
tIEASURI~IG COMPUTER PROGRAM CPMPREHE~ISION

John P. Boysen
Iowa State University Computation Center

and
Roy F. Keller

Department of Computer Science
Iowa State University

Ames, Iowa 5OOll

1. I I;ITRODUCTION

While improved programming methodologies, better
computer languages and more sophisticated program-
ming aids have helped alleviate some problems as-
sociated with software development, a software
crisis continues to exist. The software crisis
continues partly because many of the suggested im-
provements in software development have emphasized
the role of the computer, rather than the program-
mer, in the development process. Researchers are
beginning to realize that the ultimate resolution
of the software crisis will come only when we
understand the human processes involved in soft-
ware development.

Computer program comprehension has been one of
the human processes which has been studied by re-
searchers. Program comprehension is an important
area of research for several reasons. First, as
the program is developed it must be understood if
it is to solve the intended problem. Second, com-
prehension is essential to debug the semantic as-
pects of the program. Finally, modification of
the program requires an understanding of the pro-
gram if the modifications are to be successful.
Thus, improved comprehension can help to alleviate
many of the difficulties encountered in the soft-
ware development process.

Two basic approaches have been used to study
program comprehension. Using the first approach,
an objective measure of comprehension is pro-
posed based on the author's suppositions about
the sources of complexity. For example, McCabe
(MCCA76) has suggested that the complexity of a
program is directly related to the number of in-
dependent data paths in a program. Another mea-
sure of comprehension has been developed by
Gordon and Halstead (GORD76). Using Halstead's
software science measures (HALS77), Gordon de.-
veloped a measure which purports to predict the
time required to understand a program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 ACM 0-89791-013-3/80/0200/0092 $00.75

A second approach used in the study of program
comprehension is to empirically investigate factors
which might affect comprehension. For instance,
Love (LOVE77) constructed versions of programs
which differed in control flow complexity and para-
graphing style. Subjects were presented with pro-
gram versions and were asked to memorize them.
The number of lines recalled was used as the mea-
sure of comprehensibility. Love found that para-
graphing did not significantly affect the ability
to recall the programs but complex control flow
did. Also, graduate students were more adversely
affected by complex control flow than undergraduate
students.

While all the studies cited have helped advance
the understanding of program comprehension, some
methodological difficulties still exist, in many
cases, proposed comprehension measures have only
been validated using other author's opinions of
comprehensibility rather than using an empirically-
based measure. In other cases, the empirical mea-
sures have been too subjective or difficult to con-
struct to be useful for validation purposes. Even
the best developed measure, the number of lines re-
called, has short-comings. First, such a measure
cannot detect intrastatement factors of complexity
since the unit of measurement is the statement.
Furthermore, the goal of memorizing a program may
differ from the goal of understanding the same pro-
gram, and Weinberg (~4EIN74) has shown that the goal
of an experiment can have a marked effect on its
outcome. What is still needed in comprehension
research is an empirical measure of comprehension
which is objective, easy to employ and directly
related to the task of comprehension.

In the next section, a methodology is proposed
to measure the comprehension of statements and pro-
grams. It is applied to study expression complex-
ity in section three and selection statement com-
plexity in section four. Implications for teaching
programming are described in section five and the
paper is concluded in section six.

1.2 A REACTIO~I TIME METHODOLOGY

In the search for an acceptable empirical mea-
sure of comprehension, many techniques have been
tried including hand-simulation, multiple choice
tests and rankings of comprehensibility by sub-
jects. Unfortunately, all of these techniques
were either too subjective, too difficult to con-
struct or were not adequate measures of

92

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953032.804619&domain=pdf&date_stamp=1980-02-01

comprehensibility. However, one measure which has
been successfully used in psycholiguistics to
measure comprehension has been reaction time. For
example, Gough (GOUG65) used a reaction time
methodology to study the effects of truth, affirma-
tion and voice in the understanding of English
sentences. Subjects were presented with a sen-
tence and picture and asked to indicate as quickly
as possible whether the sentence correctly de-
scribed the picture. The time to respond with the
answer was used as a measure of how difficult the
sentence was to comprehend. In Gough's experiment,
the sentences were varied according to truth
(whether the sentence accurately described the pic-
ture), affirmation (whether the sentence was stated
negatively or positively) and voice (whether the
sentence was stated in the active or passive).
Gough found that true sentences were processed
significantly faster than false, active faster
than passive and positive faster than negative.

A similar approach might be applicable to the
study of computer program comprehension. Pro-
grams, or segments of programs, could be presented
to subjects and the time they took to understand
the program could be a measure of the comprehen-
sibility of the program. Such a methodology offers
several advantages. First, it is easily measured,
especially if a terminal is used to display the
program and record the reaction time. Second, it
is obviously objective. Finally, the subject is
asked to comprehend the program as opposed to some
other, possibly related, activity like memoriza-
tion. In the next section the reaction time
methodology is employed to study factors affecting
statement complexity.

1.3 EXPRESSION ANALYSIS

1.3.1 Apparatus and Procedure

The study was conducted using a PLATO terminal.
The PLATO IV terminal consists of an 8-inch square
plasma screen, touch panel and keyset. Output
text and graphics can be displayed on the plasma
screen which, while using different technology,
resembles the more familiar CRT display. Input to
the terminal is via the keyset or touch panel.
All reaction times were recorded using the touch
panel as the input device.

The experiment began by giving the subject a
practice reaction test on the terminal to help
the subject become familiar with the operation
of the touch panel. The actual experiment began
following the practice test. Subjects were
presented with a display such as

X :=6
X~4

and were asked to indicate, as quickly as possible,
whether the expression 'X~4' was true or false.
The subject indicated the answer by either touching
a box on the screen which contained a 'T' or a box
containing an 'F'. For the IF and CASE state-
ments, the subject touched one of ten boxes on the
screen, each box containing one of the ten digits.
The expression to be evaluated was initially
presented on the screen and the first assignment
statement was displayed above the expression two

seconds later. In subsequent trials, only the
assignment statement was changed. The reaction
time was measured from the time when the assign-
ment statement was presented until the subject
touched the screen.

The subjects were presented with nine different
expressions which are shown in Table I. For each
expression, the values for X were the digits '0'
through '9' The order of presentation of both
digits and expressions was random for each subject.
The logical expressions were chosen so that an
equal number of true and false answers were given.
In the case of EQ and NE, eight additional fives
had to be presented to maintain the same number of
true and false answers.

1.3.2 Subjects

The subjects were both graduate and undergrad-
uate students at Iowa State University. The grad-
uate students were volunteers from an operating
systems course and an advanced programming
language course, while the undergraduate subjects
were volunteers from a beginning programming lan-
guage course. Thirty-four undergraduate and
fifteen gnaduate students participated. A summary
of the subjects' background data is shown in
Table 2.

1.3.3 Results

The statistical design used for the simple
expression analysis was a split-plot factorial with
two repeated measures: expressions (9) and digits
(lO). The statistical analysis for the expres-
sions LT,GT,AND,OR and NOT is shown in Table 3.
Similar results were obtained for EQ and NE, and
for the IF and CASE expressions but are not in-
cluded here for the sake of brevity. A more
detailed description of the experiment is detailed
in (BOYS79). The mean reaction times by expres ~
sion and digit are shown in Figure I. The error
rate was 4.5 per cent.

The results of the statistical analyses can be
summarized as follows:

l . The mean processing times for the expres-
sions were significantly different. The
expressions were ordered in increasing
difficulty as follows:
EQ,NE,GT,LT,AND,NOT,IF,OR,CASE

2. Experience had no significant effect on the
processing of the expressions.

3. Expressions which were true were processed
more quickly than those which were false.
The only exception occurred with expres-
sions involving negation (NE and NOT),
where no significant difference between
true and false expressions was found.

4. For all comparison operations, it was sig-
nificantly more difficult to compare two
numbers when they were equal than when
they were not.

TABLE I

Expressions used in First Experiment

Symbol
used in
Text

Expression

EQ
NF
GT
LT
AND
OF
NOT
IF

CASE

X=51
X¥5
X>4
x<5
X>2 AND X<8
X<3 OR X>7
NOT (X<5)
IF X<5

THEN Y=I;
EtSE Y=2;

CASE
X>=O aND X<2 DO; Y=~; END;
X>=2 AND X<4 EO: Y=2; END;
X>=4 AND X<6 DO; Y=3; END;
X>=6 AND X<8 DO; Y=I; END:
ELSE tO; Y:5; END;

ENDCASE;

1The values for X were the digits 0-9. The order of the
digits was randomized for each expression and subject.

TABIE 2

Background of Subjects

Measure N Mean S.D.

Months Programming
Undergraduate 34 26.85 20.37
Graduate 15 39.26 29.51

Size of Largest Programl
Undergraduate 3~ 3.41 .66
Graduate 15 3.47 .6~

Time of Session2
Undergraduate 3~ 35.32 18.59
Graduate 15 27.87 6.53

1Subjects were asked to classify the size of the largest
program as less than 10,100,1000 or 10,000 lines. Thus,
the measure is in terms of log(lines).

2In minutes.

~4

TABLE 3

Statistical Analysis for LT,GT,AND,05 and NOT

Source DF MS F

Experience 1 1.060 .76
Subject(Experience) ~7 1.qO0
Expressionl ~ 3.325 Iq.82,*
Experience*Expression q .530 2.36
Subject~Expression(Experience) 188 .22q
Digit 9 .368 ~.43"*
Experience*Digit 9 .063 .76
subject,Digit(Experience) ~23 .083
Expression*Digit 36 .318 %.15**
~xperience*Expression*Digit 36 .056 .73
Subject*Expression*Digit(Experience) 1692 .077

IA Duncan test for the means(in seconds)
significantly different are underlined):
GT LT AND NOT O~

.8~2 1.021 1.0~3 1.080 I.~29

.

**p<.01

was (means not

1.3.4 Discussion

The fact that even single operators differ in
complexity is important to the development of an
acceptable comprehensibility measure. For
example, the software science measure proposed
by Gordon is based on the count of operators and
operands in a program. No provision has been
made for the differences between types of opera-
tors. If the mix of operator types is not con-
stant across programs, then Gordon's measure
cannot accurately predict those aspects of pro-
gram comprehensibility which are affected by
statement complexity. Not only is the com-
plexity of statements affected by the types of
operators in the sentence, but the complexity is
also affected by the data being processed -- a
fact supported by psycholinguistic research
(BANK76). While data dependence is of limited
practical value to computer program comprehen-
sion, it does indicate that human processing of
statements can differ quite markedly from what
we expect.

The fact that operators are ordered in
difficulty is more practically useful. Since
OR was more complex than AND, the expression
'DO WHILE X (=4 OR X) =8' could better be written
as 'REPEAT UNTIL X>4 AND X<8' assuming that both
tests were evaluated at the same point in the pro-
gram. To provide the programmer with the flexi-
bility to state conditions in the clearest format
requires diversity in the control constructs and
operators available in a programming language.
Such diversity is rarely present in most current
languages.

1.4 PROGRAM VERSIOH ANALYSIS

In reaction time research, it is assumed that
if one statement is more comprehensible than
another, it will take a subject less time to
comprehend it. If this reasoning is extended to
the evaluation of two versions of a program, the
version which takes less time to comprehend will
be more comprehensible.

But what does it mean to "comprehend" a pro-
gram? Shneiderman (SHNE771 defines comprehension
as

the recognition of the overall function of
the program, an understanding of inter-
mediate level processes including program
organization and comprehension of the
function of each statement in a program.

If recognizing the overall function of the program
demonstrates that a subject understands the pro-
gram, than a possible measure of comprehensibility
would be the time it took the subject to discover
and state the program's function. If two versions
of a program exhibited the same function, then the
version which revealed its function more quickly
would be judged more comprehensible. In the next
section, this methodology is applied to the in-
vestigation of the effect of selection statement
complexity on comprehension.

1.4.1 Procedure

The same experimental setting and subjects used

~5

3.5

3.0

o2.0

o"1.5

~i.o

~Q

Digit

3 . 5 - -

3 . 0 - - -

. z l

'-2.5--
O
O
c)
{O

z.0--

oi.5 ~4

~ . 0

LT--
GT----
NOT

/ •

Digit

3 . 5 - -

3,0 --

(~z.s

,,M

~ 1.5
- 0
o

~ 1 . 0 -

AND--
OR

F -~. I '~,~
I ~" I

Digit

3.5

3 . 0

~ 2 . 5
o

r.~

"~ 2.0
{-,

~ 1.5

~ 1.0

IF ~
I\ I \

CASE---- i \ / "
/ %--% /

l

_I I ~ I l l I I I I

Digit

Figure I: Reaction Times by Digit for ExpEession Analysis

9~

TABIE 4

Statistical Analysis of Undergraduate Program Data

Source DF MS F

Blocks 5 .029 .43
Subjects(Blocks) 28 .069
Program 2 .917 17.20~*
Version 2 .213 4.00*
Program~Version 4 .034 .63
Residual 28 .053

*p<.05
*~p<.01

TABIE 5

Statistical Analysis of Graduate Program Data

Source DF MS F

Blocks 5 .117 .58
Subjects(Blocks) 9 .200
Program 2 .142 3.38
Version 2 .051 1.21
Program~Version 4 .152 3.61~
Residual 18 .042

*[:<.O5

in the expression experiment were used in the pro-
gram version experiment. Each subject was ini-
tially presented with instructions on the conduct
of the experiment via the terminal. After com-
pleting a practice problem, the subjects were
presented with the first of three programs. The
program was displayed on the screen and the sub-
ject was asked to discover the function of the
program as quickly as possible. The functions
included the computation of a minimum, maximum
and the merging of two sorted arrays. As soon as
the function was discovered, the subject touched
the screen and the program was erased. The subject
then wrote down the function of the program on
paper. The time from the presentation of the pro-
gram until the subject touched the screen was used
as the reaction time. When the subject touched the
screen again the next program was presented.

Since the data would be biased if subjects saw
two versions of the same program, the program ver-
sions were presented so that each subject saw each

program and each version but not all nine combina-
tions. Version O of each program used nested IF
statements while version 2 used a CASE statement
similar to an INCASE (KELL77). Version I con-
sisted of sequential IF statements for program 0
and program l and an IF-ELSE-IF construction for
program 2. These programs are shown in Appendix
A.

1.4.2 Results

The data for the undergraduate and graduate
students were analyzed separately. For each group,"
a randomized block, partially confounded factorial
design with repeated measures was used (KIRK68).
Subjects were randomly assigned to one of six
groups, each group seeing three program versions.

The statistical analyses for the undergraduate
and graduate subjects are shown in Tables 4 and 5,
respectively. Since it seems likely that the

97

TABLE 6

Summary of Program Version ~easures

Program Version 01 Version I Version 2

0
Mean Reaction Time2 (54, 72.3)
Correct Statements3 (7/12,4/5)
Ec4 732
C5 4

I
Nean Reaction Time (91.3,83.4)
Correct Statements (7/I0,5/5)
Ec 1644
C 3

2
Mean Reaction Time (230,42.5)
Correct Statements (9/I 2, 5/5)
Ec 13539
C 5

(5 9 . 9 , 5 1 . 9) (46 .7 ,28)
(7 / 1 1 , 5 / 6) (10111 ,4 /4)

320 1095
3 3

(44.7,68.2) (72,79.4)
(5/12,4/5) (4/12,4/5)

935 1540

(122 ,134 .2) (93 ,87 .9)
(10/1 1,414) (1 1 / 1 1 , 6 / 6)

13204 16382
5 5

IParenthesized entries are listed as: (undergraduate,graduate)
2In seconds
3Entries are listed as: number correct/total
4Gordon's measure of understanding
5Cyclomatic number

subjects who misstated the functions could bias the
analysis, only those reaction times for which the
function statement was correct were included in the
analysis shown above. However, similar conclu-
sions were obtained when all the data were in-
cluded in the analysis.

As expected, the programs differed in com-
prehensibility although this effect only ap-
proached significance (p<.06) for the graduate
subjects. Across programs, the versions dif-
fered significantly for the undergraduates while
the effect of versions depended on the program
for the graduate students.

A summary of the mean reaction times and num-
ber of correct statements is shown in Table 6.
Based on the mean reaction times, the CASE version
was the most comprehensible version for program 0,
while the sequential IF version was most com-
prehensible for program I. In program 2, the
undergraduates found the CASE to be most com-
prehensible while the graduates understood the
nested IF version the quickest. The analysis of
the number of correctly answered functions resulted
in slightly different findings. The fewest func-
tion misstatements were made for the CASE version
of program 0 and program 2, and the most function
misstatements for program I.

1.4.3 Discussion

The superiority of the CASE statement for im-
proving comprehension was clearly demonstrated
for program O. Not only was the function con-
veyed more quickly, but only one of the subjects
was unable to discover it. The CASE was also
superior in program 2 for the undergraduates, but
the effect of experience apparently made the
nested IF version the easiest to understand for
the graduate students.

But why was the CASE version not superior in
program]? A possible explanation comes from the
sequence-taxon theory of Sime, Green and Guest
(SIME77). According to their theory, the process
or program composition is the conversion of taxon
information (the conditions under which an action
is to be performed) into a combination of taxon
and sequence information (the order in which the
actions are to be performed). Conversely, com-
prehension is the conversion of the taxon and
sequence information back into the taxonomic
structure of the problem statement. Consequently,
the version which most closely conveys the taxono-
mic information of the problem statement should be
the easiest to understand. In the present experi-
ment, the CASE statement -- which is highly
taxonomic -- was superior in two of the three
programs for the undergraduates. The possible
reason why the CASE was not superior for program l
was because the subjects had to infer some of the
taxonomic information (i.e. X>=0 when XYY, and

98

X>=O when X<=Y). Had the conditions of the CASE
included this redundant, but essential, informa-
tion, the CASE statement might have also been
superior for version I.

To see how the other measures of comprehension
fared, the cyclomatic measure and Gordon's measure
were computed for the programs and are displayed in
Table 6. As can be seen, the cyclomatic measure
was not sufficiently sensitive to distinguish
between versions. In contrast, Gordon's measure
did correctly predict the ordering of versions
in program l, but overemphasized the difficulty
of the CASE version in the other programs. If the
sequence-taxon theory is correct, the redundant
information which enhances comprehension would
inflate Gordon's measure because of the additional
operators and operands required to express the
information. As a result, Gordon's measure would
indicate that the CASE was less comprehensible
than the other versions when it was actually more
comprehensible.

1.5 IMPLICATIONS FOR TEACHING PROGRAMMING

The results of these experiments present prac-
tical implications for the teaching of program-
ming. First, students need to be made aware that
the manner in which expressions are stated in a
program can affect its readability. They should
strive to state an expression as simply as possi-
ble, aware that operators like OR can make the
expression more difficult to understand. Ob-
viously, many factors will have to be considered
including the language being used and the possible
alternate forms of the expression. But a realiza-
tion that expression simplicity is an important
factor in comprehensible software can help the
student focus on areas in the program which need
to be improved.

More importantly, the research conducted thus
far indicates that the conditions under which an
action is performed need to be stated clearly
and explicitly. Often, this will require
redundant coding of conditions as was demon-
strated in this experiment. While redundant
coding may be abhorrent to computer scientists
who feel that terseness is a virtue, it should
be emphasized that terseness may only be a
virtue for the machine and not the programmer.

1.6 CONCLUSION

In this paper, a reaction time methodology was
applied to the study of some factors affecting
program comprehension. In general, the results
indicate that operators differ in complexity
and that redundant information in a program can
enhance its comprehensibility. But more impor-
tantly, the study of comprehension has provided
support for a theory of the programming process
which is based on human subject data. It is
appropriate that the object of research be the
human rather than the machine since the important
improvements in software will only occur when soft-
ware tools are developed to accommodate those who
use them.

(BANKS76)

(BOYS79)

(GORD75)

(GOUG65)

(HALS77)

(KELL77)

(KIRK68)

(L0VE77)

(MCCA76)

(SHNE77)

(SIME77)

(WEIN74)

BIBLIOGRAPHY

Banks, William P., Fujii, Milton; and
Kayra-Stuart, Fortunee. "Semantic
Congruity Effects in Comparative
Judgments of Magnitude of Digits."
Journal of Experimental Psychology:
Human Perception and Performance 2
(---Au-ugust 1976):435-447.

Boysen, John P. "Factors affecting
computer program comprehension." Ph.D.
dissertation, Iowa State University,
1979.

Gordon, R.D. "A Measure of Mental
Effort Related to Program Clarity."
Ph.D. dissertation, Purdue University,
1975.

Gough, Phillip B. "Grammatical
Transformations and Speed of Under-
standing." Journal of Verbal Learning
and Verbal Behavior 11--(Ap-p-rTT--19-~:lO7-
II.

Halstead, M.H. Elements of Software
Science. New York: Elsevier North-
Holland Inc., 1977.

Keller, Roy F. "On Control Constructs
for Constructing Programs." SIGPLAN
Notices 12 (September 1977): 36-44.

Kirk, Roger E. Experimental Design:
Procedures for the Behavioral Sciences.
Belmont: Wadsworth Publishing Company
Inc., 1968.

Love, Tom. "An Experimental Investiga-
tion of the Effect of Program Structure
on Program Understanding." ACM SIGPLAN
Notices: Language Design for Reliable
~ e T2- Ma-~b 197--7~-: IO-5-T~.

McCabe, Thomas J. "A Complexity
Measure." IEEE Transaction on Software
Engineering SE-2 (December 1-9-~6~-
20.

Shneiderman, Ben. "Measuring Computer
Program Quality and Comprehension."
International Journal of Man-Machine
Studies 9 (July 197-~-~-:--~65-78.

Sime, M.E.; Green, T.R.G.; and Guest,
D.J. "Scope Marking in Computer
Conditions - A Psychological Evalua-
tions" International Journal of Man-
Machine Studies 9 (January 1977-T: IO7-

Weinberg, Gerald M.; and Schulman,
Edward L. "Goals and Performance in
Computer Programming." Human Factors
16 (February 1974): 70-7.

99

Appendix A

PROGRAR VERSIONS OSED IB EXPERIMENT

........................ Version 0

DCL (W,X,¥,Z) FIXE~ DEC;
IF X>=Y

THEN IF Y>=Z
THEN W=Z;
ELSE W=¥;

ELSE IF X>=Z
THEN W=Z;
ELSE W=X;

PUT LIST(W) ;
........................ VERSION I
DCL (W,X,Y,Z) ~IXED DEC;
W=X;
IP Y<W

THEN W=¥;
IF Z<W

THEN W=Z;
PUT lIST(W) ;
........................ VEPSION 2
DCL (W,X,Y,~) FIXED DEC;
CASE

X<Y AND X<Z DO; W=X; END;
¥<X AND Y<Z DO; W=Y; END;
EESE DO; W=Z; END:

ENDCASE
PUT LIST(W) ;

Figure 2: Program 0: Three VeEsiuns to Compute a Minimum

100

........................ VEPSION 0
DCI (X,Y) FIXED ~EC;

Y=0;
NEXT: GET LIST (X) ;

IF X>=0
THEN IF X>Y

THEN Y=X;
ELSE GOTO NEXT;

ELSE GOTO FINISH;
GOTO NEXT;

FINISH: PUT lIST(Y) ;
........................ VEBSION I
DCL (X,Y) FIXED DEC;

Y=O;
N£XT: GET LIST(X) ;

IF X>Y
THEN Y=X;

IF X>=0
THEN GOTO NEXT;

PUT LIST(Y);
........................ VERSION 2
DCL (X,Y) FIXED DEC;

Y=O ;
NEXT: GET LIST(X) ;

CASE
X>Y DO; Y=X; GOTO NEXT; END;
X<0 DO; GOTO FINISH; END;
ELSE DO; GOTO NEXT; END;

ENDCASE;
FINISH: PUT LIST(Y);

Figure 3: Program I: Three Versions to Compute a Maximum

}01

........................ VERSION 0
DCL (A(N),B(M),C(N+M)} FIXED DEC,

(1,J,K) FIXED DEC;
A~RAYS A AND B ARE ASSUMED TC BE SCRTED IN
ASCENDING CRDER ~/I

1=I; J=1; K=l;
DO WHILE(K<=N+M) ;

IF I<=N
THEN IF J<=M

THEN IF A(I) <E(J)
THEN DO; C(K)=A(I) ; I=I+1; END;
E[SF DO; C[K)=B(J) ; J=J+1; END;

ELSE DO; C{K)=A(I) ; I=I+1; END;
ElSE DO; C(K)=E(J); J=J+1; END;

K=K+I ;
END;
........................ VERSION I
I=I;J=I;K=I;
DO WHILE (K<=N+M) ;

IF I>N
THEN DO; C(K)=B(J) ; J=J+1; END;
ELSE IF J>M

THEN DO; C(E)=A(1) ; I=I+1; END;
ELSE IF A (I) <B(J)

THEN DO; C(K)=A(I); I=1+I; END;
ELSE DO; C(K)=B(J) ; J=J+1; END:

K=K+I ;
END;
........................ VERSION 2
I=I ;J=1 ;K=I;
DO WHILE (K<=N+M) ;

CASE
I<=N AND J<=M DO: IF A(I)<B (J)

THEN DO; C(K)=A(I); I=I+1; END;
EISE DO; C(K)=B(J); J=J+l; END;

END;
DC; C(K)=H(J); J=J÷l; END;
DO; C(K)=A(I); I=I+1; END;

I>N
J>M

ENDCASE;
K=K+I;

END;

1The declarations and comments were present for all versions
of program 2.

Figure ~: Program 2: Three Versions to Merge Two Sorted
Arrays

102

