
ISOMORPHISM TESTING FOR GRAPHS OF BOUNDED GENUS f 

Gary M i l l e r  
Department of Mathematics 

Massachusetts I ns t i t u t e  of Technology 
Cambridge, Massachusetts 02139 

I .  Introduct ion 

We present an algorithm which determines iso- 

morphism of graphs in v O(g) steps where v is the 

number of vert ices and g is  the genus of the 

graphs. In [FMR 79] an algorithm was presented 

for  embedding graph on surfaces of genus g in 

v O(g) steps. Here we show how to extend th is  a l -  

gorithm to isomqrphism test ing for graphs of small 

genus. This resu l t  is noteworthy for  at least two 

reasons. F i r s t ,  th is  extends the polynomial time 

isomorphism resul ts  fo r  the plane [HT 72] and also 

the project ive plane [L 80] to a rb i t ra ry  surfaces. 

Second, th is  gives one of the few known natural 

decompositions of the isomorphism problem into an 

i n f i n i t e  hierarchy of problems Po,Pi . . . .  such that 

isomorphism test ing of problems in P. is decidable 
in time v O(i) I 

The computational complexity of isomorphism 

test ing is one of the c lassical  unresolved ques- 

t ions in theory of computation. Few computational 

problems have such a wide appeal and also have the 

property that  we know so l i t t l e  about the i r  compu- 

ta t ional  complexity. Karp [Ka 72] presented three 

problems, Pr imal i ty  Testing, Linear Programming, 

and Graphs Isomorphism which are in NP but had not 

been shown e i ther  to be in P or to be NP-complete. 

These problems are not a complete l i s t ,  but they 

are fundamental problems, which form examples for  
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large areas of research. Recently Khachian [Kh 79] 

has given a polynomial time algorithm for  l inear  

programming, see [GL 79]. In [iX 76] some evidence 

was given in favor of p r ima l i t y  also being poly- 

nomial time decidable. This in some sense leaves 

only,  of the three, graph isomorphism s t i l l  unre- 

solved. Graph isomorphism and factor ing integers 

are the two outstanding problems. 

Embedding graphs on surfaces seems to be as 

old as graph theory i t s e l f ,  going back to the 

father of graph theory, Euler. Other than embed- 

ding graphs on the plane, research in embedding 

graphs has focused mostly on embedding very regu- 

la r  graphs, e.g. the complete graph. The other 

main focus has been on extending Kurotowski's fo r -  

bidden subgraph theorem to surface of higher genus. 

The author feels one possible explanation for  the 

lack of research in embedding a rb i t ra ry  graphs is 

the divergence in the interests of graph theor is t  

and topologis t  which has created a void in the 

amalgam. At the present time there seems to be no 

simple source of good notat ion and, or simple 

resu l ts .  The notation used is simply an a rb i t ra ry  

scheme that the author has found convenient during 

the research of th is  paper. 

In th is  paper we e x p l i c i t l y  only handle the 

or ientable case. Most of the ideas are presented 

to handle the unorientable.  We leave a formal 

discussion of the unorientable case un t i l  the 

f i na l  version of th i s  paper. 

Simi lar  work has been done by J.N. Mayer and 

I .S. F i l o t t i  [MF 80]. 

I I .  Codes and Canonical Forms 

Before we prove the main resu l ts  i t  is worth- 

whi le point ing out (possibly) harder isomorphism 
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problems which this and most other isomorphism 

algorithms solve. 

Besides determining isomorphism between graphs 

we may want a unique code or a canonical form for 

graphs. We f i r s t  make these two notations precise. 

Let C denote a class of presentation for graphs, 

say, incidence matrices. A function f from C to 

strings or the natural numbers is a code i f  for a l l  

G,G'~C, G ~G' i f f  f(G) = f (G ' ) .  The function f is 

succinct i f  length ( f (x ) )  = O[length (x) ]  k for  some 

constant k. We shall say a funct ion f from C to C 

is a canonical form or a canonical label ing i f  

I )  G= f(G) and 2) G ~G' i f f  f(G) = f (G ' ) .  Note 

that canonical forms are codes. In order to c la r -  

i f y  the de f i n i t i on  given in [M 79] we shall say a 

code f is a c e r t i f i c a t e  i f  the set {(G,f(G))IG~C} 

is recognizable in polynomial time. Note that  for  

"natural"  presentations of graphs isomorphic graphs 

have the same size presentations. So, canonical 

forms are succinct. 

Using standard r e d u c i b i l i t y  technique i t  is 

easy to see that succinct codes and canonical forms 

are polynomial time equivalent.  By minor modif ica- 

t ion  most known isomorphism algorithms can be trans- 

formed into canonical form algorithms. The algo- 

rithm in th is  paper for  isomorphism of graphs of 

bounded genus w i l l  be viewed as a procedure to 

produce a succinct code for  these graphs. 

I I I .  Notations and Def in i t ions 

The de f i n i t i ons  and theorems from [FMR 79] 

w i l l  be used extensively in th is  paper. For the 

sake of conciseness i t  is assumed that the reader 

is fami l i a r  with the paper. We present some of 

the de f in i t i ons  from the paper which are nonstan- 

dard or which make a technical d i s t i nc t i on  of 

commonly used words. The fo l lowing d e f i n i t i o n  of 

a graph which has more of a topological form and 

seems much easier to work with w i l l  be used. 

De f in i t i on :  A ~rap b G is a t r i p l e  (P,V,R) where 

( I )  P is a f i n i t e  set where elements are cal led 

points. 

(2) V is a subset of P whose elements are cal led 

vert ices.  

(3) R is an an t i r e f l ex i ve  and symmetric binary 

re la t ion  on P such that:  

(3.1) No two vert ices are related.  

(3.2) Points in P-V are related to at most two 

other points. 

(3.3) The connected components of (P-V,R) are 

cal led the edges of G. The edges are 

acycl ic.  

A graph is closed i f  every point in P-V is 

related to exact ly two other points. An embedding 

I of a closed graph G is simply a cyc l ic  or ienta-  

t ion of the edges associated with each vertex of 

G. A pair  (G,I) consisting of a closed graph and 

an embedding w i l l  be cal led an embedded 9raph 

often denoted G I. In [FMR 79] we allowed s p l i t  

embedding. For th is  presentation they do not seem 

to be necessary. Thus, we shall assume that a l l  

embeddings are simple. A standard graph (V,E) 

consist ing of a co l lec t ion  of vert ices and a bin- 

ary re la t i on  E on V can be transformed into the 

above de f i n i t i on  of a graph as fo l lows:  

l )  P : VI~E 

2) v = v  

3) (v,e),(e,v)~R i f  eEE, v~V and e contains v. 

I f  U is a subset of vertices of G the star 

of U denoted S(U) is the subgraph of G consisting 

of the vertices U plus the edges common to at 

least one vertex in U. 

IV. Isomorphic .Embedded Graphs 

Let G I and G~ be two embedded graphs; we 

shall say f is an orientation preserving isomor- 

phism i f  f is an isomorphism of G onto G' and f 

preserves orientation, i . e . ,  I(x) = <e I . . . . .  er> 

implies I ' ( f ( x ) )  = <f(el) . . . . .  f(er)>. Note that 

there are at most 2e orientation-preserving iso- 

morphisms since any two such maps which agree on 

a chain xey must be the same map. We shall say 

that G I is isomorphic to G' I, i f  there is an 

orientation-preserving isomorphism from G I onto 

G' i , .  By the above remark we can test isomorphism 

of embedded graphs in O(e 2) steps. 

We can also quickly generate succinct codes 

for embedded graphs. Let l i s t  (Gi,~) be some 

fixed systematic l i s t  of the edges and vertices of 

an embedded graph G I starting from the edge e in 

which is oriented; e.g. List (Gi,~) is a depth G 
f i r s t  search starting from e where the pr ior i ty  

for searching edges from some vertex is determined 

by I and the edge with which we f i r s t  encountered 

x. To get a succinct code for G I we simply take 

the minimum over a l l  edges of G, i .e.  Code (G I) = 

min ~ is t (G I ,~) I e ~ G }. By a previous remark Code is 
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a polynomial time succinct code for  isomorphism of 

embedded graphs. 

Hopcroft and Wong [HN 74] have shown how to 

construct a succinct code for  embedded 3-connected 

planar graphs in l inear  time. I t  is open whether 

there are l inear  time constructable codes for non- 

planar embeddings. 

The basic approach of th is paper for  checking 

isomorphism or generating codes is to simply f ind 

a l l  minimal embeddings I of G and take minimum 

{Code(Gl)}. This approach f a i l s  even in the planar 

case when the graph is not 3-connected for the 

number of embedding may be exponential in the num- 

ber of vert ices,  but i f  the graph is simple and 3- 

connected then i t  can have at most 2 embedding in 

the plane. This fact is known as Whitney's 

theorem: 

Theorem I: (Whitney) [W 33] A simple planar 3- 

connected graph has exact ly 2 embedding in the 

plane. 

This theorem of Whitney's is widely referenced 

in the l i t e ra tu re  but the author knows of no simple 

proof in pr in t .  We present a simple proof due to 

Edmonds [E pc]. 

Proof of Theorem: Let G I be a planar embedding of 

3-connected graph G. We need only give a charac- 

te r i za t ion  of the faces of G I independent of I.  

But the faces of G I are simply those cycles F of 

G such that G-F is connected. I t  is clear that i f  

F is a cycle which is not a face then G-F is not 

connected by the p lanar i ty  of G I. Suppose F is a 

face of G I and x,y are two vert ices of G-F. Since 

G is 3-connected there ex is t  3 vertex d i s j o i n t  

paths from x to y. Now, one of these 3 paths must 

be d i s j o i n t  from F since F is a face and G I is 

planar. We need only consider the case when some 

component of G-F is an open edge e. Let x and y 

be the attachments of e on F. Since G is simple 

these two vert ices cannot be consecutive elements 

of F. Thus x,y separate the vert ices of F. There- 

fore, no component of G-F is an open edge. 

I f  the graphs are not 3-connected then the 

number of embedding in the plane may be exponential 

in the number of vert ices. A simple example is 

the n-bond ( i .e .  a-graph on two vert ices with n 

edges between these two vert ices).  We shall a l -  

ways iden t i f y  mul t ip le  edges when we count the 

number of embedding (except in extension problems). 

So an n-bond w i l l  have but one embedding, namely 

as a l-bond. In general a graph is decomposed 

into i ts  3-connected components. 

Hopcroft and Tarjan were able to resolve the 

planar graph isomorphism problem by using the 

fo l lowing facts: 

1 The 3-connected components are unique and 

quickly computable. 

2) The 3-connected components form a tree. 

3) Tree isomorphism is quickly decidable. 

4) 3-connected components have at most 2 embed- 

ding in the plane. 

When the graph is not planar then 3-connecti- 

v i t y  is not su f f i c ien t  to force the graph to have 

only a "small" number of minimal embedding. 

Lichtenstein has exhibi ted 3-connected nonplanar 

graphs which have an exponential number of embed- 

dings on the project ive plane. We shall present 

a graph which has an exponential number of embed- 

dings on the torus. 

Note that ,  i f  a graph has only d minimal em- 

beddings then the size of the automorphism group 

must be ~ 2d.e where e is the number of edges. So 

by simply exh ib i t ing  a graph with an exponential 

large automorphism group we have exhibi ted a graph 

with an exponential number of minimal embeddings. 

Consider a graph on 4n vert ices which we shall 

cal l  the n-nest. As an example, consider a 3-nest 

in Figure I .  

a 0 ala 2 a3a 4 a 5 a 0 

o 

b 0 blb 2 b3b 4 b 5 b 0 

F igu re  ! 

Now an n-nest is a cubic graph with a vertex trans- 

i t i v e  automorphism group. The vertex s tab i l i ze r  

is an elementary 2-group of size 2 n, n>3.  The 

size of the f u l l  automorphism group is n 2 n+2. 

Consider the embedding of a 4-nest on the torus 

in Figure 2. 
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a 2 b 5 
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~a 0 

ob 0 

Figure _2 

An important fact to notice about the embed- 

dings of n-nest on the torus is that by removing 

only 2 vertices from the n-nest i t  becomes embedd- 

able on a cylinder and hence the plane. 

In order to solve the isomorphism problem we 

must introduce one more tr ick. We shall provethat 

a 3-connected graph having more than v Otg)" " minimal 

embeddings must have two vertices such that the 

graph minus these two vertices has s t r ic t ly  smaller 

genus. 

Definition: An embedded graph G I is k-stable i f  

for al l  subsets U of k vertices of G 

l )  G-S(U) is connected 

2) genus (S-S(U)i) =.genus (Gi). 

We shall say G I is k-cr i t ical  i f  i t  is not k- 

stable. 

Using this notation and using the E-P formula 

for graphs one can prove the following lemmas: 

Lemma l :  The embedded graph G I is l - c r i t i ca l  i f  

and only i f  there exists a vertex x of G which 

appears at least twice on some face of G I. 

Lemma 2: Let G I be l-stable; then G I is 2-cr i t ical  

i f  and only i f  there exist two vertices x and y 

such that 

l )  x and y share an edge e implies x and y share 

a face not common to e 

2) x and y share no edge but they share 2 faces. 

We find the following def ini t ion convenient: 

Definition: A graph G is k-stable i f  G is 3- 

connected and for al l  minimal embedding I the 

embedded graph G I is k-stable. We shall say G is 

k-cr i t ical  i f  i t  is not k-stable. 

In the simple extension section we shall 

show that 2-stabi l i ty  is testable in time v Otgj." " 

V. Constructing the 3-Connected Components 

Throughout this paper we shall use the nota- 

tion and def ini t ion of Hopcroft and Tarjan [HT 73] 

for 3-connected components of a graph. Hopcroft 

and Tarjan gave a linear time algorithm for unique- 

ly decomposing a graph into i ts 3-connected compo- 

nents. 

We shall need to attach labels to vertices 

and edges of our graph. So, we shall assume that 

a graph is par t ia l ly  edge labelled, par t ia l ly  

vertex labelled and some edges are directed. 

The algorithm (HT 73] divides a graph into a 

tree of components with the following properties: 

l )  The components of the tree T are either 3- 

connected homeomorphic subgraphs, cycles, or 

vertices. 

2) Two adjacent components of T are related via 

a common edge or a common vertex. 

3) The total number of new edges or vertices is 

l inear in V. 

4) I f  any vertex or edge of G is labelled and 

this vertex or edge is duplicated then al l  

copies have this label. 

We shall denote this procedure by 3-connected 

components (G). 

We shall need a procedure which removes the 

star of a vertex x from a graph G. This procedure 

should modify the labels such that (1) the or ig i -  

nal graph is "quickly" reconstructable and (2) 

the construction is unique up to isomorphism. 

This can be done in many ways, so le t  Remove (G,x) 

be some fixed procedure which given a labeled 

graph G and a vertex x outputs the graph G-S(x) 

plus the appropriate labels satisfying the above 

conditions. 

Let L be a leaf of a tree of components T 

with attachment vertex or edge p. We shall need 

a procedure which given L and p assigns a dis- 

tinguishing label to p in L. In the case when p 

is a vertex, we simply assign a distinguishing 

label to p. I f  p is an edge we must keep track 

of the orientation of p. In the edge case we 

shall try both orientations of p and take the 

lexicographic minimal of the two codes of L. We 

f i x  some procedure labell(L,p) which satisfies 
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the above condit ions. Let label2(L,p) be the pro- 

cedure which agrees with l abe l l (L ,p  ) except that i t  

assigns the opposite or ienta t ion to p when p is an 

edge. 

VI. Simple Extension Problems 

In [FMR 79] i t  was shown that the embeddings 

of G of genus g can a l l  be obtained by one of v O(g) 

simple extension problems. An extension problem is 

a pair  (Hi,G) where H I is an embedded subgraph of 

G. The extension problem was simple i f  H I was 

quasiplanar and every component of G-H could be 

embedded in H I in at most two ways. 

In [FMR 79] we allowed some of the simple ex- 

tension problems to be obtained from vertex s p l i t -  

t ing in H. I f  H I has a proper vertex s p l i t  at x 

and I is extendable to G then G-S(x) has genus at 

most g- l .  Therefore G is l - c r i t i c a l .  I f  any of 

the simple extension problems for  G are s p l i t  

embedding then we can simply guess a vertex of G 

whose removal decreases the genus of G. These 

remarks prove the fo l lowing lemma: 

Lemma 3: G is l - c r i t i c a l  i f  one of the v O(g) 

simple extension problems (Hi,G) is extended and 

I is a proper s p l i t  embedding of H. 

Testing l - s t a b i l i t y  requires at most v (g) 

steps. We shall now characterize the 2 - c r i t i ca l  

graph G and again get a v O(g) a lgor i t~n for test-  

ing 2 - s tab i l i t y .  

Lemma 4: A 3-connected graph G which is l -s tab le  

is 2 -c r i t i ca l  i f  and only i f  one of the simple 

extension problems (Hi,G) has two vert ices x and 

y sat is f ies  lemma 2 and a f te r  adding two edges 

from x to y in H I then I is s t i l l  extendable to G. 

This gives the fo l lowing theorem: 

Theorem: 2 - s t a b i l i t y  is decidable in v O(g) time. 

We shall say (Hi,G) is a s p l i t  free exten- 

sion problem i f  H I has no s p l i t  vert ices. For 

2 - c r i t i ca l  graphs we may guess two vert ices whose 

removal decreases the genus Of G. So we need only 

show how to handle the case when some 3-connected 

component of G is 2-stable. For these graphs we 

shall show that the number of embedding is not too 

large. Since there are at most v O(g) simple exten- 

sion problems we need only show that these are at 

most v O(g) extensions per extension problem. For 

3-connected graphs the d i s t i nc t  extension of a 

simple extension problem are precisely the 

instantiations of i ts 2-CNF formula. We state 

this as a lemna: 

Lemma 5: I f  (Hi,G) is a quasiplanar extension 

problem and G is 3-connected then there is at most 

one embedding of a component of G-H in any face of 

H I • 
Proof: Let F be a face of H I in which some compo- 

nent C is embeddable. Since H I is quasiplanar F 

is a simple cycle. We can easily construct an 

embedded planar 3-connected graph L~ which con- 

tains F as a face. 

We f i r s t  show that FUC reduced is 3-connected. 

Let v,w be two arbi trary vertices of the reduced 

form of FUC. Note that al l  vertices of FUC 

reduced are contained in the closer of C. We need 

only show that for any two vertices x,y d is t inct  

from v and w, x and y are in the same connected 

component of (FUC) - {v ,w} .  I f  v and w are both 

on F then x and y are connected via C. So we may 

assume that i t  is not the case that both v and w 

are points of F. Since G is 3-connected x and y 

are each 3-connected to F. Using these facts 

we have: 

I)  x is connected to F- {v,w} in FUC- {v,w} 

2) F- {v,w} is connected 

3) y is connected to F- {v,w} in FUC- {v,w}. 

So x and y are connected. We have shown that 

F C is 3-connected. By the previously mentioned 

theorem of Whitney's [W 33] 3-connected simple 

graphs have at most 2 embedding in the plane. 

After f i x i ng  F, FUC must have only one embedding. 

This proves the resul t .  

Since the only information about the compo- 

nents of G-H we shall use is their  attachments to 

H we shall assume that the components are star- 

shaped. 

Definit ion: A component of G-H is star-shaped or 

simply a star i f  i t  consists of an edge or the 

star of a vertex. We shall also require the 

attachments to be d is t inct .  

VII. Algorithm 

Using the procedures defined in the previous 

section we can now present an algorithm (in pigeon 

ALGOL) which when input a graph G outputs a 

succinct code for G. 

Procedure: Code(G): 

While G is 3-connected do 
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begin 

i_J_G is l - c r i t i c a l  then guess a c r i t i c a l  ver texx ;  

Code(Remove(G,x)) 

I f  G is 2 - c r i t i c a l  then 

I )  guess a c r i t i c a l  pair  (x ,y)  in &; 

2) Code(Remove(Remove(G,x),y) 

else 

Code(G)+Min { l i s t (G l ) l l  minimal genus, embedding} 

end 

T÷3-connected components(G); 

While T is not a s ingle component do 

Comment Let L 1 . . . . .  L k be the leaves of T wi th at-  

tachments p l . . . pk .  

begin 

for  each L i d__o 

I_.f_Code(label l (Li ,Pi  ) = Code ( l abe l2 (L i ,P i ) )  
Then 

T÷T minus L i [where Code( label (L i ,P i ) )  is 

added to the label of Pi without o r ien ta t ion . ] .  

else 

I )  pick j such that Code(Label j (L i ,Pi))  is 

the minimal of the two codes; 

2) T÷T minus L i where Code(Label j (Li ,Pi))  

added with or ien ta t ion  to the label of Pi" 

end 
I f  T is a s ingle component H then Code(G)÷Code(H) 

Roughly speaking, the algorithm decomposes a 

graph into 3-connected components for each compo- 

nent which is not 2-stable,  i t  decomposes the com- 

ponent in to  a tree of 3-connected component. The 

algorithm continues in the manner un t i l  we have a 

nested set of trees such that the f i na l  components 

are 2-stable. Since each component on a level is 

a homeomorphic subgraph of the graph on the level 

above the genus of the component must be less than 

or equal to the genus of the graph i t  was derived 

from. On the other hand we only reconstructed 3- 

connected components when we have removed a vertex 

which s t r i c t l y  decreased the genus. So the nested 

trees of trees is at most g deep. Therefore i f  we 

show that step A) w i l l  only require v 0(g) steps in 

the case when G is 2-stable we w i l l  have proved 

the main theorem: 

Theorem 2: Isomorphism test ing of graph of genus 

g can be performed in v O(g) steps. 

So to prove the theorem we need only prove 

the fo l lowing "s t ructure"  theorem. 

Theorem 3: A graph which is 2-stable has at most 

v 0(g) minimal embedding. 

I t  is also important to observe that  the em- 

bedding algorithm generates a l l  embeddings in 

v 0(g)+kn 0 ( I )  steps where k is the nu~,Iber of em- 

bedding of genus g. The rest  of the paper w i l l  

prove Theorem 3. 

V I I I .  Logical Components and a Theorem on 2-CNF 

Let (Hi,G) be a simple extension problem and 

P be i t s  corresponding 2-CNF formula. Let #(P) 

be the number of d i s t i n c t  sa t is fy ing t ru th  assign- 

ments to P. By the las t  section we know that the 

number of extensions of (Hi,G) is precisely #(P). 

In th is  section we analyze #(P) in terms of 

"independent" var iables of P. Note that #(P) is 

#P-complete [V 79] so we cannot hope, at ti le 

present time, to e x p l i c i t l y  characterize #(P) 

but we can get good enough estimates on #(P). 

Let A,B,C e i ther  be viewed as var iables of P 

or the corresponding components of G-H. We shal l  

say two var iables A and B c o n f l i c t  i f  as components 

they c o n f l i c t  in H I , i . e .  they appear in some 

clause of P. The t r ans i t i ve  closure of P, denoted 

P, where the variables of P are A 1 . . . . .  A n is :  

P=n{(x Y)IPj (xuY) and x,Y are l i te ra ls  in 

the variables Al. . .An}.  

We can view P as a labeled graph over the vari-  

ables Ai . , .A n as follows: For each pair of 

variables A,B in Ai , , .A n (1) add a directed edge 

from A to B i f  P contains (iA~B) (2) add an 

edge labeled T from A to B i f  P contains (~AUIB) 

(3) add an edge labeled F from A to B i f  P con- 

tains AUB. Let G(P) denote this graph. In 

general we shall say that a graph is a logical 

graph i f  i ts edges are either directed edges or 

undirected edges with labels T and F. 

The transi t ive closure of a logical graph G 

is minimal graph Gcontaining G which is closed 

under the following rules: 

l )  I f  A~B÷C is in G then A÷C is in 

2) I f  A~B-~-C is in G then AJ-C is in 

3) I f  A-~-B +C is in Gthen A-~-C is in 

4) I f  A-~-B-~-C is in G then A+C is in G. 

I t  fo l lows that  G ~ =  G(P). Since a 2-CNF 

formula and i t s  graph are essent ia l l y  the same we 

shal l  confine our a t tent ion to the graph. 

Certain transformations of P or G(P) do not 
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change #(P). We consider a few transformations we 

shal l  need. A switch of the var iable A is the pro- 

cedure which replaces every occurrence of A with 

i A and every occurrence of ~A with A. For G th is  

corresponds to sihlultaneously replacing subgrapils 

A~, A#, A ~T, and A -F with A F, A -T-, A , and A res- 

pectively. We shall say two logical graphs or two 

propositional formulas are equivalent i f  one is de- 

rived from the otiler by switching a collection of 

variables. 

We shall say that two variables A and B are 

equivalent i f  m - c o n t a i n s  AK--->B or A T ~  ( i . e .  

-nA<--~B). The number #(P) is independent of the 

size of these equivalence classes. By an appro- 

pr iate switch of variables we may assume that A is 

equivalent to ~ i f  and only i f  AK-->B. Once we have 

made th is  change of variables we can i den t i f y  

equivalent variables of P or G(P). Note that #(P) 

is unchanged. Some variables of G ~ m a y  have 

sel f loops, i .e .  A-LAY or A-f-A. In a natural way we 

can evaluate these var iables. We shal l  ignore 

edges A÷A. Af ter  evaluating self loops and iden t i -  

fy ing equivalent var iables the new graph G ~  is 

simple, i .e .  no mul t ip le  edges or sel f loops. 

A set of variables X are independent i f  they 

form an independent set in G ~ .  A var iable wi th 

a sel f loop is no_t independent. The independence 

number of P is the size of the largest independent 

set in P. Note tnaz i f  P has independence number 

k then #(P)~2 k. i~e next show that the upper bound 

is not much worse. 

Theorem 4 (Mi i ler -Reid)  I f  P is a 2-CNF in n 

variables with independence number k > l  then #(P) 
I 

< n k + l .  
i 

This bound does not seem to be t i gh t .  By 

taking k "chains:' of size n/k we get a lower bound 
/n+k,k of v-E,~ ) . We make the fo l lowing conjecture: 

Conjecture: I f  P is a 2-CNF in n variables with 

independence number k> l  then #(P)< (n+k)k 
- - k " 

We prove Theorem 4 via a collection of lemmas. 

Lemma: Every simple logical graph G is equivalent 

to a graph G' with only directed edges and edges 

labeled T. 

Proof: The proof is by induction on the number of 

edges labeled F in G. Suppose A--~-B is contained 

in G. Let X be the following variables of G: 

X : {CIA÷C}U{A}. 

We note two facts about X: 

I )  The var iable B f X since B c X implies 

B-~B but th is  contradicts the fact  that  G is 

simple. 

2) I f  the variables C, D ~ X then Gdoes not 

contain C-~D since th is  would simply the se l f -  

loop A-~A. We need only prove the fo l lowing 

claim. 

Claim By switching the variables in X no new F's 

are created. 

To prove the claim, we need only consider 

those edges common to a var iable in X. Let 

C,D ~ X and E ~ X then the fo l lowing cases are 

transformed by the switch on X as fo l lows:  

C ÷ D goes tO C + D 

C-~D goes to C~-D 

C ÷ E goes to C-~E 

C-~E goes to C ÷ E 

cT~ goes to C ÷ E. 

The other two cases were el iminated by properties 

of X and 2). The pair  A F B goes to A + B by I ) .  

-X- 

Lemma I f  G is simple with no edge labeled F 

then there ex is ts  a var iable A with indegree 

zero, i . e . ,  ÷A is not contained in G. 

Proof Pick a vertex A of G i f  A does not 

have indegree zero then pick a predecessor i . e . ,  

B such that B ÷ A in G. This process e i ther  

cycles or i t  f inds a var iable of indegree zero. 

Since G is simple i t  cannot have a cycle. 

-X- 

Let Tk(n) be the maximum number of 

sa t i s fy ing  instances over a l l  formulas on n 

var iable and independence number k. For 

s imp l i c i t y  l e t  To(n) = I .  

Lemma Tk(n) for  k L 1 and n L k sa t i s f ies  

TK(n) 2 Tk (n - l~+  Tk_ l (n - l ) .  
Proof Let G be a simple logical  graph with 

n variables and independence number k. By 

previous lemma we may assume that the labeled 

edges of G are label T. By the last  lemma 

contains a var iable A with indegree zero. 

Let G(A/F) and G(A/T) be the simple graphs 

obtained by evaluat ing A to F and T 

respect ively and evaluat ing a l l  "induced" se l f -  

loops. Note that #(G) = #(G(A/F))+#(G(A/T)). 

Now, G(A/F) has independence number at most k 

and has at most n-I var iables.  So, 

#(G(A/F)) ! Tk(n- l ) .  

231 



By assigning T to A, and the fact that al l  

edges common to A are either of the form A ÷ B 

or A T B, al l  variables which share an edge with 

A are forced to be evaluated to T or F. Thus 

the variables of G(A/T) have no edge in common 

with A and so the independence number k- l .  This 

gives #G(A/T) ~ Tk_l(n-l) .  This proves the 

lemma. 

The following lemma gives theorem 4: 

Lemma Tl(n) ~ n+l and Tk(n) ~ n k for 

k ~ 2, n ~ k. 

Proof Since a formula on n variables has at 

most 2 n truth assignments we have Tk(k) ~ 2 k 

< k k for k > 2. This gives one set of i n i t i a l  

conditions. We f i r s t  prove the cases k = l and 

k = 2. Now Tl(n) ~ T l ( n - l )  + l by the previous 

lemma. So by induction Tl(n) ~n+ l .  Now 

T2(n) ~ T2(n- l )  + T l ( n - l )  ~ T2(n- l )  + n• By 
induct ion T2(n- l )  ~ (n - l )  2 so T2(n) ~ n 2 - n. 

This proves the case k : 2. To show induc t i ve l y  

the general case, assume the lemma true fo r  

Tk(n- l )  and Tk- l (n • NOW Tk(n) < Tu(n- l )  + 
)k - I ) ,  l , k_  1 ,n l~k - I  ~ n k Tk_ l (n - l )  ~ (n-I  + £n- ) = nk - ) . ~ 

This proves the lemma and hence the theorem. 

A strong component of  P or (Hi,G) 

w i l l  be a class of  equivalent  var iab les  of  P. 

While the weak components w i l l  be connected 

components of G(P). 

Lemma 7: I f  {Si. . .S k} is a independent set of 

strong components of (HI,G) then there is a 

partial extension such that {Si. . .S k} are 

precisely the strong and weak components• 

Proof: ~e simply evaluate al l  variables not 

in S . . .  S k such that they do not force 

variables in S . . .  S k using the fact that 

S i are independent. 

IX. Planar Stron 9 Components 

By the previous section we know that we 

can rest r ic t  our attention to simple extendable 

extension problem (Hi,G) such that the strong 

components are also weak components, and where 

each component of G-H is star shaped. By adding 

edges to H we can assume that the strong com- 

ponents span d is t inct  faces of H I • We shall call 

this a canonical extension problem. 

I f  X is a set of components of (Hi,G) 

we can construct an embedded graph from X and 

(Hi,G) as follows: 

I)  For each C~X construct two copies of C. 

2) Embed these two copies in the two possible 

ways. I f  a pair of copies conf l ic t  or share 

a face then ident i fy their vertices in that 

face. 

3) Let 2X be the two copies of components after 

ident i f icat ion plus the attachment points of 

X on H. Let (2X) I be the above embedding 

restricted to 2X. 

The graph 2X is bipart i te.  Those vertices not 

in H we shall call face vertices. While the 

vertices on H w i l l  be called attachment vertices• 

The faces spanned bY x are the faces of H I 

used by (2X) I. 
Lemma 8: I f  X is an independent strong 

component of (HI,G) and (2X) I is planar then X 

only spans two faces and G has a c r i t i ca l  pair. 

Proof: By lemma 7 we can assume that G-H is X. 

(Since 2X I is planar no two cycles of 2X can 

"crossover" so X must span only 2 faces used by 

X.) Let A be one of the two faces. Let 

Xi. . .X k be the attachments of X as they appear 

on A. For each pair (Xi,Xi+ l )  there is a unique 

cycle in 2X which passes through these two points. 

Since (2X) I is planar these cycles are precisely 

the faces of (2X) I. I f  any of these cycles are 

not homologous to zero then we can simply remove 

the two corresponding vertices. In the case when 

al l  these cycles are homologous to zero they must 

part i t ion the graph G-C. The graph G cannot be 

planar by Whitney's Theorem. So some pair 

(Xi,Xi+l) must be a separation pair for G but 

this contradicts the fact that G is 3-connected. 

X. Counting the Numbgr o f  Nonplanar .Independent 

Strong Cgmponent ~ 

In the last section we showed that i f  G 

is 2-stable then no strong component of (Hi,G) 

can be planar. We shall now show that the number 

of nonplanar independent strong components of 

(Hi,G) is bounded by O(g). 

Throughout this section let  (Hi,G) be a 

simple extension problem of genus g where the 

components consist of k independent strong 

nonplanar components Xi. . .X k. 

We next prove a lemma which w i l l  extract 

a very simple embedded graph from each strong 
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component 2X i .  Let Bi,B { and B~ be the 

fol lowing embedded graphs 

v Y 

~x 

f,, 
X ~ 

f 

x 

B I 

f l  

w 

z B~ x 

z ~ w 

w y z 
Figure 3 

Lemma 9: I f  X is a strong component then 2X I 

contains e i ther  an isomorphic copy of Bi,B ~ or 

B~ where f , f '  are face vert ices. 

Proof We consider two cases depending on the 

number of faces spanned by X. 

Case I X spans 3 or more faces. 

We fc~m an equivalent re lat ion on the 

component of X by re la t ing a l l  components 

which span the same two faces. Since X spans 

more than 2 faces X has more then one equi- 

valence classes. Since X is a strong 

component there must be two equivalence 

class which each contain a component say D 1 

and D 2 such that they con f l i c t .  Now the graph 

2(DiUD 2) must contain two cycles C 1 and C 2 

one in 2D l and the other in 2D 2 which con f l i c t .  

The embedded graph (ClUC2) I is isomorphic to 

B I • 

Case 2: X spans 2 faces. 

Let A be one of the two faces spanned 

by X and l e t  X l . . . x  t be the attachments 

vert ices of X on A. Each pair ( x i , x i + l )  

determines a cycle in 2X say C i .  Now the cycles 

of Ci . . .Ct_ i  form a basis for  the cycle 

space of 2X. Since 2X is nonplanar we can 

pick two cycle C i and Cj from Ci. . .Ct_ 1 such 

that C i and Cj crossover i .e .  (C i ,C j ) : I ,  see 

[Mta]. The embedded graph (CiVC j ) l  must be 
isomorphic to B~ or B~. 

Let (Bi) I . . . .  (Bk) I be embedded graphs 
given by the las t  lemma for the strong components 

X i . . .X  k. Let B be the union of B 1 to B k. 
We shall assume that B is connected independentl~ 

Let g' = genus (Bi).  These embedded sub- 

graphs B I ,  B~, and By were chosen because they 

have no important propert ies: 

I )  The cycle space of the B's is generated by 

two cycles. 

2) These two cycles cross over i . e . ,  (Ci,C 2) = 1 

for  the two cycles C 1 and C 2 is B i .  

Thus, the 2k cycles C 1 . . . . .  C2k where we 

choose pairs from each B I form a basis for  

the cycle space of B. By basis arguments for 

vector spaces there must be a subset of 2g' 

cycles, say C 1 . . . . .  C2g, such that genus 

(Ci~...UC2g,) = g' Since each C i are con- 
tained in some Bj there must be at most 2g' 

Bj, s which contain C 1 to C2g,. Let L be 

the union of these Bj, s. So g(Ll) = g' ~ g. 

We intend to view (Li,B) as an extension problem 

but f i r s t  we must enlarge L to a connected 

graph. Note that every cycle C i not contained 

in L must "cross over" some cycle of L since 

otherwise using properties of interproduct 

spaces the genus of L could not be maximum. 

So each Bi~B-L is connected to L. We can now 

construct a spanning tree over the Bi,s~L using 

pairs of Bi, s at a time. So by adding at most 

2(2g'=I) more Bi, s to L we can force L to be 

connected. 

We can now view (LI,B) as an "extension 

problem" where the Bi, s & L are the components 

of B-L. We l i s t  a l l  possible ways of embedding 

f of some Bi~B-L' in L' where L C L ' ~ B . _  _ 

Y @ Y  Y y' 

X X w X 

Fig. 4A~fFig. 4B 

Y ~ j ~ Y '  

x 
Fig. 4C 
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Fig. 4D 

• Y 

Fig. 4E 

z x w 

Fig. 4F Fig. 4G 

Let B!.i " 'B'Bt '  be a new indexing o f  the o ld  Bi, s 

not in L. Define L i = {LUB~U...~B~} fo r  

0 < i < t .  Since the genus (L) = genus (B) we 

have genus (Lo) I = . . .  : genus (Lt)  I .  The main 

technical  fac t  which we s t i l l  have to preve is 

tha t  t : O ( g ' ) .  We shal l  prove th is  fac t  using 

characters s i m i l a r  to the ones used in the 

analys is  of  the embedding a lgor i thm [FMR 79]. 

Consider the f o l l ow ing  two characters not 

L' = L i f o r  some 0 < i < t :  

I )  n f ( L l ' )  :nf#F)>2 n f (F) -2  

2) in(L~) : [ ( F ( x ) - l )  
xEF 

where F var ies over faces o f  L~, x over non- 

face ver t i ces  of  L~, nf (F)  = the number o f  non- 

face ver t i ces  of  L' on F wi th m u l t i p l i c i t y ,  

and F(x) : the number of  occurrences o f  x on 

F. 

Since B is a b i p a r t i t e  graph wi th minimum 

cycle s ize 4 i t  must be the case tha t  nf(F) > 2. 

For these graphs we can rewr i te  nf(L~) : e = 2f  

where e is the number o f  edges and f is the 

number of  faces o f  L~. Let nf  + 2in be the 

character  n f (L { )  + 2 ( i n ( L ~ ) ) .  

We next prove a c o l l e c t i o n  o f  lemmas which 

w i l l  give us the technica l  f ac t .  

Lemma I0:  nf  + 2in(L I )  <_ 144g' 

Proof By the above remarks L consists o f  at  

most 2 ( 2 g ' - I )  + 2g' = 6g' Bi, s. Now, 

nf(L I )  = e - 2f  < e. Since each Bi, s can have 

at most 8 edges we have nf(L I )  < 8.6g' = 48g'.  

By a s i m i l a r  argument in (L I )  < 48g' This proves 

the I emma. 

Lemma I I :  The character  n f  + 2in is s t r i c t l y  

decreasing i . e .  n f  + 2 i n (L i )  I > n f  + 2 i n ( L i + l )  I 

fo r  0 < i < t .  

Proof We prove the lemma by consider ing each o f  

the cases A . . . . .  G separate ly .  We shal l  e x p l i c i t l y  

handle the case A and leave i t s  other  6 cases 

fo r  the reader. 

Suppose Bi+ 1 is embedded in (L i )  I as in 

Figure 4A. Now n f ( L i + l )  I - n f ( L i )  I = 

(# edges o f  Bi+ I )  - 2 (# o f  new faces) = 8 - 6 = 2. 

Consider i n ( L i + l ) l - i n ( L i )  I .  The d i f fe rence  is 

x <_- 2 since the sum in(X) = ~ F(X)-I w i l l  de- 
xEF 

crease by at leas t  I ,  s i m i l a r l y  in(Y) w i l l  de- 

crease by at  leas t  I .  We have n f+2 in (L i+ l )  I - 

nf+2i n (L i ) i<-2.  

Using arguments s i m i l a r  to case A we get 

the f o l l ow ing  tab le  o f  values: the values are 

upper bounds on the d i f fe rence  C(L i+ i )  I - C(Li)  I 

f o r  C equals the characters n f ,  i n ,  n f+2in:  

Case Anf z~in z~(nf+2in) 

A 2 -2 -2 

B 0 - I  -2 

C -2 0 -2 

D 0 -2 -4 

E -2 0 -2 

F 0 -2 -4 

G -4 0 -4 

Since the A's are s t r i c t l y  negat ive the 

lemma is proved. 

Lemma 12: I f  nf  + 2 i n ( L i )  I : 0 the L i = B. 

Proof: Since nf  and in are nonnegative we must 

have that  n f (L i ) l=O and i n ( L i )  I = O. Now, 

n f ( L i )  I : 0 impl ies tha t  (L i )  I has at most 2 

non-face ver t i ces  per face. But, to embed a 

Bi+ 1 to (L i )  I we must have 3 or more non-face 

ve r t i ces .  
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Using the above 3 lemmas we see that 

t !144g' .  In fact we prove t !72g'  !72g. 

Thus we have proved the following theorem: 

Theorem 5: I f  (Hi,G) is a simple extension 

problem which is 2-stable then the independence 

number ~ 78g' 

Using the last theorem and theorem 4 we can 

get an expl ic i t  bound for theorem 3. Ilamely, 

i f  (Hi,G) is a simple extension problem which 

is 2-stable then (Hi,G) has at most n 78g 

extensions. 
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