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ABSTRACT 

This paper is concerned with the analysis of design 
errors that lead to unpredictable response of digital 
systems. Besides classical topics, such as hazards and 
~aces, the analysis of malfunctions in real circuits is 
also included. After defining the notion of behavior 
and nondeterministic response, a general approach for 
detecting such design problems through algebraic analy- 
sis is presented. Compared with existing simulation 
methods, the algebraic technique provides results of 
improved accuracy. Another basic advantage is the abil- 
ity to accomodate modular synthesis of digital systems. 

Examples show how the proposed methods deal with 
sequential circuits under various delay assumptions. In 
particular, analysis of designs based on nominal delay 
parameters and on window delays is presented. A novel 
method, aiming at spike detection, is also presented. 
The ability of the algebraic analysis to detect errors 
in a modular design environment is illustrated by means 
of an example. 

Finally, the topic of nondeterministic behavior at 
R~L is briefly discussed. Notably, an algebraic method 
for deriving setup and hold time constraints from the 
circuit delay parameters is proposed. 

i. NONDETERMINISTIC BEHAVIOR OF DIGITAL CIRCUITS 

In a previous paper [2], the importance of functional 
abstraction for the verification of digital systems has 
been shown. Functional abstraction is defined as the 
generation of the behavior for a given digital system. 
Typically, a system is described by a network of inter- 
connected modules and its behavior, as seen at the 
interface, is generated. Often, digital systems yield 
unpredictable response. The term nQndeterministic 
behavior refers to the possibility of a digital system 
to experience changes that are dependent not only on 
its inputs and its starting state, but also on some 
implementation details not totally controlable. The 
qualification of functional is used for a system oper- 
ated such that its response is always uniquely defined. 

Functional abstraction [2] assumes that the digital 
system under consideration is used only with determin- 
istic results. Thus, it is very important to detect any 
attempt of using the system in the nonfunctional 
domain. 
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Although theoretically any digital system can be 
analyzed and its behavior fully defined, many factors 
not completely controlable occur in practice. For exam- 
ple, variations in propagation delay parameters, due to 
fabrication tolerance and environmental factors, may 
change the circuit's behavior. Since it is not feasi- 
ble to fully control these parameters, the presence of 
nondeterministic behavior must be assumed. 

1.1 Factors for Consideration 

Three possible approaches for dealing with the effect 
of propagation delays on the design are: 

a) Unbounded delay designs are able to accomodate any 
propagation delays and thus are insensitive to 
implementation factors. The philosophy of speed 
independent design is an offspring of this approach 
to digital systems. 

b) Nominal delay designs consider that full control of 
the propagation delays is possible. 

c) Window delay designs take into consideration the 
upper and lower limits of the delay parameters. 
Usually, these limits are determined by means of a 
probabilistic analysis of the dispersion in delay 
parameters. A more pessimistic solution assumes 
that worst case delays are given and the design must 
be able to work under this constraints. 

An important factor affecting the analysis is the 
operation mode intended for the system. Relevant cases 
are: 

a) Fundamental mode operation with single input changes 
[5] such that the input changes are separated by 
delays sufficient to allow the circuit to stabilize. 

b) Fundamental mode operation with multiple input 
chan~es, but still allowing the circuit to stabilize 
before application of a new input combination. 

e) Nonfundamental mod~ operation, such that the circuit 
does not stabilize before a new input combination is 
applied. 

Usually, circuits are expected to operate in fundamen- 
tal mode with single input changes and the occurrence 
of multiple input changes or short input pulses is due 
to design errors. 

1.2 Advantages of Algebraic Analysis 

The methods currently used for the analysis of nondet- 
erministic behavior of digital circuits can be grouped 
into two categories: 

a) To the first one belong analytical methods able to 
detect classical design problems, such as hazards 
and races [I]. All these methods analyze functional 
behavior under the assumption of unbounded delays. A 
design passing such a test is insensitive to the 
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implementation and can operate deterministically 

with any delay parameters. Actually, designs are 
seldom meant to be speed independent, therefore the 
practical value of these methods is quite low. 

b) The prevailing tool for analysis of digital circuits 
in the presence of implementation parameters is 
logic simulation. It uses a mostly structural 
description of the analyzed circuit, with built in 
routines describing the behavior of basic components 
[4]. This provides an effective method for checking 
the circuit's behavior for ~ ~iven input combina- 
tion. However, exhaustive testing of all possible 
input combinations can not be used in practical cir- 
cuits. In [2], a similar argument against verifica- 
tion by means of simulation was presented. When 
dealing with nondeterministic behavior, the situa- 
tion is much worse• In addition to all possible 
input combinations, the relative delay between 
application of any two such inputs plays an impor- 
tant role. Thus, analysis in the present context 
means derivation of admissible inputs including 
allowed delays between innut chan~es. While simula- 
tion can be usefull for checking correct behavior 
for some typical situations, it can not be consid- 
ered a general analysis tool. 

1.3 Algebraic Analysig o_ffNondeterministio Behavior 

The algebraic analysis of nondeterministic behavior 
relies on the following assumptions: 

i) Nondeterminism is exhibited by the appearance of 
erroneous internal states in the circuit. Inter- 
nal combinational parts of the circuit are never 
considered to exhibit nondeterminism by them- 
selves• They are included in the analysis only 
through their effect on internal states• Combi- 
national parts feeding the outputs are excepted 
from this rule. Since the analyzed module can 
feed another sequential circuit, enough informa- 
tion must be stored to enable detection of any 
nondeterministic features when the module is used 
as a component of complex systems• 

ii) All cases of nondeterministic behavior are 
instances of the system's behavior being sensi- 
tive to the relative order of the occurrences of 
changes• Even when the exact delay parameters are 
known, the relative order of two internal changes 
can be ascertained only if both are generated by 
the same input transition• Therefore, the pres- 
ence of nondeterministic features can be tested 
only with respect to a single input change, that 
brings forth multiple internal transitions propa- 
gating on reconvergent fanout branches• 

iii) Input changes that can not be traced to a common 
input transition can not be ascertained as gener- 
ating nondeterministic behavior, since their rel- 
ative order is not yet known. The solution is to 
set up admissible relative delays between Unre- 
lated input transitions. When the module is used 
as part of a complex system, the limitations o__ff 
admissiblg inputs are checked and if they are 
infringed, the system behaves nondeterministi- 
cally. 

iv) The algebraic analysis proceeds backwards, start- 
ing with feedback signals and deriving the local 
input transitions that give rise to problematic 
behavior• These local combinations are then 
expressed in terms of primary inputs and define 
the unallowed input combinations• 

The analysis of nondeterministic behavior is inte- 
grated in the process of design verification based on 
functional abstraction. 
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2. FUNDAMENTALS OF ALGEBRAIC ANALYSIS 

2.1 Dynamic Boolean Al~ebras 

The algebraic framework is provided by a dynamic boo- 
lean algebra (DBA) with four predicates for each sig- 
nal, representing its enabled state, its disabled 
state, its rising state (from disabled to enabled) and 
its dropping state (from enabled to disabled)• Corre- 
sponding to a signal X, these four predicates are 
denoted by X, "X, *X and *'X , respectively. Consid- 
erations on the implications of using dynamic boolean 
algebras can be found in [3]. The circuit components 
AND, OR and INVERTER are denoted by . , + and -. The 
basic postulates are: 

i) Orthogonality: X + "X + *X + *-X = 1 , 
X . -X = X . *X = X . *-X = "X . *X = "X . *-X = 
*X . *-X = 0 

ii) --X = X , *('X) = *-X , *-('X) : *X 

iii) -(X + Y) = "X . "Y , ~(X . Y) = "X + -Y 

iv) *(X + Y) = -X . *Y + *X . -Y + *X . *Y + *X . *~Y 
+ *-X . *Y 
*-(X + Y) = -X . *'Y + *'X . "Y + *-X . *~Y + *-X 
• *Y + *X . *-Y 

*(X . Y) = X . *Y + *X . Y + *X . *Y + *X . *-Y + 
*-X . *Y 
*-(X . Y) = X . *-Y + *-X . Y + *-X . *-Y + *-X . 
*Y + *X . *-Y 

As shown in [3], this algebra has several cases of 
inconsistency. Thus, the final result may depend on 
the order of reductions performed. The practical solu- 
tion is to define a strategy of reductions, tailored to 
the intended application. 

2.2 Treatment o_~fSeouential Comnonents 

The key to the analysis of nondeterminlstic features is 
the treatment of sequential components. Topologically, 
they are easily identified by the presence of feedback 
lines. In the following, a sufficient set of feedback 
signals (such that any cycle contains at least one 
feedback signal) describe the internal states. 

Based on the above algebraic system, the following 
procedure is used to analyze digital circuits. Consider 
that a set of feedback signals has been selected. Be X 
one of them. Then: 

I. The next state expression for X can be described as 
a function X' = f(X). 
Based on this expression, the dynamic expressions 
for *X' and for *'X' are computed• They include 
both the functional and the nondeterministic behav- 
ior of X. 

2. In the expression of *X', all minterms containing X 
or *X can be eliminated, since a rise on X assumes 
that its initial value is not "enabled", and since 
the terms in *X show only the latching effect• 
Similarly, the minterms containing -X or *-X occur- 
ing in the expansion of *'X' can be neglected• 

3. The dynamic behavior of feedback signal X can be 
factorized as follows: 

*X' : L + M . *'X 
*-X' = P + R . *X 

where L, M, P and R are boolean expressions not 
containing *X or *'X• An equivalent formulation is 
obtained from the orthogonality postulate: 

*X' = L + M . -R . *~X + M . *R . *-X + M . *~R 
. *-X + M . R . *~X 



*-X' = P + "M . R . *X + *M . R . *X + *'M . R . 

*X + M . R . *X 

The boolean equation M . R = I defines an oscil- 
lation condition. Thus one can write: 

*X' = L + M . -R . *-X + M . *R . *-X + M . *-R 
. *-X + M . R . oscillation 

*~X' = P + ~M . R . *X + *M . R . *X + *~M . R . 

*X + M . R . oscillation 

4. By replacing all occurences of *X by the expansion 
of *X', and similarly replacing *-X, the result is: 

*X' = L + M . -R . P + M . *R . P + M . *-R . P 
+ M . R . oscillation 

*~X' = P + -M . R . L + *M . R . L + *-M . R . L 

+ M . R . oscillation 

5. Usually, the circuit comprises several feedback 
signals. Having built the dynamic behavior of each 
such signal, the circuit is described by a system 
of dynamic boolean equations. The next reduction 
step consists of normalizin~ the dynamic system. 
This has a direct correspondent in flow table nor- 
malization [I], by which all chains of internal 
state transitions are replaced by single trans- 
itions, leading directly from one stable state to 
another. In the system of dynamic equations under 
consideration, normalization can be performed by 
replacing any further references to *X and *-X by 
the corresponding expansions of *X' and *-X'. Upon 
completion of the process, the only dynamic terms 
appearing in the dynamic expansions of feedback 
signals refer to the primary inputs. 

6. A further simplification consists of removing all 
minterms corresponding to unstable total states. 
For example, the dynamic minterm X . *I can be 
removed if the value of internal state X is zero 
whenever input I is disabled. Obviously, the rise 
of I starts from a disabled value, internal state X 
is zero and therefore the minterm can be neglected. 

7. Finally, all occurences of X in the expansion of 
*~X' can be replaced by one, since the drop of X 
starts from X enabled. Similarly, occurences of ~X 
in *X' are replaced by one. 

The interpretation of the results depends on the 
particular assumptions on delay parameters and on the 
allowed operation mode. 

~. UNBOUNDED D~AY ANALYSIS 

3.1 DBA for Unbounded Delay Analysis 

The algebraic framework for unbounded delay analysis is 
provided by the dynamic boolean algebra presented in 
section 2.1. As discussed above, this algebra has 
several cases of inconsistency: when the postulates 
defining it are used during algebraic manipulations, 
the result may depend on the order of reductions per- 
formed. The source of these inconsistencies is the 
requirement of orthogonality - any signal can not be in 
more than one state during a considered operation 
period. In circuits displaying hazardous behavior, 
this postulate can not be enforced and problems arise. 
As a practical application, any inconsistency can be 
readily associated with the effects of hazards in digi- 

tal systems. Thus, when used for analyzing nondetermin- 
istic behavior all conditions producing inconsistencies 
have to be pointed out. 

In order to generate all possible inconsistencies, 
the dynamic operators are distributed over static oper- 
ators before any other reductions. The only properties 
of switching algebra that are preserved in this dynamic 
framework are eommutativity, associativity, idempotency 
and the deMorgan laws. Thus, reductions based on these 
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four postulates can be performed at any time, without 

changing the dynamic result. 

All mixed direction minterms in the AND and OR 
expansions correspond to logic or function hazards. 
The hazard minterms are underscored in the following 

examples. 

3.2 Unbounded Delay Analysis of" Circuits 

Although the analysis of designs under the assumption 
of unbounded delays has been treated by many research- 
ers and has several solutions by now classical [I], the 
algebraic method is included for comparison. 

3.2.1 Hazards in Combinational Circuits 

The dynamic expansion of the combinational function (as 
defined by the circuit) is developed. When only func- 

tion hazards are sought, the dynamic expansion of a 
canonical function representation is built, by consid- 

ering the join of all its minimal implicants. Thus, the 
details of circuit implementation are not taken into 
consideration. (It is well known that this canonical 
representation of functions contains no logic hazards). 

As an example, consider the circuit shown in figure 

Y 

Z' 

H 

Figure I: Circuit with Hazards 

I. The dynamic expression for the rise of H (developed 
from the circuit) is separated into groups of terms, 
according to their nature: 
*H = X . ~Y . *-Z + X . Z . *Y + ~Z . *X (a) 

+ X . *Y . *-Z (b) 
+X . C*_X • *Z + *~y . "~Z) + *X . (*_X • *Z + (e) 
*~y . *-Z + -_X • *_/Z + Z . *-y + *-y . eZ) (e) 

+ "-__X • C2X • :~z + _z m_X + *_X • "-__! ( e )  
+ *Y . *_/Z + *'Y . *-Z) (e) 
+*_X. (X ._Z+X . "_! + Z • *'Z +/_~ . "'__! + (d) 
Z . * Y  + *_/Y . *-__/Z + *'X . (Y . Z +Y . *-Z + (d) 

_Y . *Z + "Y . *Z + Z . *-Y + *-Y . *Z) (d) 

+ "_~Y . Z . (*X + *'X) (e) 

The function hazards are obtained by expanding the can- 
onical representation of H, denoted by ,H,' ''. 

I I 
,H, : X . Y + X . ~Z 

*IH) = X . -Y . *~Z + X . Z . *Y + ~Z . *X (a) 
+ X . *Y . *-Z (b) 
+ Y . *X . (Z + *Z + *~Z) + ~Y . *X . *-Z (f) 
+ Z . *X . *Y ~- :~X . *Y . *-Z (f) 
+X. ('Y . '/z + ~-__X. "-Z) +'X . (*_X. "_/Z + Co) 
*-Y . *-Z + "_X • *_/Z + Z . *-IX + *_IX • *Z) (e) 
+ * ' ~  • ('_XY • *~__/Z + _ Z  . *_X+~ • *'Z (c) 
+ *_X • *_ZZ + *-y . *-Z) Co) 

Internretation: 

I. Minterms in group (a) correspond to hazard free 
effects of single input changes. 

2. Minterms in group (b) correspond to hazard free 
effects of multiple input changes. 

3. Minterms (c) correspond to function hazards due to 
multiple input changes. 



4. Minterms (d) correspond to dynamic logic hazards 

due to either single or multiple input changes. 

5. Minterms (e) correspond to static logic hazards. 

4. For D . *C and *C . *~D , hazard minterms in *~Q' 

not occurring in MOC, an erroneous value of zero 

can be latched into Q. This is the effect of a race 
between the two inputs to the OR gate. 

6. Minterms (f) correspond to "clean" transitions of 

the function, that are hazardous in the circuit 
implementation. 

5. For *C . *D and *'C . *~D , hazard minterms occur- 

ring both in *Q' and in *~Q', the output may expe- 
rience a multiple change. 

3.2.2 Races in 3eouential Circuits 3.2.3 Essential Hazards in Secuential Circuits 

The hazard minterms in the dynamic expansion of feed- 
back signals reflect the effect of races. 

D 

C 

For example, 

Only the essential hazards intrinsic to the f~ctlon 
(as a join of minimal implicants) are considered. Be 
the excitation functions: 
y, = X . Z + y . ~X + Y . Z 
Z, = ~X . ~y + X . Z + ~y . Z 

The dynamics of Y and Z are: 
*Y' = X . ~Y . *Z + ~Y . Z . *X + ~Y . *X . *Z + "__Y . 

('_X • "-z + *-~ . "z) 

*~Y' = Y . -Z . *X + X . "Y . *~Z + X • (*X . *Z ÷ *X 
• *'Z + *'X . *_! + *,X - *~Z) 

Figure 2: Level Latch 

consider the level latch shown in figure 2. The 
dynamic expansions of Q (after step 2 of algorithm 2.2) 
are :  
*Q' = "Q . D . *~C ÷ ~C . *D + -Q . *-C . *D + ~ . 

('C . "_DD + "'C • *-D) +*IQ • (~ • *-C +2~ • "_CC +D . 
*C + *D . *C + *D . *-C + *~D . *-C + *'D • *C) 

*-Q' = Q . ~D . *-C + -C . *~D + R . (~ . *-C + ~ . ~ 

+ *~ • ~+ *~ • *-C + *'D • *-C + *'D • ~) + ~ • (~ 
. *-C +~. *'C +~ • *~+~ •~+*~ • *-C ÷*_]l . 
*~C+*~D .~) 

*Z, = ~y . ~Z . *-X + ~X . -Z • *-y + ~Z . *~X . *~y + 
-~ . (~ . "_IX+'-X . ~) 

*~Z, = -X . Z . *Y + y . Z . *~X +Z . (~ . ~ + ~  . 
*~¢+*-X .~+'-X .*-~) 

After normalization (step 5 in 
dynamic system becomes: 
*Y' = -Y . Z . *X +-Y . ~Z . *'X 
*-Y' = Y . ~Z . *X + X • Z . *-X 

section 2.2), the 

*Z' =-Y . "Z . *-X +X. ~ . ~ 
*-Z, = y . Z . *~X +~ . Z . ~ 

After performing the reductions presented in section 
2.2, (namely oscillation analysis - steps 3, 4 - and 
simplification of the resulting dynamic expressions - 

step 7) one obtains: 
toO' = D . *-C + "C • *D + *'C . *D + *C . *D + *'C . 

*~D 

After performing step 7, the system is reduced to: 
*Y' = Z . *X + ~Z . *-~ 
*'Y' = -Z . *X +~ . *~X 

*Z' = "Y . *'X + X • *X 
*-Z' = Y . *-X + "Y . *X 

"~O' = "D . *'C + -C . *~D + D . *~C + D . *C + *D . 

*C + *D . *-C + *~D . *~C + *~D • *C 

A further interesting phenomenon is the presence of 
multinle OUtDUt chan~es on Q. The difference between a 
multiple output change and an oscillation is that the 
later will go on as long as the enabling condition 
stays true, while a multiple output change stops after 
a finite number of transitions. The condition for a 
multiple output change is: 

MOC-Q = *Q' . *~Q' = D . *~C + *-C . *D + *C . *D + 
*-C . *-D 

The dynamics of Q guaranteed to be hazard free are 
termed clean. Eliminating the terms listed in the 
expression of MOC-Q, results in: 
*Q'-clean = -C . *D 
*~Q'-clean = ~D . *-C + -C . *-D 

The functional behavior is described by means of trans- 
ition expressions [2] as: 
) -C . (*D + m-D) + ~D . *~C I Q <- ~C . *D 

Internretation: 

I. 

2. 

3. 

Combination -C . *D causes a clean rise of Q. 

Each of the combinations ~D . *iC and -C *~D 
brings forth a clean drop of Q. 

For D . *~C or *-C . *D , Q rises with a possible 
dynamic hazard. Notice that the hazard terms in 
m-Q, are eventually overcome by the regular terms 
in .Q,. 

Interpretation: Due to the presence of races 
between secondary variable changes and their static 
previous value, the sequential machine can perform haz- 
ardous transitions. 

4- ANALYSIS OF CIRCUITS WITH NOMINAL DELAY PARAMETERS 

The issue of analyzing nondeterministic behavior of 
circuits with nominal delay parameters is extremely 
important for hardware verification. A method for anal- 
ysis of nondeterministic features, taking into account 
delay parameters, is reported in [6]. The use of the 
boolean differential calculus in that report provides a 
tool somehow similar to the dynamic boolean algebra 
described here• The differences and the similarities 
between these two approaches are listed in [3]. 

4.1 DBA for Nominal Delay Analysis 

The dynamic boolean algebra described in section 2.1 is 
modified, so as to keep track of propagation delays. 
Clearly, delay parameters are meaningfull only for 
dynamic terms. These parameters are generated by asso- 
ciating a delay parameter with each component of the 
circuit and by summing up delays (along propagation 
paths) during the expansion of dynamic terms. In the 
following, the propagation delays are denoted by under- 
scripts: numbers or lower case letters (a, b etc.) 
standing for actual delays in generic rules. 

The inconsistencies associated with the DBA can be 
solved once the delay parameters are known. It has been 
shown in [3] that the inconsistencies are due to the 
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presence of reconvergent fan out branches with a 
different number of inverters. Thus, the treatment of 
reconvergent fan out is basic to this extended DBA. 
Using manipulations (presented in section 2.2), the 
dynamic expansions of the primary outputs are described 
in terms of primary inputs and feedback signals. During 
these manipulations, a reconvergent fan out signal may 
become manifested only after traversing many interven- 
ing gates. Since the type of the gate in which fan out 
branches reconverge is of paramount importance, the 
algebraic system must associate with each gate submit- 
ted to multiple input changes enough information to 
enable correct treatment of possible reconvergent fan- 
outs. 

The following cases of multiple input changes can be 
distinguished for two input gates (gates with more 
inputs are treated by induction based on the basic 
rules, since the assoclativity postulates hold): 

i) The output of an AND gate rises when: 

a) Two rising edges are applied on the inputs - 
the output change is triggered by the last 
one. 

b) A rise is applied on one input, while the sec- 
ond input drops later than the rising one - 
the output change is triggered by the rising 
input• 

ii) The output of an AND gate drops when: 

a) Two dropping edges are applied on the inputs - 
the output change is triggered by the first 
input change. 

b) A rise is applied on one input, while the sec- 
ond input drops later than the rising one - 
the output change is triggered by the dropping 
input• 

iii) The output of an OR gate rises when: 

a) Two rising 
the output 
one. 

edges are applied on the inputs - 
change is triggered by the earliest 

transition will occur. The information used in this 
case relies on distinguishing active transitions from 
passive ones. Active transitions are those input 
changes that dictate the direction of the output 
change. When mixed direction input changes occur, the 
transitions opposite to the active ones are termed 
passive and marked as such. Given the changes *X or 
*'X, their passive versions are denoted by '*X and 
'*~X. 

o The information used for selecting the tri~xerin~ 
chan~e shows whether the earliest or the latest input 
change (both having the same direction) brings forth 
an output transition• This information is recorded by 
means of two types of parantheses. The dynamic terms 
clustered by < and > transmit the earliest incomming 
active change. Similarly, terms grouped by [ and ] 
transmit the latest active transition. In the case 
of mixed type transitions, these parantheses show 
their relative delay required in order that the 
change be transmitted to the output• These parJ 
antheses have only a sintactic role, enabling correct 
choice of the triggering change• 

Based on this information, the DBA defined in sec- 
tion 2.1 is changed by replacing postulates (iv) with: 

1. The first group of dynamic rules is concerned with 
backward algebraic substitution of signals in the 
presence of delay parameters: 

a) *(X a + Yb)c = "X . *Yb÷c + *Xa+c " "Y + <*Xa+e 

*Yb+c > + <*Xa+ c • '*'Yb+c > + <'*'Xa+ c . *Yb+c > 

b) *-(X a ÷ Yb)c = "X *'Yb+c ÷ *~X . "Y + a÷o 

[*~Xa÷ e • *~Yb÷c] ÷ [*'Xa+ c '*Yb+e ] ÷ ['*Xa+ e 

• *'Yb÷e ] 

e) *(X a Yb)c = X *Yb+e + *X Y + • a+c " [*Xa+e 

*Yb+c ] + [*Xa+ c '*'Yb+c] + ['*'Xa+ e . *Yb÷c ] 

b) A rise is applied on one input, while the sec- 
ond input drops earlier than the rising one - 
the output change is triggered by the rising 
input. 

iv) The output of an OR gate drons when: 

~ *'X Y + <*'X d) *-(X a . Yb)c = X . * Yb+c + a+e " a+c 

• ' + <'*X • "Yb+c > + <*~Xa+c *Yb÷e > a+c 

• "Yb+e > 

a) Two dropping edges are applied on the inputs - 
the output change is triggered by the last 
one. 

b) A rise is applied on one input, while the sec- 
ond input drops earlier than the rising one - 
the output change is triggered by the dropping 
input. 

The above case rules are sufficient for performing nom- 
inal delay analysis of any AND or OR gate. In fact, the 
propagation of changes in logical simulators uses quite 

similar mechanism. The problem is to integrate these 
case evaluations into an algebraic system• 

The listed local cases can be summarized by a few 
general rules, relying on only two items of informa- 
tion: 

o The presence of mixed direction changes must be 
recorded, since in this case the relative delay 
between the input changes dictates whether an output 

2. The second group of dynamic rules is concerned with 
the generation of canonical forms for dynamic min- 
terms, in the presence of propagation delays• In 
the following, A stands for either *X or *'X , B 
for *Y or *~Y and C for either *Z or *'Z. Note 
that only active dynamic terms are treated in these 
rules. Based on rule (iv.2.d), equivalent expres- 
sions can be derived for all passive dynamic terms• 
The treatment of mixed type terms (active and pas- 
sive) presents difficult problems that were not yet 
solved in a general way. In the examples, such 
situations are reduced by using case analysis. 

a) <<A . B> . C> = <A . B . C> 
[[A . B] . C] = [A . B . C] 
These express a new kind of associativity, hold- 
ing between dynamic wavefronte in the DBA with 
delay parameters• 

b) <[A • B] . C> = [<A . C> . <B . C>] 
[<A . B> . C] : <[A . C] . [B . C]> 
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3. 

These rules express the distributivity of wave- 
fronts over different types of trigger change 
selection. 

c) <A . [A . B]> = A , [A . <A . B>] : A 
These rules express the idemootencv of dynamic 
wavefronts. Note that the dynamic assoeiativity, 
distrlbutivity and idempotenoy rules are differ- 
ent from the corresponding static properties. 

d) '<*A . *B> = ['*A . '*B] 
'[*A . *B] : <'*A . '*B> 
These show the different treatment of triggering 
change selection by active and passive trans- 
itions. 

e)  '(*X) = '*X , '('*X) = *X 
These rules show the convolution of the marking 
for passive signals, due to the cancellation of 
any even number of inverters. In practice, 
reliance on convolution results sometimes in 
difficulties that have to be treated by case 
analysis. 

The last group of dynamic rules is concerned with 
the treatment of dynamic changes generated by a 
common input signal (reconvergent fan out). Only 
the case of rise dynamic terms is presented, since 
the dropping ones obey the same rules. 

a) <*X a *Xb> = * X m i n ( a , b )  

[*X a . *X b] = *Xmax(a,b) 

These express the rules for selecting the trig- 
gering change when the local input changes have 
the same direction (due to reconvergent fan out 
branches with equal parity). 

b) <*X a . '*Xb> = *X a if a>b and 0 otherwise 

[*X a . '*X b] = *X a if a<b and 0 otherwise 

These rules express the conditional transmitting 
of mixed direction input transisions (reconver- 
gent fan out branches with different parity). 

c) <'*Xa '*Xb> = '*Xmax(a,b) 

[ ' * X  a . . ' * X  b]  = ' * X m i n ( a , b )  

This is required by the dynamic associativity 

postulate. Indeed, consider the expression <*X a 

'*X b '*Xc >" By associativlty, this equals 

either: 

'*Xb> . = <*X '*Xc> if a>b = <<*Xa '*Xc> a 

*X if a>b and a>c , and 0 otherwise. a 

By a different association, this gives 

<*X a . < '*X b . '*Xc>> = <*X a . ' * X m a x ( a , b )  > 

that equals the previous result. 

4.2 Nominal Delay Analysis of Circuits 

The analysis of designs assuming nominal delay propaga- 
tion is very important. Two types of delays occur in 
practice: transport and inertial ones. In the 
sequence, only transport delays are considered. This 
introduces a pessimistic approach to the treatment of 
short pulses, that are usually quelled by inertial 
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delays. The treatment of inertial delays could be acco- 
modated by recording a threshold propagation width 
along any dynamic path. 

Using the dynamic boolean algebra described in sec- 
tion 4.1, the following sections show the detection of 
typical problems. 

4.2.1 Spikes in Combinational Circuits 

Spikes are defined as pulses (successive opposite 
transitions of the same signal) having a width less 
than some critical parameter. They are not considered 
an error by themselves, but can induce errors in 
sequential circuits. Consider the circuit shown in 

Y 

X 

Figure 3: Circuit Producing Spikes 

figure 3. Assuming that all INVERTERs introduce a unit 
delay, while AND and OR gates present no delay, the 
dynamic behavior is: 

*X = <*Yo " *Y2 " *Y4 > + <*Yo " *Y2 " '*Y5 > + <*Y0 " 

'*Y3 " *Y4 > + <'*YI " *Y2 " *Y4 > + <*Yo " '*Y3 " '*Y5 > 

+ <'*YI *Y2 " '*Y5 > + <'*YI " '*Y3 " *Y4 > = *Y0 + 

<*Yo " '*Y5 > + <*Yo " '*Y3 > + <'*YI " *Y2 > + <*Yo " 

'*Y5 > + <*Y2 " '*Y5 > + <'*Y3 " *Y4 > = *Yo + *Y2 + *Y4 

*-X = [*YI " *Y3 " *Y5 ] + [*YI " *Y3 " '*Y4 ] + [*YI " 

'*Y2 " *Y5 ] + ['*Y0 " *Y3 " *Y5 ] + [*YI " '*Y2 " '*Y4 ] 

+ ['*Y0 " *Y3 " '*Y4 ] + ['*Y0 " '*Y2 " *Y5 ] : *Y5 + 

[*Y3 " '*Y4 ] + ['*Y2 " *Y5 ] + ['*Yo " *Y5 ] + [*YI " 

'*Y2 ] + ['*Yo " *Y3 ] + ['*Yo " *Y5 ] = *YI + *Y3 + *Y5 

Interpretation: a rise of Y is transmitted as three 
rises of X, after 0, 2 and 4 delay units. The same 
change on Y also brings forth drops of X, after 1, 3 
and 5 delay units. If this circuit feeds a sequential 
construct that is not able to operate with pulses of 
only one delay unit width, the final state of that unit 
is unpredictable. The reader is reminded that the 
algebraic model used here does not include the effect 
of inertial delays. Thus, this interpretation of spikes 
is somehow pessimistic. 

4.2.2 Instabilities i nSeuuential Circuits 

Under the assumption of complete control over propaga- 
tion delays, only oscillations and spikes can give rise 
to nondeterministic behavior in real circuits. The 
issue of oscillations has been treated in section 2.2. 
The actual classification of an oscillation as an error 
or as a desired feature rests eventually on the user. 



The result of spikes is the occurrence of instabili- 
ties in sequential constructs. This instability is man- 
ifested by uncontrolled oscillations or even metastable 
states, with an unpredictable final value. 

In order to cope with nofundamental mode operation, 
due to short pulses applied on the inputs, the orthogo- 
nality postulates have to be modified. Thus, spikes 
input to a sequential construct can be analyzed and 
their critical width ascertained. Short pulses are 
modeled by the expressions: 

a) [*I^ . '*~I ] and <*-I . '*I_> define a nega- 
tiv~ pulse: da drop of I fo~lowed ~ithin d time units 
by a rise. 

b) [*-I 0 . '*I d] and <*I. . '*~I_> define a posi- 
tive pulse: a rise of I ~ollowed ~ithin d time units 
by a drop. 

These terms are not to be reduced to zero (as required 
by the orthogonality postulates of the dynamic boolean 
algebra), and are used for analyzing the circuit's 
behavior in non fundamental mode operation. The delay 
parameters of the circuit define the critical width, 
below which such a term is able to induce instabilities 
in sequential constructs• 

Instabilities in sequential circuits are detected as 
follows. The algorithm described in section 2.2 (valid 
for active changes) is performed in the algebraic 
framework provided by the DBA of section 4.1. This 
results in expressions of the form: 
*X' = A + B . '*-X 
*'X' = C + D . '*X 

where A , B , C and D do not contain terms in X. The 
expansion of *-X' is used to replace '*-X in *X' and 
similarly for '*X in *-X'. The result is: 
*X' = A + B . 'C . instability 
*-X' = C + D . 'A . instability 

The terms A and C show the regular operation of the 
sequential construct• The term B . 'C lists the 
conditions for X to experience a rise while a previ- 
ously attempted drop of X did not latch yet• Similarly, 
the term D . 'A lists the conditions for X to experi- 
ence a drop while a previous rise did not yet settle. 
These two situations correspond to instabilities of the 
feedback link with all the undesirable associated phe- 
nomena. Thus, the complete behavior of X can be 
described by: 
*X' = A 
*-X' = C 
Instability-X = B • 'C + D . 'A 

Due to the features of the algebraic framework used, it 
is guaranteed that all minterms of A and B . 'C are 
distinct (and similarly for the minterms of C and D . 
'A). Nevertheless, it is possible that the expressions 
A and D . 'A, respectively C and B . 'C have overlap- 
ping terms. These have to be discarded from the func- 
tional behavior, since they correspond to instabili- 
ties. 

The following example shows the operation of the 
described procedure• Consider the SR flip flop shown in 

R 

Figure 4: SR Flip Flop 
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figure 4. Assume that the NAND gates have unlt 
propagation delay• The dynamics of the feedback signal 

Q are: 

*Q' = (~R + ~Q) . *'S I + S . [*R 2 . '*'Q2 ] + <*~S I • 

[*R 2 . '*-Q2]> + R . <*-S I . '*'Q2 > + <*-S I . ['*'R 2 • 

'*'Q2]> + <'*S I . [*R 2 . '*'Q2]> 

*-Q' = S . Q . *'R 2 + -R . *S I + Q . [*S I . *-R 2] + Q 

• [*S I ,*R2] + Q . ['*'S I *~R 2] + S . <*'R 2 

,*Q2 > + [*S I . <*-R 2 '*Q2 >] + R . [*S 1 '*Q2 ] + 

[*S I . <'*R 2 . '*Q2 >] + ['*-S I . <*~R 2 . '*Q2 >] 

These expressions are reduced by replacing the value of 
~Q in *Q' by I, and similarly for Q in *'Q' (as 
described in step 7 of 2.2) 

*Q' = *-S I + S [*R 2 '*-Q2 ] + <'*S I [*R 2 

'*~Q2]> 

*-Q' = S . *~R 2 + -R . *S I + [*S I *-R 2] + [*S I . 

'*R 2] + ['*~S I *~R 2] + R . [*S I '*Q2 ] + [*S I 

<'*R 2 . '*Q2 >] 

The presented method for detecting instabilities 
gives the results: 

*Q' = *-S I + S . [*R 2 . '*'R 4] . instability + <'*S I . 

[*R 2 . <'*S 3 . '*-R4>]> . instability + <'*S I . [*R 2 . 

<'*S 3 . *R4>]> . instability + <'*S I [*R 2 . <*-S 3 . 

'*-R4>]> . instability 

*~Q' = S . *~R 2 + ~R . *S I + [*S I *~R 2] + [*S I . 

'*R 2] + ['*~S I . *'R 2] + R . [*S I . '*'S 3] . instabil- 

ity + [*S 
I . <'*R 2 . '*-$3>] . instability 

The following reductions are performed: 

o All instabilities are joined into a separate condi- 
tion, Instability-Q. 

o <'*S I . [*R 2 . <'*S 3 . *R4>]> = <'*S I . [*R 2 . ,[*S 3 

• '*R4]]> = <'*S I . [*R 2 . '*$3]> 

o Based on the formula 
[A . <'B . 'C>] = <[B . 'C] . [A . 'B]> + <[C . 'B] 

• [A . 'C]> + <'B . [A . 'C]> + <'C . [A . 'B]> 

one can perform the transformation 

<'*S I [*R 2 . <'*S 3 '*~R4>]> = <'*S I [*S 3 

'*-R 4] . [*R 2 . '*S3]> + <'*S I [*-R 4 . '*S 3] 

[*R 2 '*'R4]> + <'*S I '*S 3 [*R 2 . '*-R4]> + 

<'*S I . '*-R 4 . [*R 2 . '*$3]> 

o The terms <'*S I . [*S 3 . '*'R 4] . [*R 2 . '*$3]> and 

<'*S I . '*-R 4 • [*R 2 . '*$3]> are covered by the term 

<'*S I . [*R 2 • '*$3]>. 



o <,*$I . [*-R 4 . ,*$3] . [*R 2 . '*'R4]> is equal to 

zero, since *R and *'R can not be both active. 

o Based on the same formula, another transformation is 
performed: 

[*S I . <'*R 2 '*~$3>] = <[*R 2 . '*-$3] [*S I 

'*R2]> + <[*-S 3 . '*R 2] . [*S I . '*'$3]> + <'*R 2 . 

[*S I . '*'$3]> + <'*'S 3 . [*S I . '*R2]> 

o <[*R 2 . '*~S 3] . [*S I . '*R2]> is covered by <'*S I . 

[*R 2 . '*$3]> + <'*R 2 . [*S I . '*'$3]> 

o The term <[*'S 3 . '*R 2] . [*S I . '*'$3]> is equal to 

zero, since *S and *'S can not be both active. 

o The term <'*'S 3 . [*S I . '*R2]> is covered by <'*'S 3 

• *$I> that corresponds to a pulse of negative width, 

therefore equals zero. 

o The term <'*S I . [*R 2 . <'*'R 4 . *-S3>]> is covered 

by <'*S 3 . [*R 2 . '*'R4]> 

o [*S I . '*R 2] : [*S I . '*R 0] + <'*R 0 . [*S I . '*R2]> 

where the second term overlaps with instability min- 
~erms. 

The final expressions for the dynamics of Q are thus: 

*Q' = *-S I 

*'Q' = S . *-R 2 + ~R . *S I + [*S I . *~R 2] + [*S I 

'*R O] + [*-R 2 . '*'S I] 

Instability-Q = S . [*R 2 . '*-R 4] + R . [*S I . '*~S 3] 

+ <'*S 3 . [*R 2 . '*'R4]> + <'*R 2 . [*S I '*-$3]> + 

<'*S I . [*R 2 . '*$3]> 

The transition expression (described in [2]) for the SR 
flip flop is then: 

I *'S I + S . *-R 2 + -R . *S I + [*S I . *-R 2] + [*S I . 

'*R O] + [*~R 2 • '*-S I] I Q <- *-S I 

I. 

2. 

3. 

Interpretation of the result: 

A negative pulse on R, shorter than two delay 
units, while S is either permanently enabled, or 
rises at least one delay unit before the rise of R, 
brings forth an instability on Q. 

A negative pulse on S, shorter than two delay 
units, while R is either permanently enabled, or 
rises more than one delay unit before the rise of 
S, brings forth an instability on Q. 

The multiple input change: rise of R and rise of S, 
with a relative delay between them less than one 
delay unit, brings forth an instability. 

4. The multiple input change: rise of R and rise of S, 
where S occurs at least one delay unit before the 
rise of R brings forth a drop of Q. 

5. A drop of both S and R, such that the drop of R is 
at least one delay unit before the drop of S, 
brings forth a drop of Q. Notice that this results 
finally in a dynamic hazard, since the drop of S 
forces the output Q back to enabled. 

When the fllp flop is used as a component of more 
complex circuits the dynamics of its output are: 

*Q' = (-R + ~Q) . *'S I 

*-Q' = Q . S . *'R 2 + "R . *S I + [*S I . *-R 2] + [*S I . 

'*R 01 + Q . [*'R 2 . '*'S I] 

Another important condition is the test for oecurren- 
ties of spikes on Q. A quite pessimistic approach is 
taken, by assuming that any instability of Q is able to 
produce a spike, irrespective of the delay parameters 
of the sequential circuit fed by Q. The conditions for 
negative and positive spikes on Q, when the sequential 
component fed by it is unable to react to pulses of 
width less than some parameter d are: 
NegSpike-Q = [*Q'o '*-Q'd ] + Instability-Q = "R 

[ * ' S  1 . ' *$1+ d] + < ' * ' R 2 ÷  d . [ * ' S  1 . ' * S l + d ] >  + [ * - S  1 . 

'*$I+ d . '*R d] + Q . <'*'S I . [*~R2+ d . '*'S1+d]> + S . 

[*R 2 '*~R 4] + R . [*S I . '*-S 3] + <'*S 3 . [*R 2 

'*-R4]> + <'*R 2 [*S I '*-$3]> + <'*S I [*R 2 

' *$3]>  

PosSpike-Q = [*'Q'0 " '*Q'd ] + Instability-Q = "R 

[*S I ' * ' $ 1 +  d] + < ' * - R  2 . ' [ * S  1 ' * ' S l + d ] >  + [*S 1 

'*-$I+ d . '*Rd] + S . [*R 2 • '*'R 4] + R . [*S I • '*-S 3] 

+ <'*S 3 [*R 2 '*-R4]> + <'*R 2 • [*S I • '*-$3]> + 

<'*S I . [*R 2 • '*$3]> 

~. ANALYSIS OF CIRCUITS WITH W~NDOW D~AY PARAMETERS 

In an industrial environment, it is not feasible to 
completely control the delay parameters• A common 
approach is to rely on minimum and maximum delay param- 
eters. An alternative is to associate with each compo- 
nent an average delay and a standard deviation• 

5.1 DBA for Window Delay Analysis 

A further step towards faithfull modeling of digltal 
systems is based on a DBA that takes into account win- 
dow propagation delays. In the following, it is 
assumed that delay parameters have a normal distrib- 
ution. Each basic component is characterized by two 
parameters: 

a) The mean prooa~ation delay T m , corresponds to the 
statistical mean of the propagation delays over a 
considered range of products. 

b) The deviation T shows the standard deviation from 
v 

the nominal propagation delay. 

Given these two factors, a change transmitted through a 
logic element is usually considered to occur within the 
window: 
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a) Minimal propagation delay defined by: 

Tmi n = T m - 3 • T v 

b) Maximal propagation delay defined by: 
T = T + 3 • T 
max m v 

The addition rules for two window propagation delays T' 
and T" are: 
T = T' + T" 
m m m 

T 2 = T' 2 + T" 2 
V V V 

For any dynamic term *X, its delay parameters are 
denoted by *XCTm Tv) , where Tm is the mean delay and 
Tv is the varlanhe. The DBA presented in section 4.1 
is slightly modified. The rules appearing in the group 
of dynamic rules (iv.3) are replaced, in order to acco- 
modate window propagation delays: 

a) <*X(a,s ) . *X(b,t)> = if (a - 3 • s > b + 3 • t) 

then *X(b,t ) else if (a + 3 • s < b - 3 • t) then 

• X(a,s ) else *X(min(a,b),max(s,t) ) 

A pessimistic value for the variance is used when 
the two windows overlap. 

[*X(a,s ) . *X(b,t )] = if (a - 3 • s > b + 3 • t) 

then *X(a,s ) else if (a + 3 • s < b - 3 • t) then 

• X(b , t  ) e l s e  *X(max(a ,b) ,max(s , t )  ) 

Note again the pessimistic approach to overlapping 
windows. 

b) <*X(a,s ) '*X(b,t)> = if (a - 3 • s > b + 3 • t) 

then *X(a,s ) else if (a + 3 • s < b - 3 • t) then 0 

else *X(a,s) 

[*X(a,s ) . '*X(b,t )] = if (a + 3 • s < b - 3 . t) 

then *X(a,s ) else if (a - 3 • s > b + 3 • t) then 0 

• ise *~(a,s) 

Notice that hazardous transition are possible. The 
underscored minterms express a malfunction - a 
dynamic output change that may occur or not, depend- 
ing on implementation factors out of control. 

5.2 Window Delay Analysis of Circuits 

The use of simulation in the presence of window delays 
is characterized by pessimistic results. This is due to 
the presence of correlations between the propagation 
delay parameters of different signals, having a common 
path. Some proposals have been made to correct this 
shortcoming [4]. The algebraic approach provides a 
good solution. The following steps of substitution 
guarantee a result faithfull to the actual behavior of 
the circuit: 

a) All reconvergent fanouts are identified. 

b) The dynamic expressions of outputs, fanout and feed- 
back signals are built, in terms of primary inputs 
and points of reconvergent fanout. 

c) Reductions are performed on these intermediary 
results. Since the reeonvergent fanout signals 
appear as algebraic terms, no correlations between 

propagation delay parameter are present. 
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d) Finally, the reconvergent fanout signals are 
replaced by their expansions in the dynamic system. 
Thus, only primary inputs and state signals remain. 

e) Due to the basic approach of DBA, namely that of 
discriminating between different working conditions 
and representing each of them as a separate term, 
the correct choice of delays becomes straightfor- 
ward. In contrast to simulation, where it is not 
known in advance whether the minimal or the maximal 
propagation delay along some sensitive path is 
needed, the algebraic model builds the dynamics of 
~ignals as disjoint sets of minterms, each corre- 
sponding to a different combination of sensitive 
paths. Each such minterm determines a worst case 
delay distribution, that can be computed without any 
interference from other paths. 

~. EXTENSION O_~FLOCAL LIMITATIONS INTO C~OBAL ONES 

When a complex system, composed of several intercon- 
nected basic modules is analyzed, the local limitations 
associated with each module are extended into global 
limitations. By that, input restrictions that guarantee 
functional behavior of all component modules are gener- 
ated. These global input restrictions are relative to 
the system's interface signals, in contrast to the 
local limitations that were stated in term of internal 
signals. 

The extension mechanism is described in the 
sequence. Be a complex system M that includes the com- 

X 
m 

M 

Y 

Figure 5: Extension of Limitations 

ponent module m, as shown in figure 4. The inputs of m 
are denoted by x and its outputs are y. Considering 
the complex M, the primary inputs are X and the primary 
outputs are Y. The local behavior of module m is 
described by: 
m :: y = f(x) + g(x) . Error-m 

where the local limitat~ns of m are summarized by the 
boolean function g(x) . Substituting the values 
assigned to the local interfaces of m by the complex 
system M, results in: 
M :: Y = K(y,X) and x = H(X) 

where K and H are boolean functions. The behavior of m 
effects the complex as follows: 
M :: Y = K(f(H(X)) + g(H(X) . Error-m) , X) 

This can be expanded into: 
M :: Y = F(X) + G(X) . Error-M 

The local limitations g(x) are thus extended into the 
global limitations G(X). 

6.1 Examnle o__~fLimitations Extension 

The use of the RS flip flop of figure 5 as a building 
component of a more complex circuit, illustrates the 
modularity of the algebraic approach. Consider the D 
fllp flop (similar to TTL 7474N) shown in figure 6. 
The system is composed of three SR flip flops. Inter- 
preting the behavior of the component units in the 
actual configuration, results in: 

*X' = ('Z + -X) . *'C I 

I In fact, g(x) describes the input combinations 
resulting in a nonfunctional behavior of m. The 
admissible input domain is described by -g(x). 
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Figure 6: D Flip Flop 

*~X' = C . X . *-Z 2 + -Z . *C I + [*~Z 2 . *C I] + X . 

[*'Z 2 . '*'C I] + [*C I . '*Z O] 

Instability-X = Z [*C I . '*~C 3] + <'*Z 2 . [*C I 

'*~C3]> + C . [*X 2 . '*~Z 4] ÷ <'*C 3 . [*X 2 . '*-Z4]> + 

<'*C l . [*Z 2 . '*C3]> 

my, = ('D + -Y) . *-(X . C) I 

*~Y' = -D . *(X . C) I ÷ X . C . Y . *~D 2 ÷ [*-D 2 . 

*(X . C) I] + Y . [*-D 2 . '*-(X . C) I] + [*(X . C) I 

'*D O ] 

Instability-Y = D . [*(X . C) I . '*~(X . C) 3] ÷ <'*D 2 

• [*(X . C) I . '*'(X . C)3]> + X . C . [*D 2 . '*'D 4] + 

<'*(X . C) 3 . [*D 2 . '*~D4]> + <'*(X . C) I [*D 2 

,*(x . c)3]> 

~fter performing the reductions presented in section 
2.2 (namely normalization and elimination of unstable 
starting total states) the dynamic system becomes: 

*Q' = -Q . D . *C 2 + ~Q • <*C 2 . '*D4> + "O . [*C 2 . 

'*'D2] 

*~Q' = O • -D . *C 3 + Q . [*C 3 . '*D 2] + Q . <*C 3 . 

'*~Ds> 

Instability-Q = <'*~D 2 [*C 2 . '*'D4]> + <'*D I 

[*C 2 . '*D4]> + ~D • [iC 3 • '*-C 5] + D • [*'C I • '*C 3] 

+ C • [*D 2 • '*~D 4] 

The transition expression for Q is obtained thus as: 

I D . *C 2 + <*C 2 . '*D4> + [*C 2 . '*-D 2] + -D . *C 3 + 

[*C 3 • '*D 2] + <*C3 • '*'D5> I Q <-- D . *C 2 + <*C 2 

• '*D4> + [*C 2 • '*'D 2] 

a) 

b) 

c) 

d) 

~nteroretation: 

When D is enabled and a positive pulse on C shorter 
than two delay units occurs, or D is disabled and a 
negative pulse on C occurs, Q enters the instability 
state• 

When C is enabled and a negative pulse on D shorter 
than two delay units occurs, Q enters the instabil- 
ity region. 

A simultaneous rise of both C and D signals, with D 
occurring less than two delay units before C but 
less than one delay unit after C, leads to an insta- 
bility of Q. 

A simultaneous rise of C and drop of D, with D 
occurring less than two delay units before C but at 
most at the same time as C, induces an instability 
on Q. 

*Z' = (-X + "C + -Z) . *~D I 

"-Z' = (-X + ~C) . *D I + D . Z . *~(X . C) 2 + [*~(X . 

C) 2 . *D I] + Z . [*~(X . C) 2 . '*-D I] + [*D I '*(X . 

C) 0 ] 

Instability-Z = D . [*(X . C)2 " '*~(X . C) 4] + <'*D 3 

• [*(X . C) 2 . 'm'(x . C)4]> + X . C . [mD I . '*'D 3] + 

<'*(X . C) 2 . [*D I . '*-(X . C)3]> + <'*D I . [*(X . C) I 

• '*D3]> 

*Q' = (-y + "Q) . *-X I 

*~Q ' = ~Y . *X I + X . Q . *~Y 2 

[*-Y2 " '*-Xl] + [*Xl " '*Yo ] 

Instability-Q = X . [mY 2 . '*~Y 4] + <'*X 3 

'*~Y4]> + Y " <[*XI " 'm-x3] + <'*Y2 " [*XI " 

<'*X I . [mY 2 . '*X3]> 

+ [I~Y 2 . *X I] + Q . 

[mY 2 

'*~X3]> + 

e) A simultaneous rise of both C and D, with D occur- 
ring more than two delay units before C, brings 
forth a rise of Q. 

f) A rise of D occurring more than one delay unit after 
a rise of C, brings forth a drop of Q. 

g) A drop of D, occurring after a rise of C, brings 

forth a rise of Q. 

h) A drop of D occurring more than two delay units 
before the rise of C, brings forth a drop of Q. 

i) Finally, when C rises and D is stable, the value of 
D is stored into Q. 

~. NONDETERMINISTIC BEHAVIOR AT RT~ 

The main advantage of using RTL descriptions during 
functional abstraction [2] is the conciseness achieved 
by clustering together signals into vectorial con- 
structs. This reduction comes at the price of imposing 
certain restrictions on the legal sequences of activa- 
tion. 

A main assumption at RTL is that signals can be dis- 
criminated according to their use into data a~ con- 
trol. It is further assumed that data signals are not 
used for activating RTL constructs, this task being 
restricted to control signals. This enforces a special- 
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ization of signals into carriers of changes and of 
conditions, although at gate level there is no differ- 
ence between control and data signals. 

For example, a two input AND gate described at logi- 
cal level is assumed to experience a rise whenever one 
input is enabled and the second one is rising, or when 
both inputs are changing. An RTL description of the 
same gate (used to transfer data from one register to 
another one), assumes that the inputs are specialized: 
one of them carries data levels, while the second one 
is the clock, used to trigger the data transfer. Thus, 
the dynamics of the same AND gate at RTL take into 
account only the combination of the data enabled while 
the clock rises. 

For the purpose of functional abstraction, the use 
of RTL constructs with input transitions not included 
in the high level description introduces problems simi- 
lar to the presence of nondeterministic behavior. Thus, 
the use of RTL descriptions introduces a new dimension 
of nondeterminism: illegal activations. 

7.1 Analysis o_~f~llegal Activations 

In order to obey the specialization of signals into 
data and control, typical for RTL descriptions, the 
Qircuit level behavior (including nominal or window 
delay parameters) is analyzed in order to extract the 
following data: 

a) The setup time is defined as the minimal admissible 
delay between the latest data change and the occur- 
rence of a control change that triggers the data 
transfer. This minimal delay guarantees that the 
changes introduced by the data signals settle down 
before the activation of a control input. 

b) The hold time is defined as the minimal admissible 
delay between the triggering of a data transfer and 
any further change of the data input, such that this 
data change is not included in the transfer. 

Equivalent parameters may be defined at circuit level, 
in order to guarantee deterministic operation of a 
sequential construct. At RTL, the meaning of these par- 
ameters is extended, so as to deal with illegal activa- 
tions. 

Given the functional behavior of a sequential con- 
struct and assuming that the set of signals {DJ} have 
been specialized as data and the rest, forming the set 
{Ci}, are used for activation, the first step in gener- 
ating a RTL description is to eliminate any dynamic 
minterm containing changes on data signals. In order 
for this description to be faithfull to the original 
one, the hold and the setup time are derived from 
dynamic minterms refering to multiple changes occurring 
simultaneously on control and data signals: 

o Any dynamic minterm that requires the activation on 
Ci to occur after a transition of the data signal .a 
DJ b defines a setup time for the signal DJ with 
reBpect to the control signal Ci : 
Setup(DJ, Ci) = b - a 

o Any dynamic minterm that requires the activation of 
Ci a to occur before a transition of the data signal 
DJ b defines a hold time for signal DJ with respect to 
~ontrol CJ : 
Hold(Dj, Ci) = a - b 

o For each pair of signals DJ and Ci , the final setup 
and hold times are computed as the maximal delays 
over all the minterms considered. 

Consider for example the D flip flop presented in 
figure 6. Assuming that the signal D has been special- 
ized for carrying only level information, while signal 
C is used foe activation of the flip flop, the usable 
RTL behavior is: 

I D . *C 2 + -D . *C 3 I Q <-- D . *C 2 

The following multiple input transitions are consid- 
ered: 

I. <*C 2 . '*Da> defines a setup time of 2 time units 
for D with Despect to the rise of C. 

2. [*C 2 . '*~D2] defines a hold time of 0 time units 
for D with respect to the rise of C. 

3. [*C~ . '*D^] defines a hold time of I time unit for 
D w~th respect to *C. 

4. <*Cq . '*'Dg> imposes a setup time of 2 time units 
forJD with respect to *C. 

5. Thus, the final setup time for D with respect to C 
is 2 time units, while the final hold time for the 
same pair of signals is I time unit. 

The limitations due to illegal activations of RTL 
descriptions are treated similary to those describing 
circuit level nondeterminism. In particular, the algor- 
ithm for extending limitations of a module to global 
limitations of a complex system (chapter 6) can be used 
without any modification. 

~. CONCLUSION 

In this paper, an algebraic method for analyzing digi- 
tal circuits for the presence of nondeterministic 
behavior has been shown. The method gives results simi- 
lar to those of existing algorithms for circuits with 
unbounded delays. For the more practical case of nomi- 
nal and window delay analysis, there are no known 
methods for performing this task. Although the cost of 
a design verification system based on the proposed 
approach is expected to be several orders of magnitude 
higher than that of classical simulation (for a single 
input vector), the quality of the results justifies the 
investment. 

REFERENCES 

[I] A. D. Friedman and P. R. Menon - T e ~  an___dd ~ 
o_~fSwitching Circuits - Computer Science Press, 
1975. 

[2] S. Leinwand and T. Lamdan - Design Verification 
Based on Functional Abstraction - The 16th Design 
Automation Conference, San Diego, 1979. 

[3] S. Leinwand and T. Lamdan - Dynamic Boolean 
Algebras - unpublished report. 

[4] B. Magnhagen - A Comparison Between a Minimum - 
Maximum Delay and a Most Likely Delay Logic 
Simulator - Int. Conf. on CAD and Manufacture of 
Electronic Components, Circuits and Systems, 
Brighton, July 1979. 

[5] E. J. MeCluskey - Introduction to the Theory o_~f 
Switching Circuits - Mc. Graw Hill, N. Y. 1965. 

[6] A. Thayse - La Detection des Aleas dans les 
Circuits Logiques au Moyen du Calcul Differentiel 
Booleen - Digital Processes, vol. I (1975), pg. 
141 - 169. 

493 


