

are consistent with B. Also, these answers can 

be decided in deterministic polynomial time. To 

have M. ~ computing a restriction of f in deter- 
J 

ministic polynomial time, it only remains to show 

that when xcF then some element of T(~4,x) is found 

during the computation of M. ~ on input x. But, 
J 

by Properties 1 and 2, M ~ on input xcF decides 
J 

answers in (i) and (ii) just as the construction 

does during stage ×. Thus, M. ~ follows the same 
J 

computation path of M. as does stage x and stage 
J 

x has to find an element of T(M,x) or else j is 

cancelled in step (4). Therefore, M. ~ can be 
J 

used to compute a restriction of f in determin- 

istic polynomial time. QED 
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