
THE EVOLUTION OF DESIGN AUTOMATION
TO MEET THE CHALLANGES OF VLSI

Lawrence M. Rosenberg

RCA Laboratories
Solid State Technology Center

Somerville, NJ 08876

Abstract

This paper presents the author's opinion of the major
problems confronting Design Automation for VLSI and
how Design Automation may evolve to meet these challeng-
es. The paper first takes a historical look at the
driving forces for Design Automation development by
analyzing the evolution of Design Automation at RCA.
It looks at both some successful and unsuccessful
development efforts and attempts to isolate some of
the criteria necessary for success. It review RCA's
current LSI Design Automation capabilities and compares
them to the challenge of VLSI. The major challenges --
layout, design verification and testability -- are
discussed along with possible achievable solutions.

Introduction

The issue challenging Design Automation for VLSI is
learning how to cope with the continuing explosion of
complexity of IC's. Although the challenges facing
technology development are substantial -- lithography,
both imaging and registration, etching fine lines,
implantation, multilevel fine-line interconnect, and
so on -- there is no evidence that there is any
fundamental physical barrier preventing IC complexity
from continuing to grow exponentially in time -- dou-
bling in device count per chip every two years or so
for the next decade or more until design rules of
order 0ne-quarter to one-half micron are achieved [i].
It is the view of many observers including myself that
the rate limiting factor constraining the growth of IC
product complexity may well be the Design Automation
tools required for design ~system, logic, circuit, and
process) and its verification, for physical implemen-
tation (layout) and its verification, for test
generation and its verification (fault coverage) and
for test data analysis. Each of these present
substantial challenges to the Design Automation tool
builders and their users because of the large and
growing amount of data involved.

In order to gain some perspective of where we are
going and how we may get there, it may be useful to
first look at where we have been, where we thought we
were going and where we have actually arrived, i.e.,
at today's capabilities. It would also be valuable to
ask what were the driving forces that got us here. I
strongly suspect that history, i.e., Design Automa-
tion's track record, does provide good basis for
extrapolating into the future. Our past experience
should temper, not dampen, our view of the future, and
our enthusiasum for it.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 ACM 0-89791-020-6/80/0600/003 $0.75

As I am certainly not a Design Automation historian,
my views will be heavily influenced by my ten years
of experience at RCA, my limited knowledge of the
literature and my extensive discussions with fellow
Design Automation professionals. In fact, my

discussions will center around the Design Automation
experience at RCA; I suspect that although details will
surely differ, the general experience and insights are
quite representative and applicable to others.

In this discussion, I will contrast two idealized
driving forces for Design Automation development: the
DREAM and the NECESSITY; these terms will be defined
in context. It of course is realized that in reality
a combination of the two always exist. However, I
believe that usually one or the other is dominant, and
which one, determines to a large extent, the ultimate
success of the Design Automation development effort.
This too should become clearer from the context of
the discussion.

For the purposes of this paper, please allow me to
operationally define VLSI as the IC complexity of the
(near) future, i.e., one-to-two orders of magnitude
more complex than our Design Automation systems can
comfortably handle today.

In addition, because this paper addresses the issue of
Design Automation for VLSI, it is from the perspective
of a commercial semiconductor house, not a system
house, custom vendor, research laboratory, or universi-
ty.

Some History

Where to begin? I start in 1970 -- the year of the
Seventh Annual DAC (then called a workshop), so clearly
not at the beginning. Extensive work has gone on in
areas such as interactive graphics, automatic layout,
and circuit and logic simulation. However, in my view,
at this point in time, most of the enthusiasum for
Design Automation evolved from the Design Automation
tool builders at locations such as large corporate
research centers, not from the design community.
During this time, the driving force behind Design
Automation was the DREAM, not the NECESSITY.

I suspect the most useful Design Automation tools were
built by the circuit designers themselves at custom
facilities such as system houses. This is because the
low volume and quick turnaround required of custom
designers forced them to find computerized solutions
which gave them design leverage. That the techniques
developed, such as the standard cell automated layout
approach (described in more detail later), substantial-
ly increased chip size (and hence incremental cost) was

not an issue because of the low volume of production
required.

However, it was Just this penalty which, justifiably,
discouraged commercial semiconductor houses -- the main
focus of this paper -- from pursuing this approach. In
fact, to them IC complexity was modest enough (perhaps
100-500 devices) so that layout aids, logic simulation
and circuit simulation were not viewed as crucial or
even necessary. In fact, I believe these tools were
viewed as too inaccurate and expensive to be cost-
effective.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800139.804506&domain=pdf&date_stamp=1980-06-23

In actuality, for the commercial semiconductor house,
rubylith cutting for photomask generation was simple,

adequately fast and inexpensive. Although work was
going on in Interactive Graphics, what could one do
with the resulting digitized mask-artwork polygons
except use computerized ruby cutters. (Photoplotters,
capable of making 80X foils, were in use at various
government installations, such as RCA's Government
Systems Division, as far back as 1967 or so. It was
fed by the Design Automation system which automatically
laid out standard cell chips. However, I know of no
semiconductor house using them at that time.)
Digitizing these polygonal shapes was tedious and time
consuming. Wors~ editing of these computer representa-
tions was tedious if done on a source language format
or expensive: interactive graphics required very
expensive hardware because memory and other essential

hardware were expensive:inthose dark ages; only CAD
researchers could afford them. I suspect that it was
the advent of and necessity for the pattern generator
that really brought Design Automation into the world
of the commercial semiconductor manufacturer. It was
the first true NECESSITY driving force because of the
need to cope with MSI complexity from a manufacturing
point of view. Let me explain.

What is the limiting practical complexity forrubylith?
If the largest practical ruby sheet is of order i0 feet
on a side, if the smallest practical ruby grid step iS
of order .05 inch, if the required silicon grid step is
of order .05 mil (1.25 micron to support 7-10 micron
design rules) then these imply a ruby scale factor of
1000X and a maximum chip size of about i00 mil on a
side. As MOS complexity pushed past these limits,
pattern generation of a 10X reticle become a necessity.

But, how do we feed the pattern generator beast? How
do we get the artwork into a computer? At RCA Labs, an

English-like language called PLOTS [2] was developed.
Although easy to learn and use, especially for regular
structures such as memories, it soon outgrew its
ability to conveniently support random logic designs as
complexity pushed to the MSI level. Design Automation
system builders had to come up with a low-cost system
to capture hand drawn designs into the computer. We,
therefore, developed a simple, inexpensive Interactive
Graphics System (based on a PDP-8 with 4K memory, a
Calcomp digitizer plotter -- hence, the name Digitizer
Plotter System, DPS, and a hand held joystick) [3]. By
today's standards, its "interactive" editing capabiliti-
ties were as primitive as its hardware configuration.
But mask artwork could now be quickly and accurately
captured by a computer. One element of human error was
eliminated.

The state-of-the-art Design Automatio~ problem now was
how to develop pattern-generation (PG) software which
could translate a general (all angle) polygonal shape
into a minimal covering set of rectangles (with the
further constraint of minimal overlap at the edges of
the polygon). This problem required three generations
of production software at RCA to finally achieve an
optimal solution. We did not choose to limit ourselves
to orthogonal or 45 degree geometies (nonacute) because
certain technologies, such as bipolar with lateral
complementary transistors, require an all-angle polygon
capability.

This latter constraint -- support of many technolo-
gies -- has had other effects on our Design Automation
strategy at RCA. To emphasize this point, at RCA
Design Automation deals with metal and silicon-gate MOS,
CMOS/SOS, "Linear" Bipolar, I2L, High Speed Bipolar, and
various power transistor technologies.

Because of this diversity, we have endeavored to keep
our software as technology independent as possible.
We will return to this point later.

Concurrently with this work, the feasibility of a
computerized design rule checking (DRC) facility was
investigated (by the DREAMERS). Initial investigation
found it to be too difficult in the general case;
there were too many special cases. Additional data
from the designers was essential. However, as complex-
ity continued to increase, the number of digitized
design rule violations was becoming a major problem.
Furthermore, continuing complexity growth was rapidly
moving us past that awesome level of integration now
called MSI. NECESSITY being the mother of invention,
DRC had to be developed -- even if it only solved a
subset of the problem -- and it was [4].

This was the first truly new capability that storing
the artwork in a computer brought us; after all, the
pattern generator results in the same functional
reticle as from rubylith. However, now the computer
could do something truly new: automated desig~ rule
verification. We also discovered we could do more
verification with the data at hand than we originally
guessed. NECESSITY was a very strong driving force
indeed.

At this point, it was dramatically clear (at least to
the DREAMERS) that Design Automation possibilities were
truly unlimited! New capabilities such as connectivity
verification, device extraction from the artwork layout
itself, automated artwork geometry modification, and a
common data base linking all these to circuit and logic
simulation were conceived rapidly and enthusiastically.
Allow me to focus on this.

Common Data Base

It was quite clear to many of us at this point that
computer-aided design and verification systems truly
had an important role to play in the future of IC
design. This was for two reasons. First, automated
DRC proved that it was possible and achievable. Second,
we began to internalize the fact that IC progress was
relentless; that next year would bring even more
complexity. However, we all felt that this year's
Design Automation tools were barely adequate for today,
let alone tomorrow. Hence, the Design Automation
systems we were now envisioning had to cope with far
more complex chips than existed today. A whole new
(systems) approach had to be taken; we had to solve
the growing complexity issue and we had to unify the
worlds of circuit, logic and physical design. In
addition, learning from the systems people as we gazed
into the "complex" future, we had to cope with the
problem of data integrity (sometimes called configura-
tion control).

We decided that a centralized, "strOngly-coupled"
design data base, hierarchical in structure, was
required to solve all these problems. We called this
CADDB (Computer-Aided Design Data Base) [5]. This
strategy "solved" many problems. Data integrity was
insured because there was but one copy of the design
(centralization); "strong coupling" between the
physical and logical design representations guaranteed
they remained in sync. The "common" data base also
guaranteed that only one conversion program had to be
written for each existing or new CAD tool (e.g., logic
simulation, circuit simulation, system simulation,
automated layout and so on: the tool's input data
structure need only communicate with the data base,

2 not with N other programs which implies N conversion
programs, in worst case). The hierarchical structure
would solve the complexity issue. Finally, the over-
all design process was characterized and a new unified,

disciplined methodology was postulated. It was
recognized that this would require a substantial effort
and would lead to a quantum leap in capability. The
CAD project team set their sights on success in a time
frame of 3-5 years. In contrast, most of the CAD effort
continued to focus on incremental capabilities, based
on specific needs, with these new tools going into
production in a time frame of 1-3 years.

The CADDB System was developed in the time frame expect-
ed. Hopes were high for its successful introduction into
the production system. Unfortunately, the system
was not enthusiastically accepted. In fact, to this
day it still has not been accepted. Many of its
concepts and some of its software components have been,
but not the overall system•

'~at went wrong? In essence, the Design Automation
tool builders had postulated a design methodology:
logic simulation, followed by structured layout and DRC,
followed by connectivity extraction, followed by
comparison of extracted vs. simulated logic networks,
fo~owed by parasitic extraction for timing simulation,
and so on. And all of this in a well defined environ-
ment. However, the designers were not as enthusiastic
about all this structure as we were. After a number of
attempts to use this methodology -- all heavily
encouraged by management -- the general feeling was that
the cost-benefit ratio was too high.

Perhaps we had imposed too rigid a structure on the
lives of innovative designers who could use their
ingenuity to solve design problems. Put another way,
creating a total design structure assumes we not only
Understand all the normal steps in the design process
but also what flexibility must be included if changes
are to occur. Design systems (like all human institu-
tions and ecological systems), must be flexible enough
to permit creative change and be easily verified along
the way; they must be adaptive or they can not survive.

Meanwhile, the CAD development effort--which defined
needed, incremental capabilities -- continued to expand
our overall set of design tools into the highly success-
ful system it is today. (Some of this system will be
described in the section on "Current Capabilities".)
Perhaps the most credible way to highlight its success
is to summarize some of the data from our Software Usage
Monitoring System: in 1979, over 30 of these CAD
programs were accessed over i00,000 times by over three
dozen engineering organizations throughout the RCA
corporation.

Based on these and many other experiences in Design
Automation software development -- some quite success-
ful, some not -- can we discover any general principles
to help us maximize success in the future? This is not
an easy challenge. The following are a few of my own

observations.

Criteria For Success

First of all, I define a successful Design Automation
tool to be one which is actively used by many different
design teams on a variety of designs; not simply one
which has been tested successfully on a single, bench-
mark test vehicle. I believe that a number of criteria
are essential for a Design Automation tool to be
successful.

"The design community must perceive that use of the
Design Automation tool will cost-effectively result in
a tangible benefit."

This criteria implies many things. Let me explain, in
the early days the first and perhaps only tangible
benefit perceived was a PG tape: one could make a
reticle from it. It was real. Most of the other
Design Automation capabilities were viewed as promises.
When IC complexity advanced to the MSI/LSI level, the
output from a DRC Program was suddenly perceived to be
quite tangible; it was impossible for IC designers to

find all design rule violations by eye.

Hence, the word "perceive" is an important one. It is
not adequate that the Design Automation group define
and solve a problem• The designers themselves must
agree the problem exists and the solution is real and
cost-effective; the latter must be true not only in
dollars, but in terms of the designers time and effort.
This implies that the Design Automation solution must
occur at or near the same point of the design cycle
where the problem occurs and that either it reduce the
overall effort at that point or it is clearly impossi-
ble to proceed without it (PG tape example). Finally,
all of this implies that the solution be somewhat
localized, i.e., the designer sees that the effort

expended to utilize the Design Automation tool will
solve a real problem right there and that endless side
efforts beyond his control will not occur. This latter
rule precludes systems which redefine or restructure an
entire design process.

What seems to work is to institute an incremental
Design Automation capability somewhere in the design

process and then allow the system to adapt to it --
and adapt it to the system -- before introducing the
next incremental capability• For this to occur, the
Design Automation tools must be designed to be quite
robust; the requirement of supporting many technolo-
gies seems to aid this.

This allows both the Design Automation System and the

design process to adaptively evolve with time. Most
importantly, it allows the creative designer to use the
system in ways that were not even envisioned by the
Design Automation tool builders -- who are generally
not designers• Also, it encourages the designer's
management to support and encouage its usage. Aftera11,
engineering managers are responsible for product
development, not Design Automation development.

I believe a second criterion for success is that "The
approach must be technology independent." This is
clearly a generalization• It is based on my belief
that if the Design Automation capability is technology
dependent, technology evolution will obsolete the soft-
ware. In those rare cases where success is obtained,
the approach will not be readily transportable to other
technologies• We have found that the utilization of
Design Automation software by many design activities
has dramatically increased the ROI (Return On Investment)
of the original Design Automation developmental effort.
It also helps keep the maintenance of all this software
a tractable problem, as each piece of software has a
large user base.

A third and perhaps obvious criterion for success is
"There must be close communication between the Design
Automation tool builders and the designers."
Although this point is close to motherhood, it is too
often neglected in practice.

This brings me to my last criterion of success. I

believe that "90% of a Design Automation tool's 'paper'
capabilities can be developed with approximately 50% of
the total effort'." This implies that it takes "forever"

to finall~ get the "last few" bugs out and to add the
last few "bells and whistles" required for user
acceptance. It also implies that the creative Design
Automation developers who got it to the 90% point are
probably bored with the whole project now and are
anxious to move on to the next challenge, and to let
the "second team" finish the project.

However, I believe that the "last i0%" is 'bake-or-
break" for many Design Automation tools and that the
second team may not have the perspective or experience
to make the tweeks and compromises required for success.
In fact, often some of the most challenging problems --
involving designer acceptsnce -- occur during the
introductory phase of the development -- the "last 10%".
Needless to say this is a true challenge to management,
unless the Design Automation team has truly accepted
that it is their challengeto make the tool a success;
and this means getting it used by the design community.

I have symbolically summarized some of these thoughts
in Figure i. The dotted arrows imply that both the
design community and the Design Automation team are
encouraged to higher expectations based on a track
record of accomplishments. The rest is obvious:
success feeds itself. Unfortunately, the converse is
also true.

Current Capabilities

At this point, I would like to snapshot some of the LSI
Design Automation capabilities of RCA. I will then
equate this system to the complex designs and point
out where I feel our greatest challenges will be on
the road to VLSI and beyond. I will then attempt to use
some of the historical perspectives gained to project
the future evolution of Design Automation to meet the
challenges ahead.

Artwork

At the heart of RCA's artwork system, shown in Figure 2,
is an artwork representation called DFL - Design File
Language [3]. It is designed to be an efficient,
compact, program-readable language. Its primitive

components include general shaped (all-angle) polygons,
orthogonal polygons, center lines with width, general
purpose "comments" (to permit new extensions to work
with old versions of software), and general"definition"
(building block) function with an instance-specifica-
tion capability (which includes scaling, rotation and
mirroring). DFL allows hierarchical artwork specifica-

tion (with nesting up to 12 levels deep). All rather
forward looking for a language developed over ten years
ago. This language has remained upward and downward
compatible over the years although new features have
been added (using the "comment" extention capability),
i.e., recently developed Design Automation programs can
read a ten-year-old file while a ten-year-old program
can read a recently created file. We believe long
range compatibility of both software and da~a is an
essential issue in a real production environment.

Although DFL is friendly to Design Automation software,
it is not really friendly to humans. Therefore, the
PLOTS language [l]~ already referred to, was created as
a free-format, textual language for designers, which
has a one-to-one function equivalence to DFL. One may
view PLOTS as a source (e.g., assembly) language while
viewing DFL as its machine language counterpart.

This language is useful for designing simple structures
or ones that are highly repetitive (such as memories).
The arrows between DFL and PLOTS in both directions in
Figure (2) indicate that both a PLOTS compiler and
decompiler were developed.

In order to design more complex structures, we designed
the Digitizer-Plotter System which directly works with
DFL during the late 1960'% as already discussed. By

the mid 1970's, the DPS Systems were reaching their
limitation due to growing IC complexity. We studied
upgrading them and also evaluated turnkey systems.

Based on our analysis, it became clear that it was
more economical at this point to purchase than upgrade,
and we purchased our first vendor-supplied interactive-

graphics system. In Figure 2 the arrows in both
directions between the interactive graphics systems and
the DFL boxes indicate that we developed conversion
software to translate from their internal artwork
representations to DFL and visa versa. Hence, these
systems became an integral part of our overall Design
Automation System; i.e., a design generated on these
systems could utilize any CAD capability such as PG and
DRC while designs generated on DPS or by any other
manner could be edited on these systems.

Another method to create DFL is via an automatic layout
program. RCA has developed a family of these programs
generically called APAR (Automatic Placement And
Routing) [7] which refers to the automatic placement of
predefined standard cells into regular rows of cells,
which are then automatically routed t i.e., intercon-
nected. The first generation of this software was
called PRF (Placement Routing and Folding) while the
second was PR2D (Placement and Routing in 2 Dimensions).
The third generation called MP2D, (M_ulti-P__~r~2
Dimensional) now is being used. The MP2D Program has
been highly successful in automatically laying out well
over one hundred chips. (In fact over the last ten
years RCA's APAR Programs have generated over i000
custom LSI devices.)

Typically, a layout can be performed in weeks (from
logic diagrams to PG tape). If the logic is simulated
by our MIMIC logic simulation program, its connectivity
description can be automatically translated to MP2D
format. Automated layout is a highly useful capability
for prototype chips (to quickly develop a custom IC for
insertion into a system breadboard) and for low volume
custom designs. It trades off increased chip size to
gain shorter design time and lower front-end cost.

After creating the computerized artwork, the next step
is to verify that it is correct. This can be done in a
variety of ways. The most basic is to generate a check-
plot of all the features for visual inspection.
Software exists to communicate to a variety of penplot-
ters, to graphic terminals or to high-speed electro-
static plotters.

More powerful than the visual inspection provided by a
checkplot is the CRITIC (Computer Recognition of

lllegal T_echnology in Integrated Circults) design rule
checking program [4] a~ready mentioned. The designer
may describe to CRITIC the geometrical rules of his
technology in an English-like language. This is
usually~done once for a new technology and
this description, contained in a user-named "CRITIC
control file", is simply invoked when CRITIC is
executed. CRITIC generates a listing which describes
for each violation: what topological condition (e.g.,
disjoint, contain, inside, overlap, abutt) or tolerance
(width, notch, clearance, or enclosure tolerance value)
was violated; a PLOTS listing of the offending features
and what definition they came from; and also a DFL
"error" file containing these offending features and
tolerance "tic marks" for generating an error check
plot.

The ARTCON (ARTwork-to-CONnectivity Extraction Program)
[6] may be used to extract logical connectivity

directly from the physical artwork for a subset of
design styles. These include ones utilizing predefined
standard cells or other more general artwork building
blocks. This program is used for all RCA's GUA [ii] (Gate
Universal Array) designs (including metal gate, SOS and
C2L technologies) to automatically extract the connec-
tivity for a variety of logic simulators. The circuit
is again simulated to verify functionality and look for
possible logic hazards. The truth table output is then
automatically translated by the AFTER (A_utomatic
F_unctional Test Encoding R_outine) Program to a variety
of automatic tester languages to provide a functional
test program. This is highly useful, especially for
Quick Turnaround Designs such as GUA and APAR.

Another important function of the Artwork System is
automated modification of the Artwork. The SMART
Program (Selective M_odification of A_rtwork Regions and
T__opologies) based on the Baird Algorithms [8] provides
many essential capabilities. Its primitive capabili-
ties include the Artwork Boolean Operators (AND, OR,
NOT), over-and-under-sizing of features and translation.

SMART is used to dimensionally "bias" (undersize)
features to compensate for variations that occur during
the mask making and semiconductor processing operations.
It has also been used to partition large chips which
are too large to be run in a single section on our
MEBES Electron Beam Exposure System (whose limit is 16mm
by 32mm, until a special reticle mode is developed) into

abutting subchips.

It has been used to automatically notch down the channel
region of polysil~con gates (yet not narrow the inter-
connect portion) to increase performance of critical
parts. It can be used to automatically generate new
mask levels from existing mask levels under a number of
conditions and perform other automatic modification
tasks.

At the working end, the MAP (Mask Artwork Program),
translates the general polygonal shapes described

in the DFL language into a format capable of driving
a mask making machine such as a D. W. Mann or Electro-
mask Pattern Generator (to make a 5-or-10X reticle), a
Gerber photoplotter (to make an 80X foil) or a MEBES
Electron Beam Exposure System (to make a fully step-and-
repeated mask). The SANDRA Program (Step-AND-Repeat
Array) generates the required chip location information
~ncluding dropouts and test inserts, and also labeling
information.

A capability that we have found to be highly useful
over the years is the DEFORMAT Program. This
decompiler-like program translates the data contained
on a mask-making control tape back into DFL. This
permits us to generate a shaded electrostratic check-
plot of this data before the mask is made (for designer
sign off). This verification procedure is invaluable
as it tends to detect gross errors and otherwise
obvious ones (e.g., improperly generated borders,
improperly positioned or choosen library elements, miss-
ing alignment keys, an opaque "hole", and so on)
before expensive masks are made.

The MASK System is another valuable facility at RCA.
This software greatly simplifies the task of specifying
MEBES or optical masters. It interactively requests all
the information required to make a master: it gets
chip information such as step-and-repeat distance and
chip corners to automatically generate borders; it
requests wafer size, chip dropout locations (or a

Standard code) and test insert patterns to create the
chip array; and lots of other required information. As
much of this information is common to a technology, it
may be specified in a dataset called the Technology
File which may be invoked for future circuit types of
the same technology family.

After assimilating all this information, and performing
syntax and semantics checks, MASK generates an "exec"
file to automatically run MAP, which translates a DFL
file to a PG tape, to run SANDRA, which generates the
step-and-repeat array, to run DEFORMAT, which converts
the PG tape back to DFL, and finally to run the
checkplot software, which produces control tapes to
generate the electrostatic checkplots.

We have found this type of system to be extremely valu-
able for automating standard procedures because it
reduces effort, time and most importantly, the chance
of procedural errors.

A similiar system to MASK is AUTOROM. It automatically
generates a PG control tape and an automated tester
tape from an input file consisting of the ONEs and
ZEROs desired for custom mask programmable ROM. All of

the permanent data required for a specified ROM type,
~.g., step-and-repeat distanc~ is stored in a perman-
ent file, and so need not be respecified to generate a
new custom variant of that type. In addition, AUTOROM

does over a dozen obvious validity checks on the
customer supplied bit-pattern-and-option file before
proceeding to generate the PG and tester tapes. Over a
halfmdozen CAD programs are automatically invoked by

AUTOROM.

Simulation

We presently have sophisticated circuit and logic
simulation software tools. The purpose of these tools
is to verify the performance of an IC before manufac-

tur e.

Our recently developed MIMIC logic simulator [12] has
state-of-the-art capabilities. It may be used in
interactive or batch mode. It is a four-level simula-
tor (i, O, X, Z). It permits a hierarchical building-
block-specification capability. It uses the CADL
language developed for the CADDB Common Data Base
System already described (but not the Data Base itself).
It has built-in models for primitive elements such as
NANDs, NORs, ANDs, ORs, and a variety of flip-flops,
both clocked and not. It properly models bilateral
transmission gates including anarbitrary network of
these. It supports inertial delay models for all gates:
separate rise-and-fall delays may be automatically
derived from tables of delay vs. either fanout or
capacitive loading. A flexible hazard detection
facility exists. A large variety of interactive

facilities are supported; different time intervals may
be simulated, breakpoints may be inserted, desired
outputs may be respecified, NET states may be displayed
or reset. The network may start in the unknown (X) or
an initialized state. The designer may request detail-
ed timing information (showing all the intermediate
activity in response to an input change) or just
stable-state results (tbe final state resulting from a
new input state).

Our TESTGEN logic simulator [9], which can simulate up
to 512 "faulty" networks in parallel, is used to
determine the "stuck-at" fault coverage of a set of
test vectors.

Another significant capability allows the designer to
automatically translate from MIMIC input description
format to APAR format (and the other way). This is not
only fast and convenient, but eliminates translation
errors. To further aid this process, a library of MIMIC
subnetworks is being developed to functionally model
each of the standard cells in APAR's library.

capability which solved a real problem, and which
cleanly fit into the existing structure, it was accept-
ed. The addition of incremental capabilities has
evolved our Design Automation System to where it is
today. Therefore, as I try to project the evo%ution of
Design Automation to serve the needs of VLSI I feel the
need to constrain my optimism to growth modes that I
have seen work first hand in the past.

Furthermore, MIMIC output format is directly compatible
with the AFTER Program which allows automatic transla-
tion of test vectors (network inputs and simulated
outputs to automatic tester format. This greatly
simplifies functional test generation.

Our R-CAP circuit simulation program [i0] is similar
to well-known programs such as SPICE in its capabilit-
ies. It employs a highly efficient DC algorithm, has
standard transient response and small-signal-AC
capabilities and has sensitivity-to-passive-components

and noise-modeling capabilities.

Its short channel MOS transistor model is accurate to
3~ and is being extended further. It employs an
Extended Ebers-Moll bipolar-transistor model and also,
optionally a Gummel-Poon model which truly models base
charge (unlike many other implementations). The user
may choose an economical background batch mode or a
highly interactive foreground mode. Plotting of all

state variables, such as node-or-branch voltages,
component current including device-pin current and
component power is possible. Significantly, R-CAP has
a correlated-component capability which allows the
designer to specify any parameter (such as a resistance,
capacitance or any model parameter such as threshold
voltage or beta) in terms of a general algebraic
expression. This supports verifying manufacturability,
i.e., meeting electrical specifications in the face of

processing variations.

Without a doubt, I believe the major problems to be
solved on the way to VLSI are in layout, testing and
design verification, probably in that order of importance
Moore [14]predicted that the design problem -- product
definition, design and layout -- will be the rate-
limiting process constraiping VLSI utilizaiton: first
because this cost -- which I call "front-end cost" --
is growing exponentially with time -- thereby tracking
complexity -- such that the front-end cost per function
is remaining roughly constant. Second, because as we
move toward the system level of complexity on a chip,
product uniqueness increases, therebydecreasing potential

volume. This increases front-end cost of a function ~er
unit IC. Meanwhile, technology advances are dramati-
cally decreasing the per unit manufacturing cost of each
function. Clearly, front-end cost will soon dominate
the total cost of a VLSI IC.

Physical Design

Clearly, a major challenge to Design Automation is to
develop design and layout techniques which dramatically
improve productivity in the front-end areas. I do not
believe this is an impossible problem. In fact, I am

confident that we are evolving, slowly, to a solution

of the productivity and cost-per-function issues.

The fundamental reason why front-end cost per function
is not declining is because we are still mostly
designing at or near the device or gate level.

We have developed the very sophisiticated TDAS Test
Data Analysis System [13] which is also cost-effective
and easy to use. The latter is true because the system
provides basic primitive capabilities, such as histo-
grams, wafer maps, trend diagrams and so on, which may
be custom assembled for a specific application. This
system is used on a daily basis to support six differ-
ent processing lines at three different RCA manufactur-
ing locations. Its reports are automatically distri-
buted to process, type and design engineers.

Under active development is a general parameter
correlation capability. This will provide graphical
tools, such as scatter diagrams, and analytic tools,
such as regression analysis. This will further aid the
goal of Design for Manufacturability.

I believe that the way to reduce fr$nt-end cost in IC
design is to design and layout VLSI chips using higher-
level functional building blocks which may be of SSI,
MSI or even LSI complexity. For each product group,
these blocks will include universal functions (such as
clocked flip-flops, shift registers, ALU, RAMs, ROMs,
encoders, decoders, expandable PLAs, comparators, A/Ds,
D/As) and specialized proprietary application-oriented
(yet often reusable) elements.

In addition, we must develop higher level, i.e., more
productive, techniques to create these functional
blocks, such as symbolic layout [15]. Furthermore,
these blocks must be assembled within a structured,
hierarchical design environment to allow design verifi-
cation to remain tractable; a nontrivial problem!

The Challenges of VLSI

A major question before us is: What are the compelling
challenges to Design Automation as we move toward VLSI~
Where must we expend most of our future efforts to
enable VLSI to become a reality? I see vast challenges
ahead, especially in layout, design verification and
testing. I can envision solutions to these problems
just as many of my co-workers in this field can.

However, as I think back to my early days in Design
Automation, I have this strong feeling of deja vu. In the
early 1970's, we clearly saw some of the problems of

complexity and outlined elegant and achievable solu-

tions. Only many of the more elegant and far looking
solutions never took hold in our design communities.
However, whenever we added a new (but incremental)

Is this apple-pie technique achievable both technically
and by the crucial criterion of designer acceptance?

I am particularly encouraged in the practicality of this
approach by our large success in utilizing the APAR
techniques (already described) in our semiconductor
commercial product areas. (As indicated, it has been

highly successful in the systems area for over 15
years.) At this time, the acceptance of this technique
-- for a subset of commercial designs -- is growing
rapidl~ precisely because of the necessity to reduce
front-end cost and design time for system-type compon-
ents for which handpacked layout techniques are
uneconomical.

The use of any automatic layout approach will not result
in minimal area. For standard cell approaches, I
believe the major cause of the area penalty is due to
the use of fixed height standard cells and their
algorithmic placement. Fixed height cells are rarely
optimal in size -- simple cells tend to be too narrow
(hence, "skinny") and complex ones too wide (hence,
squat). Also, rigid pinout requirements tend to reduce
cell density. In addition, algorithmic placement is
never optimal because computers lack global perspective
-- local optimums are usually found (global optimization
is an NP-complete problem~). This leads to larger than
required routing surfaces which impacts overall chip
size and sometimes even performance (due to long inter-
connects with too many tnnneJ~ -- ~hese add excess
series resistance and capacitance to ground).
Fortunately, CMOS technology is quite tolerant of these
problems.

I believe the advantages of APAR can be extended to dense
VLSI while minimizing its limitations by adopting a
semiautomatic technique which cleverly elicits
designer guidance. We are developing one such approach
called FLOSS (Finished LayOut Starting from S_ketch) [16].

• -This approach allows the use of arbitrary sized cells

which can be SSI, MSI or LSI in complexity. The key
insight of FLOSS is that it uses the global perspective
of the human to get a rough initial layout (the sketch
within which the designer optimizes placement and wire-
ability) and then uses the computer to perform the
tedious compaction process. The rough layout is
essentially equivalent to the chip plan required before
handcrafted layout is begu~

This process can be truly optimized by allowing exten-
sive but rapid iteration to occur. The loose initial
sketch is modified by insights gained from subsequent
compaction. Another benefit of this approach is that
future design modifications (which occur more often
than we would like to admit) can be done to the
loosely packed sketch, not the densely packed final lay-
out. We plan to further optimize the iteration capabil-
ity of this approach by developing a distributive
computer system tying together an interactive graphics
system with a fast processor.

Using this building block technique both the logic and
layout designers have vastly improved productivity by
designing at a much higher level of complexity. The
challenge for this des~i~n technique is to develop

a set of "macrocells" which have reasonably high
complexity (which is the source of productivity gain)
yet which are not too functionally unique (which
would require designing a large library of macrocells;
each, of course, must be accomplished at the device
level). Other challenges for this approach are develop-
ing a design style which flexibly addresses aspect rati~
pinout-location and power-bussing issues.

A technique which is highly promising for the design of
macrocells -- but not VLSI chips -- is symbolic layout
such as a STICKS approach [15]. The challenge here is
that the "compiling"of aSTICKS diagram into silicon
mask features is highly technology dependent.
Optimal density of the macrocells may be difficult to
achieve as technology evolves. Of course, parameteriza-
tion of design rules may be a huge advantage in the face
of rapid process evolution. One hope is that most of
the parametrized designs will be readily scalable to
tighter design rules -- thi~ of cours~ assumes that
design rules will only change quantitatively not qualita-
tively, i.e., topologically. Or, if there are a
few qualitative changes, the software compiler must be

readily modifiable.

An advantage of the FLOSS approach is that it is not
vulnerable to the above risks but can readily capitalize
on whatever benefits symbolic layout can offer.
Whenever it is judicious, a macrocell can be designed
at the device level.

Design Verification

An other crucial issue is that of design verification--
both logic and circuit verification and the crucial
issue of physical design verification.

As described, we and other companies have developed
excellent circuit and logic simulation tools. Our
MIMIC logic simulator is hierarchical in nature. This
permits developing a library of logical models for the
predefined physical building blocks (macrocells)
described in the previous section. This permits the

logic designer to achieve the same type of productivity
leverage as the layout designer, i.e., working with
high-level primitives.

However, this approach will not be efficient as com-
plexity increases. Although it will be simple for the
designer to specify and analyze rather complex systems
by designing them in a top-down, hierarchical struc-
tur, the simulator itself must perform a complete macro
expansion of the system, as it simulates on the gate
level.

Clearly, a general, transparent high level, macromodel
capability must be developed to improve simulator
efficiency; this is crucial for fast, economical inter-
action with the designer. This will be relatively

straightforward for simple functional blocks such as
ROMs, RAMs, PLAs, counters and shift registers.
However, many subtle problems do exist, e.g., detailed
timing accuracy, hazard detection and intelligent,
i.e., minimal, propagation of the unknown (X) logic
state. It will be even more challenging for more
general functional blocks such as ALUs and decoders.

On the positive side, it is obvious that we can
incrementally solve this problem, i.e., we can keep
adding additional functional models (macromodels), one
at a time, focusing on those that most heavily impact
simulator cost.

In general, the ability to simulate VLSI-complexity
circuits, i.e., subsystems, will require even higher
levels of analysis, such as RTL (Register Transfer
Level) and behavioral-level simulation. Although these
types of simulators exist, I believe the challenge will

be to structure a hierarchical simulation capability in-
volving multilevels of simulation that communicate with
one another, efficiently. This will permit system
level simulation to verify lower-level-block design as
top-down design proceeds. Impressive work [17] has
occurred in this area but I believe, the efficiency
challenge remains to be solved.

There are many challenges in the physical design
verification area. I believe many of these can be
tackled by developing structured design techniques.
These techniques make extensive use of hierarchical
layout implementation, i.e., nested building blocks
with clearly defined design rules governing their prox-
imity and interconnection. The latter is crucial if
currently available design rule and connectivity
verification techniques are to be extended to VLSI. I
believe this will be the largest challenge facing
physical design verification; it will require strong
coordination between CAD tool developers and the design
community.

Testability

Another huge challenge to the successful utilization of
VLSI capability is the ability to test the devices we
design. This is already a significant problem for
many designs of LSI complexity. A number of techniques
for "Design For Testability" (DFT) have been proposed
including scan techniques [18],, on-board test circuitry
including utilization of signature analysis, behavioral-
level test development [19] and designs using high
visibility of all internal sequential logic to eifher
probeable plns or the bus structures. In addition, I
believe CAD testability aids such as controllability/
observability measures [20] will be helpful to the

designer incorporating DFT.

However, there is the obvious trade-off between
testability and unit cost. The whole industry has
traditionally emphasized silicon real e~tate above

DFT for unit cost reasons. Our studies have shown that
DFT using currently understood techniques can be quite
expensive; more so than their proponents acknowledge.
In addition, conventional testability measures, such as
"stuck-at" fault-coverage monitors (used by all known
parallel and concurrent fault simulation programs) do not
address the issue of pattern-sensitive faults. Nor do
the scan techniques test for them. These may become
more significant as design rules shrink and inter-
electrode couplings become more significant. This may
also be crucial in the realiability area where migration
of metal interconneetlons after stress testing may
accentuate paftern-sensitivity (or lead to failure).
As this will be a function of process evolution, built-
in DFT techniques may he essential for even mature VLSI
devices.

I believe the development of cost-effective deslgn-for-
testability approaches and their supporting Design
Automation tools ~emain a large challenge.

Summary

The historical growth of Design Automation capabilities
hasbeen reviewed. The most successful ones appear to
be those which focused on a specific problem and solved
it. This incremental evolution has lead to the highly
successful system we now have at RCA. Some of the
challenges of VLSI have been highlighted. These include
the necessity to improve approaches to logical and
physical design -- in order to reduce front-end IC
design costs -- and to develop cost-effective Design
for Testability approaches. Promisin~ approaches --
based on our historical perspective -- have been
discussed and critiqued.

Acknowledgemdnt s

I wish to thank Henry Baird, Larry French and Fred Teger
who thoughtfully reviewed an early version of this paper
thereby contributing valuable insights and encouragement.
I would also like to thank my staff, Rich Auerbach,
Chris Davis, and Hans Schnitzler for their many and
significant contributions to our Design Automation
efforts over the years. I am grateful to Larry French
who guided the direction and development of Design
Automation for many years. I am totally indebted to
my many co-workers at RCA who created the capabilities

discussed in this paper.

\

" ~- < SUCCESS~. ~ / /

Figure i. The Driving Forces of a Production
Design Automation System.

RCA'S MASK ARYHORW SYSTFR

~ | £ A I / O B

" i

i i

I g A a $ L A ~ I O |
, j , . , o .

Figure 2

10

REFERENCES

[1] Mead, C. and Conway, L., Introduction to VLSI
Systems. Addison-Wesley,]980, pp. 137-143. [12]

[2] Korenjak, B. J., "PLOTS: A User-oriented Lang-
uage for CAD Artwork". RCA Engineer, Volume 20,
Number 4, (December 1974), pp. 20. [13]

[3] Ressler, D. G., "Simple Computer-aided Artwork
System That Works". Proc. llth Design Automation
Workshop, June 1974, Denver, Colorado. [14]

[4a] Rosenberg, L. and Benbassat, C., "CRITIC: An
Integrated Circuit Design Rule Checking Program". [15a]
Proc. llth Design Automation Workshop, June, 1974,
Denver, Colorado, pp. 14-18.

[4b] Auerbach, R. A. and Deutsch, S., "CRITIC: Improved [15b]
Capabilities and A User-oriented Language".
Internal Report, 1977.

[5] Korenjak, A. J. and Teger, A. H., "An Integrated
CAD Data Base System". Proc. 12th Design Auto- [16]
mation Workshop, June, 1975, Boston, Massachusetts.

[6] Baird, H. S. and Cho, Y. E., "An Artwork Design
Verification System". Proc. 12th Design Auto-
mation Workshop, June, 1975, Boston, Massachusetts
pp. 414-420. [17]

[7] Feller, A. and Noto, R., "A Speed-oriented, Fully-
Automatic Layout Program for Random Logic VLSI
Devices". National Computer Conference Proceedings,
1978, pp. 303-311. [18a]

[8] Baird, H., "Fast Algorithms for LSI Artwork
Analysis". Proc. 14th Design Automation
Conference, June, 1977, New Orleans, Louisiana,
pp. 303-311. [18b]

[9] Hellman, H. I., "TESTGEN: An Interactive Test
Generation and Logic Simulation Program". RCA

Engineer, Volume 21, Number l,(June/July 1975). [18c]

[10a] Davis, C. B., Miller, J. C. and Rosenberg, L. M.,
"Digital Simulation as a Design Tool". RCA Engineer,
Volume 17, Number 4, (December 1971), pp.34-39.

[19]
[10b] Davis, C. B. and Payne, M I., "R-CAP: An

Integrated Circuit Simulator". RCA Engineer,
Volume 21, Number i, (June/July 1975).

[20]
[ii] Bergman, R., Aguilera, M. and Skorup, G. E., "MOS

Array Design: Universal Array, APAR or Custom".
Ibid.

Ashkinazy, A. and Hellman, H. I., ['MIMIC User
Guide". Internal Publication, August, 1979.

Gianfagna, M., "A Unified Approach to Test Data
Analysis". Proc. 15th Design Automation
Conference, June, 1978, Las Vegas, Nevada.

Moore, G., "VLSI: Some Fundamental Challenges"
IEEE Spectrum, April, 1979, pp. 30-37.

Williams, J. D., "STICKS - A Graphical Compiler
for High Level LSI Design". National Computer
Conference, 1978, pp. 289-295.

Hsueh, M., "Symbolic Layout and Compaction of
Integrated Circuits". Memorandum Number
UCB/ERL M79/80, Electronics Research Lab,
U. C. Berkeley, December, 1979.

Cho, Y. E., Korenjak, A. and Stockton, D. E.,
"FLOSS: An Approach to Automated Layout for
High-Volume Designs". Proc. 14th Design
Automation Conference, June, 1977, New Orleans,
Louisiana, pp. 138-141.

Hill, D. and vanClemmpat, W., "SABLE: A Tool for
Generating Structured, Multi-level Simulations".
Proc. 16th Design Automation Conference, June, 1979
San Diego, California, pp. 272-279.

Eichelberger, E. B. and Williams, T. W., "A Logic
Design Structure for LSI Testability". Proc. 14th
Design Automation Conference, June, 1977,
pp. 462-468.

Funatsu, S., Wakatsuki, N. and Yamada, A.,-
"DESIGN". "Designing Digital Circuits With Easily
Testable Consideration". 1978 Semiconductor
Test Conference, pp. 98-102.

Mulder, C.,
"Layout and
Circuits".

Niessen, C. and Wijnhoven, R. M. G.,
Test Design of Synchronous LSI
1979 International Solid-State Circuits,

pp. 248-249.

Johnson, W. A., "Behavioral-Level Test Development".
Proc. 16th Design Automation Conference, June, 1979,
San Diego, California, pp. 171-179.

Goldstein, L. H. "Controllability/Observability
Analysis of Digital Circuits". IEEE Trans. Circ.
and Sys., Volume CAS-25, Number 9, (September 1979),
pp. 685-693.

11

