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Abstract 

This paper presents the author's opinion of the major 
problems confronting Design Automation for VLSI and 
how Design Automation may evolve to meet these challeng- 
es. The paper first takes a historical look at the 
driving forces for Design Automation development by 
analyzing the evolution of Design Automation at RCA. 
It looks at both some successful and unsuccessful 
development efforts and attempts to isolate some of 
the criteria necessary for success. It review RCA's 
current LSI Design Automation capabilities and compares 
them to the challenge of VLSI. The major challenges -- 
layout, design verification and testability -- are 
discussed along with possible achievable solutions. 

Introduction 

The issue challenging Design Automation for VLSI is 
learning how to cope with the continuing explosion of 
complexity of IC's. Although the challenges facing 
technology development are substantial -- lithography, 
both imaging and registration, etching fine lines, 
implantation, multilevel fine-line interconnect, and 
so on -- there is no evidence that there is any 
fundamental physical barrier preventing IC complexity 
from continuing to grow exponentially in time -- dou- 
bling in device count per chip every two years or so 
for the next decade or more until design rules of 
order 0ne-quarter to one-half micron are achieved [i]. 
It is the view of many observers including myself that 
the rate limiting factor constraining the growth of IC 
product complexity may well be the Design Automation 
tools required for design ~system, logic, circuit, and 
process) and its verification, for physical implemen- 
tation (layout) and its verification, for test 
generation and its verification (fault coverage) and 
for test data analysis. Each of these present 
substantial challenges to the Design Automation tool 
builders and their users because of the large and 
growing amount of data involved. 

In order to gain some perspective of where we are 
going and how we may get there, it may be useful to 
first look at where we have been, where we thought we 
were going and where we have actually arrived, i.e., 
at today's capabilities. It would also be valuable to 
ask what were the driving forces that got us here. I 
strongly suspect that history, i.e., Design Automa- 
tion's track record, does provide good basis for 
extrapolating into the future. Our past experience 
should temper, not dampen, our view of the future, and 
our enthusiasum for it. 
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As I am certainly not a Design Automation historian, 
my views will be heavily influenced by my ten years 
of experience at RCA, my limited knowledge of the 
literature and my extensive discussions with fellow 
Design Automation professionals. In fact, my 

discussions will center around the Design Automation 
experience at RCA; I suspect that although details will 
surely differ, the general experience and insights are 
quite representative and applicable to others. 

In this discussion, I will contrast two idealized 
driving forces for Design Automation development: the 
DREAM and the NECESSITY; these terms will be defined 
in context. It of course is realized that in reality 
a combination of the two always exist. However, I 
believe that usually one or the other is dominant, and 
which one, determines to a large extent, the ultimate 
success of the Design Automation development effort. 
This too should become clearer from the context of 
the discussion. 

For the purposes of this paper, please allow me to 
operationally define VLSI as the IC complexity of the 
(near) future, i.e., one-to-two orders of magnitude 
more complex than our Design Automation systems can 
comfortably handle today. 

In addition, because this paper addresses the issue of 
Design Automation for VLSI, it is from the perspective 
of a commercial semiconductor house, not a system 
house, custom vendor, research laboratory, or universi- 
ty. 

Some History 

Where to begin? I start in 1970 -- the year of the 
Seventh Annual DAC (then called a workshop), so clearly 
not at the beginning. Extensive work has gone on in 
areas such as interactive graphics, automatic layout, 
and circuit and logic simulation. However, in my view, 
at this point in time, most of the enthusiasum for 
Design Automation evolved from the Design Automation 
tool builders at locations such as large corporate 
research centers, not from the design community. 
During this time, the driving force behind Design 
Automation was the DREAM, not the NECESSITY. 

I suspect the most useful Design Automation tools were 
built by the circuit designers themselves at custom 
facilities such as system houses. This is because the 
low volume and quick turnaround required of custom 
designers forced them to find computerized solutions 
which gave them design leverage. That the techniques 
developed, such as the standard cell automated layout 
approach (described in more detail later), substantial- 
ly increased chip size (and hence incremental cost) was 

not an issue because of the low volume of production 
required. 

However, it was Just this penalty which, justifiably, 
discouraged commercial semiconductor houses -- the main 
focus of this paper -- from pursuing this approach. In 
fact, to them IC complexity was modest enough (perhaps 
100-500 devices) so that layout aids, logic simulation 
and circuit simulation were not viewed as crucial or 
even necessary. In fact, I believe these tools were 
viewed as too inaccurate and expensive to be cost- 
effective. 
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In actuality, for the commercial semiconductor house, 
rubylith cutting for photomask generation was simple, 

adequately fast and inexpensive. Although work was 
going on in Interactive Graphics, what could one do 
with the resulting digitized mask-artwork polygons 
except use computerized ruby cutters. (Photoplotters, 
capable of making 80X foils, were in use at various 
government installations, such as RCA's Government 
Systems Division, as far back as 1967 or so. It was 
fed by the Design Automation system which automatically 
laid out standard cell chips. However, I know of no 
semiconductor house using them at that time.) 
Digitizing these polygonal shapes was tedious and time 
consuming. Wors~ editing of these computer representa- 
tions was tedious if done on a source language format 
or expensive: interactive graphics required very 
expensive hardware because memory and other essential 

hardware were expensive:inthose dark ages; only CAD 
researchers could afford them. I suspect that it was 
the advent of and necessity for the pattern generator 
that really brought Design Automation into the world 
of the commercial semiconductor manufacturer. It was 
the first true NECESSITY driving force because of the 
need to cope with MSI complexity from a manufacturing 
point of view. Let me explain. 

What is the limiting practical complexity forrubylith? 
If the largest practical ruby sheet is of order i0 feet 
on a side, if the smallest practical ruby grid step iS 
of order .05 inch, if the required silicon grid step is 
of order .05 mil (1.25 micron to support 7-10 micron 
design rules) then these imply a ruby scale factor of 
1000X and a maximum chip size of about i00 mil on a 
side. As MOS complexity pushed past these limits, 
pattern generation of a 10X reticle become a necessity. 

But, how do we feed the pattern generator beast? How 
do we get the artwork into a computer? At RCA Labs, an 

English-like language called PLOTS [2] was developed. 
Although easy to learn and use, especially for regular 
structures such as memories, it soon outgrew its 
ability to conveniently support random logic designs as 
complexity pushed to the MSI level. Design Automation 
system builders had to come up with a low-cost system 
to capture hand drawn designs into the computer. We, 
therefore, developed a simple, inexpensive Interactive 
Graphics System (based on a PDP-8 with 4K memory, a 
Calcomp digitizer plotter -- hence, the name Digitizer 
Plotter System, DPS, and a hand held joystick) [3]. By 
today's standards, its "interactive" editing capabiliti- 
ties were as primitive as its hardware configuration. 
But mask artwork could now be quickly and accurately 
captured by a computer. One element of human error was 
eliminated. 

The state-of-the-art Design Automatio~ problem now was 
how to develop pattern-generation (PG) software which 
could translate a general (all angle) polygonal shape 
into a minimal covering set of rectangles (with the 
further constraint of minimal overlap at the edges of 
the polygon). This problem required three generations 
of production software at RCA to finally achieve an 
optimal solution. We did not choose to limit ourselves 
to orthogonal or 45 degree geometies (nonacute) because 
certain technologies, such as bipolar with lateral 
complementary transistors, require an all-angle polygon 
capability. 

This latter constraint -- support of many technolo- 
gies -- has had other effects on our Design Automation 
strategy at RCA. To emphasize this point, at RCA 
Design Automation deals with metal and silicon-gate MOS, 
CMOS/SOS, "Linear" Bipolar, I2L, High Speed Bipolar, and 
various power transistor technologies. 

Because of this diversity, we have endeavored to keep 
our software as technology independent as possible. 
We will return to this point later. 

Concurrently with this work, the feasibility of a 
computerized design rule checking (DRC) facility was 
investigated (by the DREAMERS). Initial investigation 
found it to be too difficult in the general case; 
there were too many special cases. Additional data 
from the designers was essential. However, as complex- 
ity continued to increase, the number of digitized 
design rule violations was becoming a major problem. 
Furthermore, continuing complexity growth was rapidly 
moving us past that awesome level of integration now 
called MSI. NECESSITY being the mother of invention, 
DRC had to be developed -- even if it only solved a 
subset of the problem -- and it was [4]. 

This was the first truly new capability that storing 
the artwork in a computer brought us; after all, the 
pattern generator results in the same functional 
reticle as from rubylith. However, now the computer 
could do something truly new: automated desig~ rule 
verification. We also discovered we could do more 
verification with the data at hand than we originally 
guessed. NECESSITY was a very strong driving force 
indeed. 

At this point, it was dramatically clear (at least to 
the DREAMERS) that Design Automation possibilities were 
truly unlimited! New capabilities such as connectivity 
verification, device extraction from the artwork layout 
itself, automated artwork geometry modification, and a 
common data base linking all these to circuit and logic 
simulation were conceived rapidly and enthusiastically. 
Allow me to focus on this. 

Common Data Base 

It was quite clear to many of us at this point that 
computer-aided design and verification systems truly 
had an important role to play in the future of IC 
design. This was for two reasons. First, automated 
DRC proved that it was possible and achievable. Second, 
we began to internalize the fact that IC progress was 
relentless; that next year would bring even more 
complexity. However, we all felt that this year's 
Design Automation tools were barely adequate for today, 
let alone tomorrow. Hence, the Design Automation 
systems we were now envisioning had to cope with far 
more complex chips than existed today. A whole new 
(systems) approach had to be taken; we had to solve 
the growing complexity issue and we had to unify the 
worlds of circuit, logic and physical design. In 
addition, learning from the systems people as we gazed 
into the "complex" future, we had to cope with the 
problem of data integrity (sometimes called configura- 
tion control). 

We decided that a centralized, "strOngly-coupled" 
design data base, hierarchical in structure, was 
required to solve all these problems. We called this 
CADDB (Computer-Aided Design Data Base) [5]. This 
strategy "solved" many problems. Data integrity was 
insured because there was but one copy of the design 
(centralization); "strong coupling" between the 
physical and logical design representations guaranteed 
they remained in sync. The "common" data base also 
guaranteed that only one conversion program had to be 
written for each existing or new CAD tool (e.g., logic 
simulation, circuit simulation, system simulation, 
automated layout and so on: the tool's input data 
structure need only communicate with the data base, 

2 not with N other programs which implies N conversion 
programs, in worst case). The hierarchical structure 
would solve the complexity issue. Finally, the over- 
all design process was characterized and a new unified, 



disciplined methodology was postulated. It was 
recognized that this would require a substantial effort 
and would lead to a quantum leap in capability. The 
CAD project team set their sights on success in a time 
frame of 3-5 years. In contrast, most of the CAD effort 
continued to focus on incremental capabilities, based 
on specific needs, with these new tools going into 
production in a time frame of 1-3 years. 

The CADDB System was developed in the time frame expect- 
ed. Hopes were high for its successful introduction into 
the production system. Unfortunately, the system 
was not enthusiastically accepted. In fact, to this 
day it still has not been accepted. Many of its 
concepts and some of its software components have been, 
but not the overall system• 

'~at went wrong? In essence, the Design Automation 
tool builders had postulated a design methodology: 
logic simulation, followed by structured layout and DRC, 
followed by connectivity extraction, followed by 
comparison of extracted vs. simulated logic networks, 
fo~owed by parasitic extraction for timing simulation, 
and so on. And all of this in a well defined environ- 
ment. However, the designers were not as enthusiastic 
about all this structure as we were. After a number of 
attempts to use this methodology -- all heavily 
encouraged by management -- the general feeling was that 
the cost-benefit ratio was too high. 

Perhaps we had imposed too rigid a structure on the 
lives of innovative designers who could use their 
ingenuity to solve design problems. Put another way, 
creating a total design structure assumes we not only 
Understand all the normal steps in the design process 
but also what flexibility must be included if changes 
are to occur. Design systems (like all human institu- 
tions and ecological systems), must be flexible enough 
to permit creative change and be easily verified along 
the way; they must be adaptive or they can not survive. 

Meanwhile, the CAD development effort--which defined 
needed, incremental capabilities -- continued to expand 
our overall set of design tools into the highly success- 
ful system it is today. (Some of this system will be 
described in the section on "Current Capabilities".) 
Perhaps the most credible way to highlight its success 
is to summarize some of the data from our Software Usage 
Monitoring System: in 1979, over 30 of these CAD 
programs were accessed over i00,000 times by over three 
dozen engineering organizations throughout the RCA 
corporation. 

Based on these and many other experiences in Design 
Automation software development -- some quite success- 
ful, some not -- can we discover any general principles 
to help us maximize success in the future? This is not 
an easy challenge. The following are a few of my own 

observations. 

Criteria For Success 

First of all, I define a successful Design Automation 
tool to be one which is actively used by many different 
design teams on a variety of designs; not simply one 
which has been tested successfully on a single, bench- 
mark test vehicle. I believe that a number of criteria 
are essential for a Design Automation tool to be 
successful. 

"The design community must perceive that use of the 
Design Automation tool will cost-effectively result in 
a tangible benefit." 

This criteria implies many things. Let me explain, in 
the early days the first and perhaps only tangible 
benefit perceived was a PG tape: one could make a 
reticle from it. It was real. Most of the other 
Design Automation capabilities were viewed as promises. 
When IC complexity advanced to the MSI/LSI level, the 
output from a DRC Program was suddenly perceived to be 
quite tangible; it was impossible for IC designers to 

find all design rule violations by eye. 

Hence, the word "perceive" is an important one. It is 
not adequate that the Design Automation group define 
and solve a problem• The designers themselves must 
agree the problem exists and the solution is real and 
cost-effective; the latter must be true not only in 
dollars, but in terms of the designers time and effort. 
This implies that the Design Automation solution must 
occur at or near the same point of the design cycle 
where the problem occurs and that either it reduce the 
overall effort at that point or it is clearly impossi- 
ble to proceed without it (PG tape example). Finally, 
all of this implies that the solution be somewhat 
localized, i.e., the designer sees that the effort 

expended to utilize the Design Automation tool will 
solve a real problem right there and that endless side 
efforts beyond his control will not occur. This latter 
rule precludes systems which redefine or restructure an 
entire design process. 

What seems to work is to institute an incremental 
Design Automation capability somewhere in the design 

process and then allow the system to adapt to it -- 
and adapt it to the system -- before introducing the 
next incremental capability• For this to occur, the 
Design Automation tools must be designed to be quite 
robust; the requirement of supporting many technolo- 
gies seems to aid this. 

This allows both the Design Automation System and the 

design process to adaptively evolve with time. Most 
importantly, it allows the creative designer to use the 
system in ways that were not even envisioned by the 
Design Automation tool builders -- who are generally 
not designers• Also, it encourages the designer's 
management to support and encouage its usage. Aftera11, 
engineering managers are responsible for product 
development, not Design Automation development. 

I believe a second criterion for success is that "The 
approach must be technology independent." This is 
clearly a generalization• It is based on my belief 
that if the Design Automation capability is technology 
dependent, technology evolution will obsolete the soft- 
ware. In those rare cases where success is obtained, 
the approach will not be readily transportable to other 
technologies• We have found that the utilization of 
Design Automation software by many design activities 
has dramatically increased the ROI (Return On Investment) 
of the original Design Automation developmental effort. 
It also helps keep the maintenance of all this software 
a tractable problem, as each piece of software has a 
large user base. 

A third and perhaps obvious criterion for success is 
"There must be close communication between the Design 
Automation tool builders and the designers." 
Although this point is close to motherhood, it is too 
often neglected in practice. 

This brings me to my last criterion of success. I 

believe that "90% of a Design Automation tool's 'paper' 
capabilities can be developed with approximately 50% of 
the total effort'." This implies that it takes "forever" 



to finall~ get the "last few" bugs out and to add the 
last few "bells and whistles" required for user 
acceptance. It also implies that the creative Design 
Automation developers who got it to the 90% point are 
probably bored with the whole project now and are 
anxious to move on to the next challenge, and to let 
the "second team" finish the project. 

However, I believe that the "last i0%" is 'bake-or- 
break" for many Design Automation tools and that the 
second team may not have the perspective or experience 
to make the tweeks and compromises required for success. 
In fact, often some of the most challenging problems -- 
involving designer acceptsnce -- occur during the 
introductory phase of the development -- the "last 10%". 
Needless to say this is a true challenge to management, 
unless the Design Automation team has truly accepted 
that it is their challengeto make the tool a success; 
and this means getting it used by the design community. 

I have symbolically summarized some of these thoughts 
in Figure i. The dotted arrows imply that both the 
design community and the Design Automation team are 
encouraged to higher expectations based on a track 
record of accomplishments. The rest is obvious: 
success feeds itself. Unfortunately, the converse is 
also true. 

Current Capabilities 

At this point, I would like to snapshot some of the LSI 
Design Automation capabilities of RCA. I will then 
equate this system to the complex designs and point 
out where I feel our greatest challenges will be on 
the road to VLSI and beyond. I will then attempt to use 
some of the historical perspectives gained to project 
the future evolution of Design Automation to meet the 
challenges ahead. 

Artwork 

At the heart of RCA's artwork system, shown in Figure 2, 
is an artwork representation called DFL - Design File 
Language [3]. It is designed to be an efficient, 
compact, program-readable language. Its primitive 

components include general shaped (all-angle) polygons, 
orthogonal polygons, center lines with width, general 
purpose "comments" (to permit new extensions to work 
with old versions of software), and general"definition" 
(building block) function with an instance-specifica- 
tion capability (which includes scaling, rotation and 
mirroring). DFL allows hierarchical artwork specifica- 

tion (with nesting up to 12 levels deep). All rather 
forward looking for a language developed over ten years 
ago. This language has remained upward and downward 
compatible over the years although new features have 
been added (using the "comment" extention capability), 
i.e., recently developed Design Automation programs can 
read a ten-year-old file while a ten-year-old program 
can read a recently created file. We believe long 
range compatibility of both software and da~a is an 
essential issue in a real production environment. 

Although DFL is friendly to Design Automation software, 
it is not really friendly to humans. Therefore, the 
PLOTS language [l]~ already referred to, was created as 
a free-format, textual language for designers, which 
has a one-to-one function equivalence to DFL. One may 
view PLOTS as a source (e.g., assembly) language while 
viewing DFL as its machine language counterpart. 

This language is useful for designing simple structures 
or ones that are highly repetitive (such as memories). 
The arrows between DFL and PLOTS in both directions in 
Figure (2) indicate that both a PLOTS compiler and 
decompiler were developed. 

In order to design more complex structures, we designed 
the Digitizer-Plotter System which directly works with 
DFL during the late 1960'% as already discussed. By 

the mid 1970's, the DPS Systems were reaching their 
limitation due to growing IC complexity. We studied 
upgrading them and also evaluated turnkey systems. 

Based on our analysis, it became clear that it was 
more economical at this point to purchase than upgrade, 
and we purchased our first vendor-supplied interactive- 

graphics system. In Figure 2 the arrows in both 
directions between the interactive graphics systems and 
the DFL boxes indicate that we developed conversion 
software to translate from their internal artwork 
representations to DFL and visa versa. Hence, these 
systems became an integral part of our overall Design 
Automation System; i.e., a design generated on these 
systems could utilize any CAD capability such as PG and 
DRC while designs generated on DPS or by any other 
manner could be edited on these systems. 

Another method to create DFL is via an automatic layout 
program. RCA has developed a family of these programs 
generically called APAR (Automatic Placement And 
Routing) [7] which refers to the automatic placement of 
predefined standard cells into regular rows of cells, 
which are then automatically routed t i.e., intercon- 
nected. The first generation of this software was 
called PRF (Placement Routing and Folding) while the 
second was PR2D (Placement and Routing in 2 Dimensions). 
The third generation called MP2D, (M_ulti-P__~r~2 
Dimensional) now is being used. The MP2D Program has 
been highly successful in automatically laying out well 
over one hundred chips. (In fact over the last ten 
years RCA's APAR Programs have generated over i000 
custom LSI devices.) 

Typically, a layout can be performed in weeks (from 
logic diagrams to PG tape). If the logic is simulated 
by our MIMIC logic simulation program, its connectivity 
description can be automatically translated to MP2D 
format. Automated layout is a highly useful capability 
for prototype chips (to quickly develop a custom IC for 
insertion into a system breadboard) and for low volume 
custom designs. It trades off increased chip size to 
gain shorter design time and lower front-end cost. 

After creating the computerized artwork, the next step 
is to verify that it is correct. This can be done in a 
variety of ways. The most basic is to generate a check- 
plot of all the features for visual inspection. 
Software exists to communicate to a variety of penplot- 
ters, to graphic terminals or to high-speed electro- 
static plotters. 

More powerful than the visual inspection provided by a 
checkplot is the CRITIC (Computer Recognition of 

lllegal T_echnology in Integrated Circults) design rule 
checking program [4] a~ready mentioned. The designer 
may describe to CRITIC the geometrical rules of his 
technology in an English-like language. This is 
usually~done once for a new technology and 
this description, contained in a user-named "CRITIC 
control file", is simply invoked when CRITIC is 
executed. CRITIC generates a listing which describes 
for each violation: what topological condition (e.g., 
disjoint, contain, inside, overlap, abutt) or tolerance 
(width, notch, clearance, or enclosure tolerance value) 
was violated; a PLOTS listing of the offending features 
and what definition they came from; and also a DFL 
"error" file containing these offending features and 
tolerance "tic marks" for generating an error check 
plot. 

The ARTCON (ARTwork-to-CONnectivity Extraction Program) 
[6] may be used to extract logical connectivity 



directly from the physical artwork for a subset of 
design styles. These include ones utilizing predefined 
standard cells or other more general artwork building 
blocks. This program is used for all RCA's GUA [ii] (Gate 
Universal Array) designs (including metal gate, SOS and 
C2L technologies) to automatically extract the connec- 
tivity for a variety of logic simulators. The circuit 
is again simulated to verify functionality and look for 
possible logic hazards. The truth table output is then 
automatically translated by the AFTER (A_utomatic 
F_unctional Test Encoding R_outine) Program to a variety 
of automatic tester languages to provide a functional 
test program. This is highly useful, especially for 
Quick Turnaround Designs such as GUA and APAR. 

Another important function of the Artwork System is 
automated modification of the Artwork. The SMART 
Program (Selective M_odification of A_rtwork Regions and 
T__opologies) based on the Baird Algorithms [8] provides 
many essential capabilities. Its primitive capabili- 
ties include the Artwork Boolean Operators (AND, OR, 
NOT), over-and-under-sizing of features and translation. 

SMART is used to dimensionally "bias" (undersize) 
features to compensate for variations that occur during 
the mask making and semiconductor processing operations. 
It has also been used to partition large chips which 
are too large to be run in a single section on our 
MEBES Electron Beam Exposure System (whose limit is 16mm 
by 32mm, until a special reticle mode is developed) into 

abutting subchips. 

It has been used to automatically notch down the channel 
region of polysil~con gates (yet not narrow the inter- 
connect portion) to increase performance of critical 
parts. It can be used to automatically generate new 
mask levels from existing mask levels under a number of 
conditions and perform other automatic modification 
tasks. 

At the working end, the MAP (Mask Artwork Program), 
translates the general polygonal shapes described 

in the DFL language into a format capable of driving 
a mask making machine such as a D. W. Mann or Electro- 
mask Pattern Generator (to make a 5-or-10X reticle), a 
Gerber photoplotter (to make an 80X foil) or a MEBES 
Electron Beam Exposure System (to make a fully step-and- 
repeated mask). The SANDRA Program (Step-AND-Repeat 
Array) generates the required chip location information 
~ncluding dropouts and test inserts, and also labeling 
information. 

A capability that we have found to be highly useful 
over the years is the DEFORMAT Program. This 
decompiler-like program translates the data contained 
on a mask-making control tape back into DFL. This 
permits us to generate a shaded electrostratic check- 
plot of this data before the mask is made (for designer 
sign off). This verification procedure is invaluable 
as it tends to detect gross errors and otherwise 
obvious ones (e.g., improperly generated borders, 
improperly positioned or choosen library elements, miss- 
ing alignment keys, an opaque "hole", and so on) 
before expensive masks are made. 

The MASK System is another valuable facility at RCA. 
This software greatly simplifies the task of specifying 
MEBES or optical masters. It interactively requests all 
the information required to make a master: it gets 
chip information such as step-and-repeat distance and 
chip corners to automatically generate borders; it 
requests wafer size, chip dropout locations (or a 

Standard code) and test insert patterns to create the 
chip array; and lots of other required information. As 
much of this information is common to a technology, it 
may be specified in a dataset called the Technology 
File which may be invoked for future circuit types of 
the same technology family. 

After assimilating all this information, and performing 
syntax and semantics checks, MASK generates an "exec" 
file to automatically run MAP, which translates a DFL 
file to a PG tape, to run SANDRA, which generates the 
step-and-repeat array, to run DEFORMAT, which converts 
the PG tape back to DFL, and finally to run the 
checkplot software, which produces control tapes to 
generate the electrostatic checkplots. 

We have found this type of system to be extremely valu- 
able for automating standard procedures because it 
reduces effort, time and most importantly, the chance 
of procedural errors. 

A similiar system to MASK is AUTOROM. It automatically 
generates a PG control tape and an automated tester 
tape from an input file consisting of the ONEs and 
ZEROs desired for custom mask programmable ROM. All of 

the permanent data required for a specified ROM type, 
~.g., step-and-repeat distanc~ is stored in a perman- 
ent file, and so need not be respecified to generate a 
new custom variant of that type. In addition, AUTOROM 

does over a dozen obvious validity checks on the 
customer supplied bit-pattern-and-option file before 
proceeding to generate the PG and tester tapes. Over a 
halfmdozen CAD programs are automatically invoked by 

AUTOROM. 

Simulation 

We presently have sophisticated circuit and logic 
simulation software tools. The purpose of these tools 
is to verify the performance of an IC before manufac- 

tur e. 

Our recently developed MIMIC logic simulator [12] has 
state-of-the-art capabilities. It may be used in 
interactive or batch mode. It is a four-level simula- 
tor (i, O, X, Z). It permits a hierarchical building- 
block-specification capability. It uses the CADL 
language developed for the CADDB Common Data Base 
System already described (but not the Data Base itself). 
It has built-in models for primitive elements such as 
NANDs, NORs, ANDs, ORs, and a variety of flip-flops, 
both clocked and not. It properly models bilateral 
transmission gates including anarbitrary network of 
these. It supports inertial delay models for all gates: 
separate rise-and-fall delays may be automatically 
derived from tables of delay vs. either fanout or 
capacitive loading. A flexible hazard detection 
facility exists. A large variety of interactive 

facilities are supported; different time intervals may 
be simulated, breakpoints may be inserted, desired 
outputs may be respecified, NET states may be displayed 
or reset. The network may start in the unknown (X) or 
an initialized state. The designer may request detail- 
ed timing information (showing all the intermediate 
activity in response to an input change) or just 
stable-state results (tbe final state resulting from a 
new input state). 

Our TESTGEN logic simulator [9], which can simulate up 
to 512 "faulty" networks in parallel, is used to 
determine the "stuck-at" fault coverage of a set of 
test vectors. 



Another significant capability allows the designer to 
automatically translate from MIMIC input description 
format to APAR format (and the other way). This is not 
only fast and convenient, but eliminates translation 
errors. To further aid this process, a library of MIMIC 
subnetworks is being developed to functionally model 
each of the standard cells in APAR's library. 

capability which solved a real problem, and which 
cleanly fit into the existing structure, it was accept- 
ed. The addition of incremental capabilities has 
evolved our Design Automation System to where it is 
today. Therefore, as I try to project the evo%ution of 
Design Automation to serve the needs of VLSI I feel the 
need to constrain my optimism to growth modes that I 
have seen work first hand in the past. 

Furthermore, MIMIC output format is directly compatible 
with the AFTER Program which allows automatic transla- 
tion of test vectors (network inputs and simulated 
outputs to automatic tester format. This greatly 
simplifies functional test generation. 

Our R-CAP circuit simulation program [i0] is similar 
to well-known programs such as SPICE in its capabilit- 
ies. It employs a highly efficient DC algorithm, has 
standard transient response and small-signal-AC 
capabilities and has sensitivity-to-passive-components 

and noise-modeling capabilities. 

Its short channel MOS transistor model is accurate to 
3~ and is being extended further. It employs an 
Extended Ebers-Moll bipolar-transistor model and also, 
optionally a Gummel-Poon model which truly models base 
charge (unlike many other implementations). The user 
may choose an economical background batch mode or a 
highly interactive foreground mode. Plotting of all 

state variables, such as node-or-branch voltages, 
component current including device-pin current and 
component power is possible. Significantly, R-CAP has 
a correlated-component capability which allows the 
designer to specify any parameter (such as a resistance, 
capacitance or any model parameter such as threshold 
voltage or beta) in terms of a general algebraic 
expression. This supports verifying manufacturability, 
i.e., meeting electrical specifications in the face of 

processing variations. 

Without a doubt, I believe the major problems to be 
solved on the way to VLSI are in layout, testing and 
design verification, probably in that order of importance 
Moore [14]predicted that the design problem -- product 
definition, design and layout -- will be the rate- 
limiting process constraiping VLSI utilizaiton: first 
because this cost -- which I call "front-end cost" -- 
is growing exponentially with time -- thereby tracking 
complexity -- such that the front-end cost per function 
is remaining roughly constant. Second, because as we 
move toward the system level of complexity on a chip, 
product uniqueness increases, therebydecreasing potential 

volume. This increases front-end cost of a function ~er 
unit IC. Meanwhile, technology advances are dramati- 
cally decreasing the per unit manufacturing cost of each 
function. Clearly, front-end cost will soon dominate 
the total cost of a VLSI IC. 

Physical Design 

Clearly, a major challenge to Design Automation is to 
develop design and layout techniques which dramatically 
improve productivity in the front-end areas. I do not 
believe this is an impossible problem. In fact, I am 

confident that we are evolving, slowly, to a solution 

of the productivity and cost-per-function issues. 

The fundamental reason why front-end cost per function 
is not declining is because we are still mostly 
designing at or near the device or gate level. 

We have developed the very sophisiticated TDAS Test 
Data Analysis System [13] which is also cost-effective 
and easy to use. The latter is true because the system 
provides basic primitive capabilities, such as histo- 
grams, wafer maps, trend diagrams and so on, which may 
be custom assembled for a specific application. This 
system is used on a daily basis to support six differ- 
ent processing lines at three different RCA manufactur- 
ing locations. Its reports are automatically distri- 
buted to process, type and design engineers. 

Under active development is a general parameter 
correlation capability. This will provide graphical 
tools, such as scatter diagrams, and analytic tools, 
such as regression analysis. This will further aid the 
goal of Design for Manufacturability. 

I believe that the way to reduce fr$nt-end cost in IC 
design is to design and layout VLSI chips using higher- 
level functional building blocks which may be of SSI, 
MSI or even LSI complexity. For each product group, 
these blocks will include universal functions (such as 
clocked flip-flops, shift registers, ALU, RAMs, ROMs, 
encoders, decoders, expandable PLAs, comparators, A/Ds, 
D/As) and specialized proprietary application-oriented 
(yet often reusable) elements. 

In addition, we must develop higher level, i.e., more 
productive, techniques to create these functional 
blocks, such as symbolic layout [15]. Furthermore, 
these blocks must be assembled within a structured, 
hierarchical design environment to allow design verifi- 
cation to remain tractable; a nontrivial problem! 

The Challenges of VLSI 

A major question before us is: What are the compelling 
challenges to Design Automation as we move toward VLSI~ 
Where must we expend most of our future efforts to 
enable VLSI to become a reality? I see vast challenges 
ahead, especially in layout, design verification and 
testing. I can envision solutions to these problems 
just as many of my co-workers in this field can. 

However, as I think back to my early days in Design 
Automation, I have this strong feeling of deja vu. In the 
early 1970's, we clearly saw some of the problems of 

complexity and outlined elegant and achievable solu- 

tions. Only many of the more elegant and far looking 
solutions never took hold in our design communities. 
However, whenever we added a new (but incremental) 

Is this apple-pie technique achievable both technically 
and by the crucial criterion of designer acceptance? 

I am particularly encouraged in the practicality of this 
approach by our large success in utilizing the APAR 
techniques (already described) in our semiconductor 
commercial product areas. (As indicated, it has been 

highly successful in the systems area for over 15 
years.) At this time, the acceptance of this technique 
-- for a subset of commercial designs -- is growing 
rapidl~ precisely because of the necessity to reduce 
front-end cost and design time for system-type compon- 
ents for which handpacked layout techniques are 
uneconomical. 



The use of any automatic layout approach will not result 
in minimal area. For standard cell approaches, I 
believe the major cause of the area penalty is due to 
the use of fixed height standard cells and their 
algorithmic placement. Fixed height cells are rarely 
optimal in size -- simple cells tend to be too narrow 
(hence, "skinny") and complex ones too wide (hence, 
squat). Also, rigid pinout requirements tend to reduce 
cell density. In addition, algorithmic placement is 
never optimal because computers lack global perspective 
-- local optimums are usually found (global optimization 
is an NP-complete problem~). This leads to larger than 
required routing surfaces which impacts overall chip 
size and sometimes even performance (due to long inter- 
connects with too many tnnneJ~ -- ~hese add excess 
series resistance and capacitance to ground). 
Fortunately, CMOS technology is quite tolerant of these 
problems. 

I believe the advantages of APAR can be extended to dense 
VLSI while minimizing its limitations by adopting a 
semiautomatic technique which cleverly elicits 
designer guidance. We are developing one such approach 
called FLOSS (Finished LayOut Starting from S_ketch) [16]. 

• -This approach allows the use of arbitrary sized cells 

which can be SSI, MSI or LSI in complexity. The key 
insight of FLOSS is that it uses the global perspective 
of the human to get a rough initial layout (the sketch 
within which the designer optimizes placement and wire- 
ability) and then uses the computer to perform the 
tedious compaction process. The rough layout is 
essentially equivalent to the chip plan required before 
handcrafted layout is begu~ 

This process can be truly optimized by allowing exten- 
sive but rapid iteration to occur. The loose initial 
sketch is modified by insights gained from subsequent 
compaction. Another benefit of this approach is that 
future design modifications (which occur more often 
than we would like to admit) can be done to the 
loosely packed sketch, not the densely packed final lay- 
out. We plan to further optimize the iteration capabil- 
ity of this approach by developing a distributive 
computer system tying together an interactive graphics 
system with a fast processor. 

Using this building block technique both the logic and 
layout designers have vastly improved productivity by 
designing at a much higher level of complexity. The 
challenge for this des~i~n technique is to develop 

a set of "macrocells" which have reasonably high 
complexity (which is the source of productivity gain) 
yet which are not too functionally unique (which 
would require designing a large library of macrocells; 
each, of course, must be accomplished at the device 
level). Other challenges for this approach are develop- 
ing a design style which flexibly addresses aspect rati~ 
pinout-location and power-bussing issues. 

A technique which is highly promising for the design of 
macrocells -- but not VLSI chips -- is symbolic layout 
such as a STICKS approach [15]. The challenge here is 
that the "compiling"of aSTICKS diagram into silicon 
mask features is highly technology dependent. 
Optimal density of the macrocells may be difficult to 
achieve as technology evolves. Of course, parameteriza- 
tion of design rules may be a huge advantage in the face 
of rapid process evolution. One hope is that most of 
the parametrized designs will be readily scalable to 
tighter design rules -- thi~ of cours~ assumes that 
design rules will only change quantitatively not qualita- 
tively, i.e., topologically. Or, if there are a 
few qualitative changes, the software compiler must be 

readily modifiable. 

An advantage of the FLOSS approach is that it is not 
vulnerable to the above risks but can readily capitalize 
on whatever benefits symbolic layout can offer. 
Whenever it is judicious, a macrocell can be designed 
at the device level. 

Design Verification 

An other crucial issue is that of design verification-- 
both logic and circuit verification and the crucial 
issue of physical design verification. 

As described, we and other companies have developed 
excellent circuit and logic simulation tools. Our 
MIMIC logic simulator is hierarchical in nature. This 
permits developing a library of logical models for the 
predefined physical building blocks (macrocells) 
described in the previous section. This permits the 

logic designer to achieve the same type of productivity 
leverage as the layout designer, i.e., working with 
high-level primitives. 

However, this approach will not be efficient as com- 
plexity increases. Although it will be simple for the 
designer to specify and analyze rather complex systems 
by designing them in a top-down, hierarchical struc- 
tur, the simulator itself must perform a complete macro 
expansion of the system, as it simulates on the gate 
level. 

Clearly, a general, transparent high level, macromodel 
capability must be developed to improve simulator 
efficiency; this is crucial for fast, economical inter- 
action with the designer. This will be relatively 

straightforward for simple functional blocks such as 
ROMs, RAMs, PLAs, counters and shift registers. 
However, many subtle problems do exist, e.g., detailed 
timing accuracy, hazard detection and intelligent, 
i.e., minimal, propagation of the unknown (X) logic 
state. It will be even more challenging for more 
general functional blocks such as ALUs and decoders. 

On the positive side, it is obvious that we can 
incrementally solve this problem, i.e., we can keep 
adding additional functional models (macromodels), one 
at a time, focusing on those that most heavily impact 
simulator cost. 

In general, the ability to simulate VLSI-complexity 
circuits, i.e., subsystems, will require even higher 
levels of analysis, such as RTL (Register Transfer 
Level) and behavioral-level simulation. Although these 
types of simulators exist, I believe the challenge will 

be to structure a hierarchical simulation capability in- 
volving multilevels of simulation that communicate with 
one another, efficiently. This will permit system 
level simulation to verify lower-level-block design as 
top-down design proceeds. Impressive work [17] has 
occurred in this area but I believe, the efficiency 
challenge remains to be solved. 

There are many challenges in the physical design 
verification area. I believe many of these can be 
tackled by developing structured design techniques. 
These techniques make extensive use of hierarchical 
layout implementation, i.e., nested building blocks 
with clearly defined design rules governing their prox- 
imity and interconnection. The latter is crucial if 
currently available design rule and connectivity 
verification techniques are to be extended to VLSI. I 
believe this will be the largest challenge facing 
physical design verification; it will require strong 
coordination between CAD tool developers and the design 
community. 



Testability 

Another huge challenge to the successful utilization of 
VLSI capability is the ability to test the devices we 
design. This is already a significant problem for 
many designs of LSI complexity. A number of techniques 
for "Design For Testability" (DFT) have been proposed 
including scan techniques [18],, on-board test circuitry 
including utilization of signature analysis, behavioral- 
level test development [19] and designs using high 
visibility of all internal sequential logic to eifher 
probeable plns or the bus structures. In addition, I 
believe CAD testability aids such as controllability/ 
observability measures [20] will be helpful to the 

designer incorporating DFT. 

However, there is the obvious trade-off between 
testability and unit cost. The whole industry has 
traditionally emphasized silicon real e~tate above 

DFT for unit cost reasons. Our studies have shown that 
DFT using currently understood techniques can be quite 
expensive; more so than their proponents acknowledge. 
In addition, conventional testability measures, such as 
"stuck-at" fault-coverage monitors (used by all known 
parallel and concurrent fault simulation programs) do not 
address the issue of pattern-sensitive faults. Nor do 
the scan techniques test for them. These may become 
more significant as design rules shrink and inter- 
electrode couplings become more significant. This may 
also be crucial in the realiability area where migration 
of metal interconneetlons after stress testing may 
accentuate paftern-sensitivity (or lead to failure). 
As this will be a function of process evolution, built- 
in DFT techniques may he essential for even mature VLSI 
devices. 

I believe the development of cost-effective deslgn-for- 
testability approaches and their supporting Design 
Automation tools ~emain a large challenge. 

Summary 

The historical growth of Design Automation capabilities 
hasbeen reviewed. The most successful ones appear to 
be those which focused on a specific problem and solved 
it. This incremental evolution has lead to the highly 
successful system we now have at RCA. Some of the 
challenges of VLSI have been highlighted. These include 
the necessity to improve approaches to logical and 
physical design -- in order to reduce front-end IC 
design costs -- and to develop cost-effective Design 
for Testability approaches. Promisin~ approaches -- 
based on our historical perspective -- have been 
discussed and critiqued. 
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