
FUZZY RESIDUE

Eugene McDonnell
I. P. Sharp Associates

220 California Avenue, Suite 201
Palo Alto CA, USA 94306

415-327-1700

Abstract

Certain pairs of arguments to the residue
function, as implemented on many APL
systems, give results which make it seem as
if the ordinary decimal relationships we
remember from grade school no longer hold.
As far as we can tell, it looks as if a
given modulus should divide the right
argument, but the implementation tells us it
doesn't. A definition for a fuzzed residue
function is proposed which resolves the
difficulties users have complained of.
However, certain points of continuing
difficulty remain, where the limitations of
machine arithmetic continue to defeat the
attempt to model the real number system.
The representation function is defined in
terms of the residue function, and so is
affected by the change in residue. The
nature of this effect is also discussed in
this paper.

The problem

Several authors [i, 2, 3, 4] have given
examples where the results provided by APL's
residue function, as implemented 'on many
computers compatible with IBM's 370
architecture, are counterintuitive. They
complain that sometimes the residue function
fails to give zero as result when the
modulus (left argument) clearly divides the
right argument. Instead it gives either a
number essentially equal to the modulus, or
a very small number. For example:

OPP+I6
DCT+IE-13
• 2!1.4 1.6

0.1999999999999999 1.110223024625157E-16

Copyright © 1979 by the Association for Computing Machinery,
Inc. Copying without fee is permitted provided that the copies are
not made or distributed for direct commercial advantage and credit
to the source is given. Abstracting with credit is permitted. For
other copying of articles that carry a code at the bottom of the first
page, copying is permitted provided that the per-copy fee
indicated in the code is paid through the Copyright Clearance
Center, P. O. Box 765, Schenectady, N. Y. 12301. For permission to
republish write to: Director of Publications, Association for
Computing Machinery. To copy otherwise, or republish, requires a
fee and/or specific permission.

© 1 9 7 9 - - A C M 0 - 8 9 7 9 1 - 0 0 5 - - 2 / 7 9 / 0 5 0 0 - - 0 0 4 2 $00.75

This result comes about as follows. The
machine implementation of the residue
function closely follows the definition (for
non-zero left arguments):

RES:~-~×L~÷~ (I)

However, although we use numbers expressed
in a decimal representation when we key in
APL statements, on machines which follow the
floating-point architecture of the IBM
System/370, APL interpreters typically
convert these decimal representations into
hexadecimal representations. In other
words, the numbers are represented in base
16 rather than base i0. The only decimal
fractions which can be represented exactly
are those which are also exact hexadecimal
fractions. Thus .25, .5, and .75 can be
represented exactly (since they may be
represented as 4, 8, and 12 divided by 16),
but .2, .4, and .6 cannot. Using the
inexact hexadecimal representations of these
decimal numbers gives rise to the
counterintuitive results shown in the
example above. 1.4÷.2 is slightly less than
7, in the inexact hexadecimal
representation, so that taking the exact
floor of this gives 6. Consequently
1.4-.2×6 gives a result just slightly less
than .2; if only ten digits of precision are
asked for (as is the default on many
IBM-based APL's), this prints as 0.2. On
the other hand, 1.6÷.2 is slightly more than
8, its floor is 8, and then .2×8 is very
slightly less than 1.6, so 1.6-.2×8 is quite
a small number. Both results "should" be
zero, of course, since .2 divides both 1.4
and 1.6 exactly. But closest-posslble
hexadecimal arithmetic says otherwise.

Not all the blame must be put on the base-
sixteen representation, however. Even if
the machine had base ten, although every
decimal number with few enough digits and
with exponent confined to a suitable range
could be exactly represented, there would
still be many arithmetic operations whose
results could not be accurately represented.
For example, any time there was a division
by a number having a factor relatively prime
to ten the result would be inexact. Thus
dividing by three would be inexact. The
result of 3x÷3 would be not i, but .99999
° • • •

Fuzzy Residue 42 E.E. McDonnell

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800136.804437&domain=pdf&date_stamp=1979-05-30

Fuzzed functions

In most APL systems all of the relational
functions, and also membership, inverse
indexing, floor, and ceiling tolerate
inexactness in their arguments by a small
amount, called by the first implementers
"fuzz". This has now become a formal part
of APL in the system variable representing
"comparison tolerance". APL's fuzz attempts
to conceal from the user the difference
between the ideal real-number system and the
practical, finite approximation to this
found in all computer systems. APL's use of
fuzz smooths over some of the rough edges of
the number-approximating scheme, but it does
so at the cost of losing certain identities.
For example, if two numbers are equal, their
difference should be zero. With fuzzy
equality we may very well have two numbers
equal, but their difference could be either
a small negative or a small positive
quantity instead.

Fuzz is used in two different ways. In
the first place, it defines an interval
about the larger in magnitude of the two
arguments to a function, and if the other
argument falls within that interval, the two
arguments are said to be equal. This is the
behavior for the relational functions,
membership, and inverse indexing. For
example,:

~CT÷IE-13
A4-2-1E-14
2:A

1
A<2

0
(2,A)tA

1
i 2 3eA

0 I 0

Secondly, it is used to determine whether a
given floating-point number is close enough
to an integer, where "close enough" means
that the given number would compare equal to
the nearest integer. This is done in
functions requiring Boolean or integral
values as arguments, as for example
indexing, or the left arguments for the
circular function or reshape. In these
cases, reference is not made to comparison
tolerance, but rather to a built-in fuzz
which is nowhere explicit. It is also done
in the case of floor and ceiling, using
comparison tolerance. For example,

[1 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9

The number, though less than 2, is "close
enough" to 2. One identity we lose as a
consequence of this is that when we take the
difference of a number and its floor, we may
get a negative number. The definition of
fuzzy floor has had a long history in APL,
and is still being discussed [5, 6, 7, 8,
9].

The relationship between floor and residue

It does not appear possible to define
both the floor function and the residue
function in closed form without circularity.
That is, the floor function is defined as:

FLOOR:~-II~ (2)

and the residue function, as in definition
(i), depends on the floor function. The
expression II~ is the fractional-part
function, of which more later.

The definition (2) can be re-expressed to
give a definition of a number as the sum of
its integer part and its fractional part:

z=([z)+(11z)

This identity can be generalized to
arbitrary moduli:

Z=(MxLZ÷~)+(MIZ) (3)

as shown in [i0]. Users expect (perhaps
naively) that a number can be decomposed
accurately using the floor and residue
functions. They are told, in fact, in
standard APL texts that they will be able to
do so [ii]. It is desirable that these
expectations not be thwarted.

In most APL's that run on computers
having IBM's floating-point architecture,
there is a lack of harmony between the floor
and the residue function, arising from the
fact that, while the floor function is
fuzzed, the residue function is not. To
show the discordance, consider the
following:

~CT~IE-13
~PP÷16
Z÷4-1E-14
Z

3 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9
[Z

4
l l z

0 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9
(L Z) + (I l Z)

4 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9

The problem is that in the implementation of
the residue function in accordance with
definition (i), the floor of the quotient is
computed exactly. In order to make the
residue function harmonious with the floor
function either the floor function should be
computed exactly (without fuzz)l, or the
residue function should be computed fuzzily.
This paper discusses the latter alternative.

An important residue inequality and its
complex extension

It might be useful at this ~oint to give
briefly the history of the residue function
in APL, since this bears on one key point in
the discussion of fuzzy residue.

E.E. McDonnell 43 Fuzzy Residue

The original documentation [12] for APL
conflicted with the first implementation in
regard to residue (and many other things,
for that matter). It gave the familiar
definition (i) for residue, but the
implementation chose instead to use the
magnitude of the modulus instead of the
Signed value. The second major APL document
[13] reflected this use of the magnitude.
This definition had several defects, but
these did not become apparent until late in
1968 when I began studying the extension of
APL to complex-number arguments. In fact,
the question I was asked, by Larry Breed,
was "How shall the residue function be
extended to complex numbers?"

The defects in the definition at that
time were first, the result was always
non-negative; it was as if half the range of
the function were denied. Second, the
modulus zero was not a left identity
element, even though it was claimed to be
[12,13], since 01X for negative X gave a
domain error. Third, the useful inequality:

(O~(AIB)÷A) ^ ((AIB)÷A)<I (4)

as well as identity (3) was lost for
negative A. Fourth, the function as defined
couldn't be extended to the complex domain,
for two reasons. There was no definition
for the floor function of complex numbers,
and the use of the magnitude function in the
complex plane kept the residue of W~Z for
complex W and Z from being a Gaussian
integer, destroying the notion of complete
systems of residues.

I remedied the first defect by creating a
definition for a complex floor function
[14], and the second by proposing that the
definition and the implementation of residue
be changed to reflect the original
definition (which had never been
implemented). I proposed the change to
residue in 1968, and by 1973 (when APLSV was
announced) the new definitio~ was made
available to customers.

Two years after this, in 1975, the third
major IBM APL language document [15] was
written, and it stated, "if A~0, then A~B
lies between A and zero (being permitted to
equal zero but not A) and is equal to B-NxA
for some integer N." It is this statement
which several readers of early drafts of
this paper said had to be given up if APL
were extended to include complex numbers as
data types, and thus couldn't be used in
making arguments for a fuzzy residue. These
readers were wrong, however, as I shall
explain.

Let's take a look at the inequality (4)
which lies behind the statement in [15].
Recall that it says (A~B)÷A is greater than
or equal to zero and less than one. This is
another way of saying that the result is in
the range of the fractional-part function
(see Figure i).

-u r -3 -2 . - t o I 9.. o~ u r

Figure i. Fractional part interval

The definition I gave to complex floor
was chosen to be compatible with the real
floor definition. In particular, the
fractional-part function iI~ extends
faithfully (see Figure 2).

Just as, in the real case, we can say
that the result of II~ lies in the half-open
interval k0 i], in the complex case we can
say that its result lies in the half-open
area delimited as shown in Figure 2.

0 0 0 0

0 o 0 0

o 0 O o

0 0 0 0

i ~ 0 0 0 •

%%

,..'l o 0 ~0 o

Figure ~. Fractional part area

We can go on to say that the result of
A~B lies in the half-open interval ~0 A]
formed by multiplying the fractional-part
range by A (Figure 3). We shall call this
the residue interval. Similarly, in the
complex case the result of A~B lies in the
half-open rectangle formed by the
multiplication of the fractional-part
rectangle by A (Figure 4). We shall call
this the residue area. Thus, in the real
case, for positive A, the result is found in
a residue interval extending to the right
from zero, and for negative A, the result is
found in a residue interval extending to the
left from zero. This is the basis for the
statement in [15]. When an APL language
manual is written which accommodates complex
numbers, the discussion of residue must be
modified, but the basic idea remains the
same.

What I wish you to retain from this
discussion is the fact that the result of
A~B always lies in the residue interval for
A, is never equal to A, and thus its
magnitude is less than the magnitude of A.

G ~, O o

Figure ~a. Residue interval for modulus 3

Figure 3b. Residue interval for modulus "3

Fuzzy Residue 44 E.E. McDonnell

0 0 0 0

~ , o 0 0

• •

¢ " L

1

l . • ll~l o o
1
I

! .1 • • ~ o o

- I
- - o e o

Figure 4. Residue area for modulus 2_3

A proposal for fuzzx residue

One possible definition for fuzzy residue
is simply to use (i) with fuzzy rather than
exact floor. This definition would, indeed,
prevent results being equal to the modulus.
For example, [1.4÷2 would be 7 rather than
6, and thus .2!1.4 would be zero. However
it would leave the result of .211.6
unchanged: this would still be a small
number. Thus, if one were content to get a
small number rather than zero as the result,
this definition would satisfy. But since
the purpose of this paper is to show how to
make APL arithmetic correspond more closely
to our school arithmetic, definition (i),
with fuzzy floor, must be regarded as
unsatisfactory.

Another candidate is:

FR2:~-exLS:S:LS÷~÷e:O

In this definition, the floor function and
the equals function are fuzzy. It says that
the standard definition should be used
unless ~÷~ is essentially an integer, in
which case the result is zero. This is an
appealing definition, and covers most cases,
but fails if ~÷s is small enough (that is,
if the modulus ~ is sufficiently much larger
than ~), so that [~÷e is zero. In this
case, S=[S will fail, because comparisons
with zero are exact, and thus instead of the
result of ~I~ being zero, it will be ~.
This may not seem wrong to you, but if the
signs of ~ and ~ are different, the result
will have a different sign from the modulus,
and this is not permitted: the result must
lie in the residue interval for s.
Presently, when s is very much larger than
and opposite in sign to ~, the result is
exactly ~, since the exact floor of ~÷~ is
I, and ~ is lost by cancellation in

performing ~-s×-l, leaving us with e. It's
hard to judge which is worse, the present
situation or that which would occur with
FR2.

The next candidate, suggested by Doug
Forkes, is

FR3:~-~x[S:(rS):[S~÷s:O

Here the comparison is between the ceiling
of the quotient and the floor of the
quotient. If these are equal, the result
will be zero, and if the quotient is very
small, the ceiling and the floor will both
be zero, the comparison will be true, and
the result of al~ will be zero. The
identity that this definition preserves is
that if A[B is zero, then so is A[-B, since
B differs from -B only by a unit, and thus
the numbers are associates, and associates
are divisible by the same numbers. It
appears to be the case that we have to
accept zero for the result of, say,
(16"15)II, in order to keep (16,15)!-I from
being outside the residue interval of 16-15.

Our final definition will be FR3 extended
to accommodate the case of zero as a
modulus:

FR:~-sxLS
:(~:o)v(rs)=LS÷~÷~+~=o
: ~ x ~ : O

This definition will revert to the present
definition when OCT is zero. Definition FR,
together with the existing fuzzy floor
definition, insures that a number will be
the sum of its integer and fractional parts
except in cases where the number is a small
negative number such as - 1 E - l O + l E - 2 0 . In
this case, the floor of the number is -i,
the fractional part is I-IE-10 (losing the
IE-20 by cancellation), and the sum of the
floor and the fractional part will not
compare equal to the original number. In
this case we accept defeat at the hands of
the machine.

Encode

Since encode is defined in terms of
residue, changing the definition of residue
will have an effect on the way encode works.
The definition of encode remains the same,
but notice the difference between the
present encode, which uses an unfuzzed
residue, and the function FE, which uses the
fuzzy residue function:

FE:((-I+~)FE~ X)DIV -It~),X~(-I÷~)FR~
: O : p ~ : ~ O

10 10 1 0 T 9 9 . 9 9 9 9 9 9 9 9 9 9 9 9
0 9 9 . 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 FE 99.999999999999
1 0 0

The DIV function is used instead of the
primitive divide function in order to give
the quotient zero for zero divided by zero,
thus "stopping" the encode, as it should, at
a result element position corresponding to a
zero element in the left argument:

D I V : c ¢ ' ~ : a : O :0

giving further reason for wanting the
quotient of 0÷0 to be chanqed from the way

E.E. McDonnell 45 Fuzzy Residue

pre~ent A~L systems compute it (which give
one as the result) [16].

Acknowledqments

This work has benefitted from extensive
discussions with Mike Jenkins of Queens
University, Kingston, Ontario; Jim Brown and
Larry Breed, of IBM; Rick Petkiewicz, of
Northern Arizona University, Flagstaff,
Arizona; Bob Bernecky, Doug Forkes, and
Leigh Clayton, of I. P. Sharp Associates;
and Paul Penfield, of MIT.

References

[i] "Third SEAS Working Committee's
Meeting, Nogorduyk June 8 and 9, 1971",
APL Quote Quad, 3, 2&3, p. 10, Oct.
1971

[2] Buscher, David J. and William M. Piper,
letter to the editor, APL Quote Quad,
5, 1/3, Spring 1974

[3] Singer, David, letter to the editor,
APL Quote Quad, 5, 4, Winter, 1974

[4] Watson, Don, "Question: 'Why does
APL/360/370 Give the Following
Results?'", APL Quote Quad, 5, 4,
Winter, 1974

[5] Seeds, G. M., "Fuzzy floor and
ceiling", APL Quote Quad 5, 4, Winter
1974

[6] Lathwell, R. H., "Comparison tolerance
in APL", APL76 Conference Proceedinqs,
ACM, New York, 1976

[7] Breed, L. M., "Definitions for fuzzy
floor and ceiling", APL Quote Quad, 8,
3 (March 1978) 16-23

[8] Bernecky, R., and D. L. Forkes,
"Comparison Tolerance", Sharp APL
Technical Notes, SATN 23, I. P. Sharp
Associates, Toronto, 1978

[9] Hagerty, P. E., "More on fuzzy floor
and ceiling", APL Quote Quad, 8, 4
(June 1978) 20-24

[10] Iverson, K. E., A Prqgramming Language ,
Wiley, N. Y., 1962, p. 12

[ii] Gilman, L. E. and Allen J. Rose,
APL/360, an Interactive Approach,
Wiley, N. Y., 1970, p.23

[12] Falkoff, A. D. and K. E. Iverson, The
APL Terminal System: Instructions for
Operation, IBM Corp., Yorktown Heights,
1966

[13] Falkoff, A. D. and K. E. Iverson,
APL\360: User's Manual, IBM Corp.,
Yo{ktown Heights, 1968

[14] McDonnell, E. E., "Complex Floor", APL
Co___ngress 73, North Holland Publishing
Co., Amsterdam, 1973

[15] APL Language , publication GC26-3847,
IBM Corporation, 1978

[i(~ ~ McDonnell, E. E., "Zero divided by
zero", APL76, ed. G. Truman Hunter,
Association for Computing Machinery,
Ottawa, 1976

Fuzzy Residue 46 E.E. McDonnell

