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Abstract 

Certain pairs of arguments to the residue 
function, as implemented on many APL 
systems, give results which make it seem as 
if the ordinary decimal relationships we 
remember from grade school no longer hold. 
As far as we can tell, it looks as if a 
given modulus should divide the right 
argument, but the implementation tells us it 
doesn't. A definition for a fuzzed residue 
function is proposed which resolves the 
difficulties users have complained of. 
However, certain points of continuing 
difficulty remain, where the limitations of 
machine arithmetic continue to defeat the 
attempt to model the real number system. 
The representation function is defined in 
terms of the residue function, and so is 
affected by the change in residue. The 
nature of this effect is also discussed in 
this paper. 

The problem 

Several authors [i, 2, 3, 4] have given 
examples where the results provided by APL's 
residue function, as implemented 'on many 
computers compatible with IBM's 370 
architecture, are counterintuitive. They 
complain that sometimes the residue function 
fails to give zero as result when the 
modulus (left argument) clearly divides the 
right argument. Instead it gives either a 
number essentially equal to the modulus, or 
a very small number. For example: 
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This result comes about as follows. The 
machine implementation of the residue 
function closely follows the definition (for 
non-zero left arguments): 

RES:~-~×L~÷~ (I) 

However, although we use numbers expressed 
in a decimal representation when we key in 
APL statements, on machines which follow the 
floating-point architecture of the IBM 
System/370, APL interpreters typically 
convert these decimal representations into 
hexadecimal representations. In other 
words, the numbers are represented in base 
16 rather than base i0. The only decimal 
fractions which can be represented exactly 
are those which are also exact hexadecimal 
fractions. Thus .25, .5, and .75 can be 
represented exactly (since they may be 
represented as 4, 8, and 12 divided by 16), 
but .2, .4, and .6 cannot. Using the 
inexact hexadecimal representations of these 
decimal numbers gives rise to the 
counterintuitive results shown in the 
example above. 1.4÷.2 is slightly less than 
7, in the inexact hexadecimal 
representation, so that taking the exact 
floor of this gives 6. Consequently 
1.4-.2×6 gives a result just slightly less 
than .2; if only ten digits of precision are 
asked for (as is the default on many 
IBM-based APL's), this prints as 0.2. On 
the other hand, 1.6÷.2 is slightly more than 
8, its floor is 8, and then .2×8 is very 
slightly less than 1.6, so 1.6-.2×8 is quite 
a small number. Both results "should" be 
zero, of course, since .2 divides both 1.4 
and 1.6 exactly. But closest-posslble 
hexadecimal arithmetic says otherwise. 

Not all the blame must be put on the base- 
sixteen representation, however. Even if 
the machine had base ten, although every 
decimal number with few enough digits and 
with exponent confined to a suitable range 
could be exactly represented, there would 
still be many arithmetic operations whose 
results could not be accurately represented. 
For example, any time there was a division 
by a number having a factor relatively prime 
to ten the result would be inexact. Thus 
dividing by three would be inexact. The 
result of 3x÷3 would be not i, but .99999 
° • • • 
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Fuzzed functions 

In most APL systems all of the relational 
functions, and also membership, inverse 
indexing, floor, and ceiling tolerate 
inexactness in their arguments by a small 
amount, called by the first implementers 
"fuzz". This has now become a formal part 
of APL in the system variable representing 
"comparison tolerance". APL's fuzz attempts 
to conceal from the user the difference 
between the ideal real-number system and the 
practical, finite approximation to this 
found in all computer systems. APL's use of 
fuzz smooths over some of the rough edges of 
the number-approximating scheme, but it does 
so at the cost of losing certain identities. 
For example, if two numbers are equal, their 
difference should be zero. With fuzzy 
equality we may very well have two numbers 
equal, but their difference could be either 
a small negative or a small positive 
quantity instead. 

Fuzz is used in two different ways. In 
the first place, it defines an interval 
about the larger in magnitude of the two 
arguments to a function, and if the other 
argument falls within that interval, the two 
arguments are said to be equal. This is the 
behavior for the relational functions, 
membership, and inverse indexing. For 
example,: 

~CT÷IE-13 
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Secondly, it is used to determine whether a 
given floating-point number is close enough 
to an integer, where "close enough" means 
that the given number would compare equal to 
the nearest integer. This is done in 
functions requiring Boolean or integral 
values as arguments, as for example 
indexing, or the left arguments for the 
circular function or reshape. In these 
cases, reference is not made to comparison 
tolerance, but rather to a built-in fuzz 
which is nowhere explicit. It is also done 
in the case of floor and ceiling, using 
comparison tolerance. For example, 

[ 1 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9  

The number, though less than 2, is "close 
enough" to 2. One identity we lose as a 
consequence of this is that when we take the 
difference of a number and its floor, we may 
get a negative number. The definition of 
fuzzy floor has had a long history in APL, 
and is still being discussed [5, 6, 7, 8, 
9]. 

The relationship between floor and residue 

It does not appear possible to define 
both the floor function and the residue 
function in closed form without circularity. 
That is, the floor function is defined as: 

FLOOR:~-II~ (2) 

and the residue function, as in definition 
(i), depends on the floor function. The 
expression II~ is the fractional-part 
function, of which more later. 

The definition (2) can be re-expressed to 
give a definition of a number as the sum of 
its integer part and its fractional part: 

z=([z)+(11z) 

This identity can be generalized to 
arbitrary moduli: 

Z=(MxLZ÷~)+(MIZ) (3) 

as shown in [i0]. Users expect (perhaps 
naively) that a number can be decomposed 
accurately using the floor and residue 
functions. They are told, in fact, in 
standard APL texts that they will be able to 
do so [ii]. It is desirable that these 
expectations not be thwarted. 

In most APL's that run on computers 
having IBM's floating-point architecture, 
there is a lack of harmony between the floor 
and the residue function, arising from the 
fact that, while the floor function is 
fuzzed, the residue function is not. To 
show the discordance, consider the 
following: 

~CT~IE-13 
~PP÷16 
Z÷4-1E-14 
Z 

3 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9  
[Z  

4 
l l z  

0 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9  
( L Z ) + ( I l Z )  

4 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9  

The problem is that in the implementation of 
the residue function in accordance with 
definition (i), the floor of the quotient is 
computed exactly. In order to make the 
residue function harmonious with the floor 
function either the floor function should be 
computed exactly (without fuzz)l, or the 
residue function should be computed fuzzily. 
This paper discusses the latter alternative. 

An important residue inequality and its 
complex extension 

It might be useful at this ~oint to give 
briefly the history of the residue function 
in APL, since this bears on one key point in 
the discussion of fuzzy residue. 
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The original documentation [12] for APL 
conflicted with the first implementation in 
regard to residue (and many other things, 
for that matter). It gave the familiar 
definition (i) for residue, but the 
implementation chose instead to use the 
magnitude of the modulus instead of the 
Signed value. The second major APL document 
[13] reflected this use of the magnitude. 
This definition had several defects, but 
these did not become apparent until late in 
1968 when I began studying the extension of 
APL to complex-number arguments. In fact, 
the question I was asked, by Larry Breed, 
was "How shall the residue function be 
extended to complex numbers?" 

The defects in the definition at that 
time were first, the result was always 
non-negative; it was as if half the range of 
the function were denied. Second, the 
modulus zero was not a left identity 
element, even though it was claimed to be 
[12,13], since 01X for negative X gave a 
domain error. Third, the useful inequality: 

(O~(AIB)÷A) ^ ((AIB)÷A)<I (4) 

as well as identity (3) was lost for 
negative A. Fourth, the function as defined 
couldn't be extended to the complex domain, 
for two reasons. There was no definition 
for the floor function of complex numbers, 
and the use of the magnitude function in the 
complex plane kept the residue of W~Z for 
complex W and Z from being a Gaussian 
integer, destroying the notion of complete 
systems of residues. 

I remedied the first defect by creating a 
definition for a complex floor function 
[14], and the second by proposing that the 
definition and the implementation of residue 
be changed to reflect the original 
definition (which had never been 
implemented). I proposed the change to 
residue in 1968, and by 1973 (when APLSV was 
announced) the new definitio~ was made 
available to customers. 

Two years after this, in 1975, the third 
major IBM APL language document [15] was 
written, and it stated, "if A~0, then A~B 
lies between A and zero (being permitted to 
equal zero but not A) and is equal to B-NxA 
for some integer N." It is this statement 
which several readers of early drafts of 
this paper said had to be given up if APL 
were extended to include complex numbers as 
data types, and thus couldn't be used in 
making arguments for a fuzzy residue. These 
readers were wrong, however, as I shall 
explain. 

Let's take a look at the inequality (4) 
which lies behind the statement in [15]. 
Recall that it says (A~B)÷A is greater than 
or equal to zero and less than one. This is 
another way of saying that the result is in 
the range of the fractional-part function 
(see Figure i). 

-u r  -3 -2 .  - t  o I 9.. o~ u r 

Figure i. Fractional part interval 

The definition I gave to complex floor 
was chosen to be compatible with the real 
floor definition. In particular, the 
fractional-part function iI~ extends 
faithfully (see Figure 2). 

Just as, in the real case, we can say 
that the result of II~ lies in the half-open 
interval k0 i], in the complex case we can 
say that its result lies in the half-open 
area delimited as shown in Figure 2. 

0 0 0 0 
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0 0 0 0 
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Figure ~. Fractional part area 

We can go on to say that the result of 
A~B lies in the half-open interval ~0 A] 
formed by multiplying the fractional-part 
range by A (Figure 3). We shall call this 
the residue interval. Similarly, in the 
complex case the result of A~B lies in the 
half-open rectangle formed by the 
multiplication of the fractional-part 
rectangle by A (Figure 4). We shall call 
this the residue area. Thus, in the real 
case, for positive A, the result is found in 
a residue interval extending to the right 
from zero, and for negative A, the result is 
found in a residue interval extending to the 
left from zero. This is the basis for the 
statement in [15]. When an APL language 
manual is written which accommodates complex 
numbers, the discussion of residue must be 
modified, but the basic idea remains the 
same. 

What I wish you to retain from this 
discussion is the fact that the result of 
A~B always lies in the residue interval for 
A, is never equal to A, and thus its 
magnitude is less than the magnitude of A. 

G ~, O o 

Figure ~a. Residue interval for modulus 3 

Figure 3b. Residue interval for modulus "3 
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Figure 4. Residue area for modulus 2_3 

A proposal for fuzzx residue 

One possible definition for fuzzy residue 
is simply to use (i) with fuzzy rather than 
exact floor. This definition would, indeed, 
prevent results being equal to the modulus. 
For example, [1.4÷2 would be 7 rather than 
6, and thus .2!1.4 would be zero. However 
it would leave the result of .211.6 
unchanged: this would still be a small 
number. Thus, if one were content to get a 
small number rather than zero as the result, 
this definition would satisfy. But since 
the purpose of this paper is to show how to 
make APL arithmetic correspond more closely 
to our school arithmetic, definition (i), 
with fuzzy floor, must be regarded as 
unsatisfactory. 

Another candidate is: 

FR2:~-exLS:S:LS÷~÷e:O 

In this definition, the floor function and 
the equals function are fuzzy. It says that 
the standard definition should be used 
unless ~÷~ is essentially an integer, in 
which case the result is zero. This is an 
appealing definition, and covers most cases, 
but fails if ~÷s is small enough (that is, 
if the modulus ~ is sufficiently much larger 
than ~), so that [~÷e is zero. In this 
case, S=[S will fail, because comparisons 
with zero are exact, and thus instead of the 
result of ~I~ being zero, it will be ~. 
This may not seem wrong to you, but if the 
signs of ~ and ~ are different, the result 
will have a different sign from the modulus, 
and this is not permitted: the result must 
lie in the residue interval for s. 
Presently, when s is very much larger than 
and opposite in sign to ~, the result is 
exactly ~, since the exact floor of ~÷~ is 
I, and ~ is lost by cancellation in 

performing ~-s×-l, leaving us with e. It's 
hard to judge which is worse, the present 
situation or that which would occur with 
FR2. 

The next candidate, suggested by Doug 
Forkes, is 

FR3:~-~x[S:(rS):[S~÷s:O 

Here the comparison is between the ceiling 
of the quotient and the floor of the 
quotient. If these are equal, the result 
will be zero, and if the quotient is very 
small, the ceiling and the floor will both 
be zero, the comparison will be true, and 
the result of al~ will be zero. The 
identity that this definition preserves is 
that if A[B is zero, then so is A[-B, since 
B differs from -B only by a unit, and thus 
the numbers are associates, and associates 
are divisible by the same numbers. It 
appears to be the case that we have to 
accept zero for the result of, say, 
(16"15)II, in order to keep (16,15)!-I from 
being outside the residue interval of 16-15. 

Our final definition will be FR3 extended 
to accommodate the case of zero as a 
modulus: 

FR:~-sxLS 
:(~:o)v(rs)=LS÷~÷~+~=o 
: ~ x ~ : O  

This definition will revert to the present 
definition when OCT is zero. Definition FR, 
together with the existing fuzzy floor 
definition, insures that a number will be 
the sum of its integer and fractional parts 
except in cases where the number is a small 
negative number such as - 1 E - l O + l E - 2 0 .  In 
this case, the floor of the number is -i, 
the fractional part is I-IE-10 (losing the 
IE-20 by cancellation), and the sum of the 
floor and the fractional part will not 
compare equal to the original number. In 
this case we accept defeat at the hands of 
the machine. 

Encode 

Since encode is defined in terms of 
residue, changing the definition of residue 
will have an effect on the way encode works. 
The definition of encode remains the same, 
but notice the difference between the 
present encode, which uses an unfuzzed 
residue, and the function FE, which uses the 
fuzzy residue function: 

FE:((-I+~)FE~ X)DIV -It~),X~(-I÷~)FR~ 
: O : p ~ : ~ O  

10 10 1 0 T 9 9 . 9 9 9 9 9 9 9 9 9 9 9 9  
0 9 9 . 9 9 9 9 9 9 9 9 9 9 9 9  

10 10 10 FE 99.999999999999 
1 0 0  

The DIV function is used instead of the 
primitive divide function in order to give 
the quotient zero for zero divided by zero, 
thus "stopping" the encode, as it should, at 
a result element position corresponding to a 
zero element in the left argument: 

D I V :  c ¢ ' ~ : a : O  :0  

giving further reason for wanting the 
quotient of 0÷0 to be chanqed from the way 
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pre~ent A~L systems compute it (which give 
one as the result) [16]. 
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