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A B S T R A C T  

A controller for a packet switching network is an algorithm to control the flow of 
packets through the network. A local controller is a controller executed indepen- 
dently by each node in the network, using only local information available to 
these nodes. A controller is deadlock- and livelock-free if it guarantees that 
every packet in the network reaches its destination within a finite amount  of 
time. We present a local controller which is proved to be deadlock- and l ivelock-  
~ree. 

1. Introduct ion  

1 .1 .  B a s i c  De f in i t i ons  

A packet switching network is a directed graph 
G = ( V ,  E); the vertices V represent proces- 
sors, and the edges E represent communica- 
tion links. We assume messages, called pack- 
ets, are to be passed between processors. 
Each network has an associated constant b, 
the number of buffers at each vertex; a buffer 
can hold exactly one packet. Associated with 
each packet is an acyclic route v 1, v 2 . . . . .  vq, 
which is a path in G. Vertex v z is the source, 
and vq is the destination vertex for the packet. 
We assume a f ixed routing procedure {KL], 

w h e r e  a packet's route is determined at the 
source node. We may also assume that the 
route of a packet is included as part of the 
message in the packet, although in practice 
the packet could hold only the source and 
destination, with each processor in the net- 
work responsible for deducing the next ver- 
tex to which the packet is to be passed. Also 
associated with a network G is the constant 
k, the length of the longest route taken by a 
packet in G. If we want to state explicitly 
the two constants associated with a network 
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G we write that G is a (b, k)-network. Note 
that k need not be the length of the longest 
path in the network; we may never wish to 
send messages between distant nodes. 

The moves made by the network are of 
three types. 

1. Generation. A vertex v accepts, and 
places in an empty buffer, a packet p 
created by a process P residing in v. 

2. Passing. A vertex v transfers a packet 
in one of its buffers to an empty buffer 
of vertex w, where v - - w  is an edge, 
and the route for the packet has w fol- 
lowing v. The buffer of v holding the 
packet becomes empty. 

3. Consumption. A packet in a buffer of v, 
such that the destination for the packet 
is v, is removed from that buffer and 
the buffer is made empty. 

1.2 .  Contro l l ers ,  D e a d l o c k s  and L i v e l o c k s  

A cono'oller for a network is an algorithm that 
permits or forbids various moves in the net- 
work. One of the key problems in packet 
switching is preventing deadlocks, which are 
situations in which one or more packets can 
never reach their destination no matter what 
sequence of moves is subsequently per- 
formed. For example, in the network of Fig. 
1, if all physically possible moves are permit- 
ted by the controller, v I generates b packets 
with destination v 2, v 2 does the same with 
destination v 3, and v 3 does the same with 
destination v l, then all buffers of all vertices 
will be full, no consumption moves can take 
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place without  a pass move ,  and no generat ion 
can take place. It is not  hard to see that the 
network is deadlocked.  

Fig. 1. A network exhibit ing deadlock 
with a trivial controller,  

Several deadlock:~'ee controllers, i.e. controll- 
ers that prevents  deadlocks,  are known to 
date [G, RH, TU],  but none  of  them 
prevents  another  kind o f  failure to be 
avoided in packet switching networks:  
livelock. Livelock is a situation in which 
unfair  scheduling of  packets dynamically 
prevents  one or more  packets to reach their 
dest ination.  For example,  the following sim- 
ple controller ,  the Forward-Count (or FC) 
cono'oller, was proved to prevent  deadlocks in 
any network [TU]. With FC a packet p may 
be passed to or generated into a node  v:l: if 
and only if the number  of" f r e e b u f f e r s  in v is 
greater tl'ian the distance f rom v to the desti- 
nation of  p along the packer 's  route.  A sim- 
ple network,  illustrated in Fig. 2, shows  that 
FC does  not prevent  livelocks. 

The network consists o f  two routes,  
rl:(vl,  ~2 . . . . .  Vlo), and r2:(wl,  v2, w3); 
every node has ten buffers. With FC, a 
packet generated in vl (a "whi te  packet")  
may be passed to v2 if and only if v 2 has at 
least 9 free buffers,  but for a packet gen-  
erated in w t (a "black packet")  to be 
accepted by v 2 it is enough  for v 2 to have 
two (or more )  free buffers. Under  heavy 
input load f rom the source node wt, this 
imbalance soon causes the following livelock. 
Black packets fill up most  o f  v2's buffers;  the 
departure  of  any black packet p from v 2 frees 
a buffer,  but the number  of  free buffers  in v 2 
is still not  large enough  (i.e., less than 9) for 
a white packet, waiting in v I, to en te r  v2; 

:1: From now on we may use "accepted by a 
node" instead of "'passed to or generated into 
a node" 

v3 lm . . . .  - - - ~ : [ ~ )  vl0 

Fig. 2. Livelock occuring with the 
FC controller.  

soon,  a black packet generated in w I enters  
v 2 and replaces the departed packet p.  This 
dynamic process repeats,  and, as long as the 
flow of  packets in r I is not  reduced,  the 
white packet in Vl can never  reach its desti- 
nat ion (the white packet is livelocked ). 

A livelock-Jg'ee (or LF) uniform controller 
is one  that prevents  livelocks in any network.  
We are looking for a (b, k)-deadlock and 
livelock-jg'ee (or DLF) uniform controller, one 
that prevents  both deadlocks and livelocks in 
any (b, k ) - n e t w o r k . t  With a D L F  controller 
every packet p reaches its dest inat ion within 
a finite amoun t  o f  t ime f rom the m o m e n t  of  
its creation.:~ 

1.3. Local Controllers 
Whereas  in general a controller can examine  
the state of  the entire network,  we do not  
consider  that this is a reasonable  assumption.  
There  has to be at least one  ver tex at which 
the controller  resides,  and this vertex would 
have to be connected  directly to every other  
vertex,  which requires an arbitrary number  
o f  connect ions  to one processor  or packets 
informing the controller  o f  local condi t ions 

"t We shall omit the parameters (b, k) when- 
ever they are understood: "uniform controll- 
er'" stands for "(b, k) uniform controller" 
* It should be clear that the creation of a 
packet by a process in a node precedes the 
generation of the packet in this node. 
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would have to be passed around the net- 
work, and this information would itself alter 
the state of the network (and generate too 
much message traffic). 

Thus we shall restrict ourselves to local 
controllers, where each processor decides on 
the legality of accepting a packet and the 
decision is made according to local inJorma- 
tion alone. To this purpose, we shall consider 
the following local information defining node 
and packet states in a (b, k) -ne twork  G. We 
characterize the local state of a node v of G 
by the following parameters,  

J ~ < J o ,  J l  . . . . .  Jk > ,  where 
Ji, (0.,< i...< k) ,  is the number  of packets 
in v whose destination distance from v 
is i, and 

t = <  t o , t t . . . . .  t A > ,  where 
t i, (0~<i~<k), is the earliest (i.e., the 
smallest) creation time among the pack- 
ets waiting to be accepted by v whose 
distance from v to their dest ination is 
less or equal to i. If there are no such 
packets it is convenient  to set ti=eo.* 

Similarly, any packet p asking access to a 
node v has a packet state relative to v charac- 
terized by the following parameters,  

j ,  the distance from the node v to the 
destination of p, and 

t, the creation time of the packet p. 

Note that,  with our assumption of fixed rout- 
ing policy, and if the creation time of a 
packet is stored in the packet, all the local 
information listed above is readily available 
to any node v when it is considering whether  
to accept a packet p. 

In our formalism, we shall define an 
(c~,13) controller S to be a set of (a , /3 )  
tuples where a denotes a node state and /3 
denotes  a packet state. (ao,/30) is in S if and 
only if it is permissible for an rio-state vertex 
to accept a I3o-state packet. 

* Clearly, t,, the creation time of a packet p, 
and t,, the time elapsed from the creation of 
p, are related at any time t by t , - t- t¢,  i.e. the 
earliest creation time corresponds to the 
greatest elapsed time. 

2. Local DF and DLF Uniform Controllers 

2.1. The Forward-State Controller 
Several DF uniform local controllers were 
investigated in [TU]; one of them is the 
Forward-State (or FS) controller. For b > k ,  
FS(b,  k) ,  or just  FS when (b, k) is under-  
stood, is the set 

{ ( j , j )  f o r a l l i k 0 ~ i ~ j ,  

i<  b - ~ j , ,  and 
r m  i 

O ~ j ~  k and 

O ~ Z j ,  ~ < b - l }  
r--O 

In the above, we assume 
J = <  Jo, J l  . . . .  Jk >.  

Theorem 1 [TU]. FS is a DF uniform 
controller. 

The DLF controller described in the next 
section is based on some properties of FS. 
To state them we must  first introduce the 
concept of teachability of node states with 
respect to (a , /3 )  DF uniform controllers. Let 
S be such a controller and let (ao, /3o)ES. 
Suppose the acceptance of a /3o-state packet 
into an a0-state node results in an ao '  node 
state, we denote  this state change by 

Ool 
~ 0  OtO 

Similarly, if a /3o-state packet leaves an ao- 
t state node and this results in a new state a o, 

then we denote this change by 

0ol 
' 

Ot 0 Ot 0 

In both cases, if we are only interested in the 
state transition we just  write ao  ~ ao'. ~ is 

a "s ta te  t rans i t ion"  relation in the set of 
states. The transitive closure of the relation 

is denoted by I'---. 
s s 

Let S be an (a , /3 )  DF uniform con- 
troller and ~o and ao '  be node states. We say 
that  a is reachable from e~ o with respect to S if 

and only if ~ o ~  ao'. If ao  is the "empty  
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node" state then we simply say that s is 
reachable with respect to S and we denote this 

fact by ~ s (the empty node state so is the 
s 

state description of a node without any 
packet stored in its buffers or any packet 
waiting to be accepted by the node; with our 
parameters, so  is characterized by the follow- 
ing values j=  < 0, 0 . . . . .  0 > ,  and 
t = <  o o ,  oo  . . . . .  o o > ) .  

Lemma 1. If ~ j = < j 0 ,  j l  . . . . .  Jk> ,  
k 

then for all i, O~<i~<k, we have b-~j,>~i.  
r -- i 

Proof. Suppose F~S J=<Jo,  Jl . . . . .  Jk > , 

then ¢ j for some q~O. By induction on q 

we prove that i f ¢  j then for all i, OR<JR<k, 
FS k 0 

b--~j,>~i. If[---.- j, then j is the empty-node 
r - - i  FS 

state. So jo=jl . . . . .  jk=O, and since b>k 
the induction hypothesis holds. Suppose that 
the induction hypothesis holds for q=t-1, 
we show that it must also hold for q=t. If 

t t - - I  

E~S j then ~FS,, , ~ $ J 0  and jot.._ j for some node 
E F. 

state j o=<j~ , j~ , , . . ,  j~>. By induction 
hypothesis, for all i, OR<JR<k, we have 

:ol m b - ~ j f ~ i .  I f j  r ~ j t h e n  

Ji=Ji for i~/3 

ji=Ji O- 1 for i=/3 

and the induction hypothesis will obviously 

statej .  I f j ° ~ j  then (j0,/3) is hold for the 

in FS. Therefore, for all i, 0~<i~</3, 
k 

b-~j~°> i, and we have 
r - - i  

Ji--Ji for i~/3 

ji=jto+ 1 for i=13 

k 
Then, for all i, O~<i~< B, b-~j,>~i.  This 

last result combined with the induction 

hypothesis shows that for all i, O~<i~<k, 
k 

b-  ]~ jr >~ i. [] 

o 

Lemma 2. If F~ s J=<Jo,  Jt . . . . .  Jk > 
and for some d,O~<d~<k, we have 

k 
b--~jr=d,  then j d )  1. 

r - d  

Proof. If d=k then b--Jk=kk, so jk=~--k ) I. 

If O ,~d<k  then b-  ~ Jr=b-~jr+ja,  
r--d+l r - - d  

k 
therefore b -  ~ Jr=d+jd. By Lemma 1 we 

r - d + l  
k 

have b-  ~ jr~,.d+l, so d+jd)d+l  , and 
r - - d + l  

ido l .  [] 

Let J=<J0,  Jt . . . . .  jk> be a reachable 
state with respect to FS. We define dq) ,  the 
distance threshoM of the state j, as follows, 

k 

d(j)= min { i ] b - ~ j r = i  or i = k + l  } 
rmi  

Lemma 3. If ~ j  and d(]) is the 

corresponding distance threshold, then 
q, d)EFS if and only if 0~<d<d(j ) .  

Proof. Let ~-~ j and let d'=d(j) be the dis- 
It 

tance threshold o f j .  If d'=k+l then for all 
k 

i, O~<i~<k, we have b - ~ j r > i .  Directly 

from the definition of FS we can now verify 
that (j, d)EFS if and only if O~<d<d'=k+l. 

k 

If d ' < k + l  then b-  ~ jr=d', and for all i, 
r i n d  ° 

k 
O~<i<d', we have b - ~ j r > i .  It is clear 

now that if O~<d<d" then (j, d)EFFS, and if 
d>~d" then (j, d) is not in FS. [] 
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L e m m a  4. Let G=(V, E) be a (b, k)- 
network,  and vE V be a node with the state j 
reached with respect to FS. Let d'~dq) be 
the corresponding distance threshold. If 
d ' ~ k + l  then 

1. ja.>~ 1, i.e. there is at least one packet 
p in v whose distance from v to its 
destination is d ' .  

2. If the packet p" ever leaves the node v 
the resulting state Jo has a distance 
threshold d o such that dO> d ' .  

P, oof. 
k 

I If d'~k+l then b- ~ jr=d ", and, by 
rind" 

Lemma 2, we have jd.>~ I. 
2. Let j l and jo be the states of the node v 

immediately before and after the packet 

p° leaves the node v. Since e~  s j l  then,  

by Lemma 1, for all i, OR<JR<k, we 
k 

have b--~jrl>~i. After the departure 
¢--i 

of p" we have ja ° .= ja  t . - 1 ,  and all the 
other  components  of jo and j t  are equal. 
Therefore  for all i, 0~<i~<d'~<k, we 

k 
have b-~j#°>i,  and, by definition, 

rmi 
( jo d ' )  must  be in FS.:~ By Lemma 3, 
the distance threshold d°=d(j d) is such 
that 0 ~ < d ° < d  °. 

We are now ready to state and prove 
the main result of this paper. 

2.2. The  Forward-Sta te  Elapsed-Time Con- 
troller 
We define the Forward-State Elapsed-Time 
controller as follows. For b > k. let 

:t: This is essentially a proof that any packet 
which exits a node can immediately reenter 
this node according to the FS controller. This 
property is essential in our proofs, and it 
holds only for the state controllers. With the 
BC or FC controller, it is easy to provide an 
example of a reachable state in a node where 
a packet that leaves this node is not allowed 
to reenter the node. 

FSET(b,  k) ,  or just  FSET when (b, k) is 
understood,  be the following set, 

{[(j, t),  ( j ,  t)] I O~j<d'==d(j) and 
0.< t.< t~._ i } 
where i, t, j and t are the parameters we 
defined in section 1.3. With FSET, an arriv- 
ing packet is accepted by a node v if and only 
if this is permissible with respect to the con- 
troller FS and there are no waiting packets¢ 
with a greater elapsed time which may also 
be accepted by the node according to FS. 

Theorem 2. FSET i~ a DLF uniform 
controller. 

Proof. FSET is a deadlock-free uniform con- 
troller, the proof is similar to the one given 
in [TU] for FS. We must  show that FSET is 
a livelock-free uniform controller,  i.e. any 
packet reaches its dest ination after a finite 
amount  of t ime in any given network. Sup- 
pose G is a (b, k) -network where a livelock 
situation is reachable with FSET; let L be 
the maximal set of livelocked packets in this 
livelock. There is a t ime t o when 

1. all the packets in L have reached the 
node in their route where they remain 
"blocked fo rever" ,  and 

2. all the packets in L have a greater 
elapsed time than any other  packet in 
the network. 

We consider the network behavior  from the 
t ime t o on. Let plEL be a livelocked packet 
in a node vi; p~ is waiting to be passed to a 
node v2.* Let dl be the distance from v t to 
the destination of  Pl, and let tl be the crea- 
tion t ime of Pl. Then,  with respect to v 2, 
the local state of Pl is ( d r - l ,  tl). Let d2 be 
the maximal distance threshold reached by 
the states of node v 2 (from the t ime t o on).  
The state of  v 2, at the t ime t 2 the maximal 
distance threshold d 2 is first achieved, will be 
denoted  by (J2, t 2 - < r t ,  r2  . . . . .  r k > ) ,  by 

t Packets whose request to be passed or gen- 
erated into v was previously denied and has 
not yet been granted. 
" Another case to be considered is the follow- 
ing, p~(~L was created in a node v~ and is 
waiting to be generated in v~. The proof of 
this case is similar to the one presented here. 
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our definitions d2=d(j2).  Suppose d l - l < d 2 .  
We will show that this leads to a contradic- 
tion. Let 14" be the set of waiting packets, at 
the time t 2, whose access to v 2 is permissible 
with respect to FS (i.e., whose distance from 
v 2 to destination is less than the threshold 
d2); IV contains /Tt. We denote  by p~" the 
packet in W with the earliest creation time 
t~'. We must  have r a r . l = t ~ < t  l, therefore 
/7~ is in L. It should be clear that from the 
time t 2 on, as long as p~' is waiting to be 
accepted by v 2, no other  packet can be 
passed or generated into v 2 according to 
FSET. So, the distance threshold d 2 does 
not decrease, and when /7~ is eventually 
re t ransmit ted? to the node v 2 the packet is 
accepted according to FSET. But/71" is in L 
and a contradiction results; therefore we 
must  have d 2 < d  I. Since d l > d  2 then 
d 2 ~ k + l  and, by Lemma 4, there is a packet 
/72 in v 2 whose distance from v 2 to destina- 
tion is d 2, and if/72 ever leaves the node v 2 
then the resulting distance threshold will be 
greater than d2. This is impossible by the 
maximality of d2, therefore P2 never  leaves 
the node v2:P2 must  be a livelocked packet 
(i.e., /72EL). A repetition of the argument  
used before shows that there is a sequence of 
livelocked packets /71, P2, • • ' , Pt, " • " 
whose distances to destination 
d l >  d2> • • • > dr> • • • are monotonically 
decreasing. Then we can prove the existence 
of a livelocked packet whose distance to des- 
tination is zero; but such a packet would be 
consumed after a finite amount  of time. [] 

We may note that the addition of the 
creation time parameter and the use of the 
same strategy with the Forward-Count  con- 
troller instead of the FS controller, do not 
yield a DLF uniform controller as could be 
expected. Of the four local controllers intro- 
duced in [TU], the Backward-State controller 
BS is the only one besides FS whose 
modification results in a DLF uniform con- 
troller. 
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