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Abstract We exploit the fact that the set of all polynomials P~ ~[Xl,..,x n] of degree Kd 

which can be evaluated with ~v nonscalar steps can be embedded into a Zariski-closed af- 

fine set W(d,n,v),dim W(d,n,v)~(v+1 +n) 2 and deg W(d,n,v)~(2vd) (v+14n) 2 As a con- 

sequence we prove that for u:= 2v(d+1) 2 and s:= 6(v+1+n) 2 there exist 

a1,..,~s~ [u]n = {1,2,..,u}n such that for all polynomials P~ W(d,n,v) :P(~ I) = p(2) =... 

= p(~s) = O implies PHO. This means that ~1,...,~s is a correct test sequence for a zero 

test on all polynomials in W(d,n,v). Moreover, "almost every" sequence al,..,aSg [u]n 

is such a correct test sequence for W(d,n,v) . The existence of correct test sequences 

al,..,~se [~n is established by a counting argument without constructing a correct test 

sequence• We even show that it is beyond the known methods to establish (i.e. to con- 

struct and to prove correctness) of such a short correct test sequence for W(d,n,v). 

We prove that given such a short, correct test sequence for W(d,n,v) we can efficiently 

construct a multivariate polynomial P~[Xl,..,x ~ with deg(P) = d and small integer 

coefficients such that P~ W(d,n,v) . For v>n log d lower bounds of this type are beyond 

our present methods in algebraic complexity theory. 

I• Introduction and Preliminaries 

There is already a respectable list of applications of Bezout's theorem in complexity 

theory. StraBen (1972) proved that the evaluation of all elementary symmetrical functions 

of n variables requires ~(n log n) nonscalar steps• StraBen's method has been extended 

by Schnorr (1979) to single multivariate polynomials, e g. Lns(Zn x~Yi)~n log d provided 
• i=I 

n~ ~. Heintz and Sieveking (1978) established new lower bounds_ on the complexit¥~ of uni- 

variate polynomials with algebraic coefficients, e.g. Lns(Z~=121/3x3) = n ( ~ )  , see 

von zur Gathen and StraBen (1979) for additional examples. Mignotte and Morgenstern (1979) 

observed Lns(~j= I ~x j) = ~( ) for pairwise distinct prime numbers pj. Heintz(1979) 

proved good upper bounds on the number of solutions of first order formulae in the theory 

of algebraic closed fields. In this paper we establish a connection between lower bound 

proofs for the complexity of polynomial evaluation and the problem of testing polynomial 

identities• Indeed the same methods are involved in both problems which shows that the 

~rmiss ion  to copy without ~e  all or part of this material is granted 
provided t ~ t  the copies are not made or distributed ~ r  divot 
eomme~ial advant~e,  the ACM copyright not i~  and t ~  titk of the 
publi~tion and i~ da~ ap~a r ,  and notice is given that copying is by 
~ i s s i o n  of the Association ~ r  Computing Machinery. To copy 
otherwise, or to republish, ~qu i ~s  a ~e  and/or  s p e c i e  permission. 

© 1980 A C M  0 - 8 9 7 9 1 - 0 1 7 - 6 / 8 0 / 0 4 0 0 / 0 2 6 2  $00.75 

262 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800141.804674&domain=pdf&date_stamp=1980-04-28


methods for proving lower bounds might be useful in some other, even more practical con- 

text as well. 

We give examples of the powerful and elegant counting method which derives from Bezout's 

theorem. Because of its large and easy applicability and its concise formulation Bezout's 

inequality might be useful even for non experts in algebraic geometry. Indeed for our 

applications of Bezout's theorem we only need some very basic facts of the highly de- 

veloped machinery of modern algebraic geometry. 

For a multivariate polynomial P~IK[x 1,..,xn~ let Lns(P) be the minimal number of nonscalar 

steps which are necessary to evaluate P. By the methods of Schnorr (1978) and Heintz and 

Sieveking (1978) the set 

{PE~[x I .... x n] I deg P~d,Lns(P)~v} 

can be embedded into a (Zariski-)closed set W(d,n,v) such that 11) W(d,n,v) is definable 

over ~, (2) dim W(d,n,v) s(v+l+n)21 deg W(d,n,v)~(2vd) (v+1+n) Z Using this basic 

theorem and Bezout's inequality one obtains lower bounds on polynomials with algebraic 

coefficients. We also derive a rather elegant proof for 

d i 
max{Lns(~i=oai x ) lai ~ {0,I}}~ d/log d'-1 

which avoids the lengthy calculations used in Schnorr (1978). Moreover, this proof shows 

that the bound J~d/log d'-1 is achieved for "almost all" (a O .... a d) ~ {0,I} d+l. 

Another application of the basic theorem concerns the following problem: given a short 

computation for Pe~[Xl,..,x n] , decide whether P~O. Suppose deg P~d then it can easily 

be seen that for every Ac~, A finite: 

#{~An I P(~) = O} ~ d(~A) n-1 provided P~O 

This gives raise to a random decision procedure for P~O since 

prob{~AnIp(~) = O} ~ d/~A provided PAd 

with respect to the uniform distribution on A n , see Schwarz (1979). It is an interesting 

open problem whether in this case there is an efficient deterministic algorithm that tests 

PHO. Lov~sz (1979) gave a particularly interesting example of this situation showing that 

the(linearly represented) matroid parity problem can be solved by deciding whether a given 

determinant with polynomial entries is identical zero. The basic theorem implies that 

given any u~2v(d+l) 2 and s~6(v+l+n) 2 there exist a I [u~ n [u]: _ ,..,~s~ , = {1,2,..,u} such 

that for all PE W(d,n,v): p(al) = p(~2) = ... = p(~s) = O implies PSO. This means that 

al,..,aS is a correct test sequence for zero testing all polynomials in W(d,n,v). More- 

over, "almost every" sequence ~l,..,~s~ [u]n forms such a correct sequence of test points 

for W(d,n,v). This statement sounds much like Adleman's (1978) observation that every 

problem which is decidable in random polynomial time has polynomially bounded network size. 

However, in our situation Adleman's argument is not applicable since W(d,n,v) is not 

finite but dim W(d,n,v) = Q(v+n) 2 Observe that in our computations arbitrary con- 

stants in ~ are given for free. Of course Adleman's argument can be applied if we re- 

strict the computations such that only a fixed finite set of constants is given for free 

and if we count all arithmetical operations. In this case the number of polynomials 

computable with ~v scalar + nonscalar operations is at most 2 O(v log v) 
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On the other hand we give evidence that it is beyond our present proof methods to estab- 

lish for given d,n,v a specific correct test sequence al,..,~s6 [u] n for W(d,n,v) with 

s,u polynomially bounded in d+n+v. We prove that given such a correct test sequence 

for W(d,n,v) we can efficiently construct a multivariate polynomial P~[Xl,..,Xn~ with 

deg PSd such that P has only small integer coefficients (P even has Ss+1 coefficients ~O) 

and P~W(d,n,v). Lower bound proofs of this type are beyond our present methods in al- 

gebraic complexity theory. The best we can prove so far are lower bounds for polynomials 

with rapidly increasing integer coefficients, e.g. Lns(Z~=o221xl) = ~( ~d/log d) and lower 

bounds with small integer coefficients which are not much greater than the number of in- 
n d n~d I/4 ~½n log d with determinates, e.g. Lns(Zi=lXi yi) , see Schnorr (1979). 

Throughout the paper ~ is an algebraic closed field with prime field @ and let ~o c K be 

some subfield. Xl,..,Xn,y,yi,z i are indeterminates over ~o" ~o[Xl,'-,Xn3 is the ring 

of multivariate polynomials in the indeterminates Xl,..,x n with coefficients in ~o" 

~o(Xl,..,Xn) is the field of rational functions in the indeterminates Xl,..,x n. ~, ~, @, 

~, C are the sets of natural, integer, rational, real and complex numbers, log n is the 

logarithm of n to base 2. #A denotes the cardinality of set A. We use f(n) = ~(g(n)) as 

an abbreviation for Bc6~:. ~n:c.f(n)>g(n). Tuples are underlined, e.g. _x = (Xl,..,Xn). 

We abbreviate x~:= ~n xi 3i and (~-~)~ H n (xi-~i) 3i,l~ 1 -- i=I = i=I = j1+J2+...+3n . For u6~ let 

[u]:= {1,2 .... u}. 

2. A useful bound on the de@ree of (Zariski)-close d sets 

In this section we introduce notions from algebraic geometry. In order to make the paper 

understandable for readers without prior knowledge in algebraic geometry we present all 

concepts and facts to be used. For convenience we will work with affine closed sets. Our 

main tool is the Bezout inequality for the degree of affine closed sets. In proposition 

2.3 we establish a bound on the degree of closed sets which lateron will be applied in 

many situations. 

A subset E cKn is called (Zariski-)c!os@d (over IKo) if it is definable as the set of 

common zero's of some set of polynomials BC~o[Xl .... Xn~, i.e. 

E = {~e~ n [ ~P6B:P(~) = 0}. 

These closed sets are called definable over ~o since they are defined by polynomials 

with coefficients in ~o" Note that an arbitrary intersection and a finite union of closed 

sets is closed. These closed sets define the Zariski-topology of IK n. The closure ~ of a 

set Ac~n is the intersection of all closed sets E that contain A, or equivalently, ~ is 

the smallest closed set containing A. A closed set E cK n is called a hypersurface (hyper- 

plane, resp.) if it is definable by a single polynomial (single linear polynomial, resp.) 

A closed set E=~n is called irreducible (E is then called a variety) if there do not exist 

closed sets Ei,E 2 such that E = E IU E 2 and E1,E2+E. The irreducible closed sets E~n are 

exactly those sets E =~n which are definable as the sets of zero's of a prime ideal 

Bc ~[Xl,..,x ~ . Each closed set E is a finite union of irreducible closed sets, E = ~JC i- 
i 

This representation of E is unique, if it is not redundant, i.e. if Ci~ Cj for i+j. 

Therefore the C i appearing in this representation of E are called components of E. The 

dimension dim E of a closed set E c ~n,E~ is the maximal integer m such that there exist 

distinct irreducible closed sets Zi,..,Z m such that ~Z lc Z2c.°Z mcE. Every closed set 
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E~ has a finite dimension. We have dim ~n=n. The zero dimensional closed subsets of 

are finite. The dimension of a hypersurface Hc~n is n-1. This definition immediately 

implies 

~n 

Fact 2.1 Let E,D be closed sets, E irreducible and E~D, then dim(E~D)<dim E. 

The degree deg E of an irreducible closed set E ten is the maximal cardinality of a finite 

set which is obtained by intersecting E with a linear affine subspace 

deg E:= max{#(E~L)<=ILc~n affine linear subspace} 

Following Heintz (1979) we extend th~s definition to reducible closed sets as 

deg Et=~degC 

C component of E 

Every closed set E## has a finite degree. 

Our main tool in applying algebraic geometry is Bezout's inequality for the degree of 

affine varieties. The corresponding Bezout equality with respect to projective varieties 

can be found in Kendig p.207 and Van der Waerden p.177. The Bezout inequality for affine 

varieties follows from Bezout's equality for projective varieties, as is shown in the 

appendix of Schnorr (1979), [10]. Heintz (1979) has given a direct proof, based on com- 

mutative algebra. Our formulation of Bezout's inequality avoids the quite complicated 

notion of intersection multiplicity. We hope that this will facilitate applications by 

non experts. 

Bezout's inequality 

Let E,Dc~n be closed sets, then deg(EnD)~deg E'deg D. 

We shall also use the theorem on the dimension of fibres: 

Theorem 2.2 (Schafarewitch, p.69) 

Let E,D be closed sets, E irreducible and let f:E ~ D be a regular map, dim E=n, dim D=m, 

n~m. Then for all ye f(E) :dim f-1(y) an-m. 

Proposition 2.3 Let EiclK n i=1,..,r 

be closed sets, then deg ~ Ei~deg El(max deg El)dim El. 
i~r i>I 

Proof We proceed by induction on r. The case r=1 is trivial, we introduce E2:= ~n, thus 

max deg Ei=1. Now let C~ ~eJ be the components of E I. It suffices to prove under the 
i>I 

induction hypothesis for r-1 that 

dim C9 
deg(C~ ~ Ei)~deg C~(max deg E i) for ~E J 

1<iSr i>I 

In the case C~C E2, the intersection with E 2 has no effect and we are already in the case 

r-1. In the case C9 ~E 2 we apply the induction hypothesis to E~:= C ~ E 2. Since 

dim(C~ E2)<dim C~ Bezout's inequality and the induction hypothesis yield 

dim C~. h~ deg(C~n ~1<i~r Ei)~deg(C~ ~ E?)max(deg- i>2 Ei )'dim Cv-1~deg C "(maxi>1 deg El) hh 
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3. The closed sets of all polynomials which are easy to compute 

Following the methods of Schnorr (1978) and Heintz and Sieveking (1978) we can embed the 

set of all polynomials P~[Xl,..,x ~ with deg P~d and computable with ~v nonscalar steps 

into a closed set W(d,n,v) with small dimension and small degree. We reformulate this 

basic theorem and give some illuminating examples for its application. 

A straight-line computation over ~V{Xl,..,x n} is a sequence of rational functions 

Ri,..,Rw~ ~(Xl,..,x n) such that for i=1,..,w either (I) RiG ~V{Xl,..,x n} or (2) Ri=RjoR k 

with j,k<i andOe{+,-,*,/}. Ri,..,R w are the results of the computation. A "computation 

step" Ri=RjoR k is called nonscalar provided (I) o is * and Rj,Rk~ or (2) o is / and 

Rk~. For PG~(Xl,..,x n) let Lns(P) be the minimal number of nonscalar steps in any 

computation of P over ~U{Xl,..,Xn}. 

The following is a straightforward extension of theorem 2.1 in Schnorr (1978) from one 

indeterminate x to n indeterminates Xl,..,x n. The theorem means that the coefficients al 

of all polynomials P ~[Xl,..,Xn~ with Lns(P)~v can be represented as the values of poly- 
v nomials Q~ with small degree and depending on O(v 2) indeterminates in total. 

Theorem 3.1 (Schnorr 1978, theorem 2.1) 

For every v~q there exist polynomials Q~[Z I .... z~ for i~n with m = (v+1+n) 2-1 

deg Q~21~I_ v such that for every P~ ~(x I .... Xn) with Lns(P)~v there exists a hypersurface 

H c~n such that for all ~n-H there exist aj (~)~ with 

p E Z ~qn aj (n) (x-q) 3- and (aj (~) : l jl>O) 6Im(Q~ : l j]>O) . 
j~ - _- - _ - 

v lJl>o. Here Im(Q :ljl>O) is the image of the map on ~m defined by the Q3_'' - 

Following Heintz and Sieveking (1978) this rather complicated theorem gives raise to a 

concise statement in terms of Zariski-closed sets. We identify a polynomial P~ ~[x 1,..,x n] 
n+d with deg P~d with its coefficient vector in ~t,t:= ( n ) " 

Basic theorem 3.2 (Heintz, Sieveking 1978) 
, n+d .  

For every d , n , v E  ~ t h e r e  e x i s t s  a c l o s e d  s e t  W ( d , n , v )  c ~ t ,  d e f i n a b l e  o v e r  ~ , t  = t  d ) 

such that 

(I) W(d,n,v) contains all P~[Xl,..,x ~ with deg Pad and Lns(P)~v 

(2) dim W(d,n,v)~(v+1+n) 2 deg W(d,n,v)~(2vd) (v+1+n) 2 

v Proof Take the polynomials Qj of the above theorem and set Q~ = z o (let O = (0,..,0) ~n) 

with an additional v a r i a b l e  z O. T h e n  d e f i n e  

W(d,n,v) := Im(Q~:l~l.~d) 

v i.e. W ( d , n , v )  i s  t h e  c l o s u r e  o f  t h e  i m a g e  o f  t h e  Q j .  T h e o r e m  3 .1  i m m e d i a t e l y  i m p l i e s  t h a t  

(I) holds. Observe that the restriction on the point of development q in theorem 3.1 has 

been e l i m i n a t e d  i n  t h e o r e m  3 . 2  b y  r e a s o n s  o f  c o n t i n u i t y .  We c a n  a l w a y s  c h o o s e  ~=Q s i n c e  

W(d,n,v) c ~t is closed. Obviously dim W(d,n,v)~ (v+1+n) 2 since the Q~ with lll~d only 

d e p e n d  on  ( v + l + n )  2 i n d e t e r m i n a t e s .  T h u s  t h e  c r u c i a l  p o i n t - - i s  t o  p r o v e  t h e  

degree bound on W(d,n,v) . We refer the reader to the Lemma in Heintz and Sieveking (1978). 
hh 
~h 
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Next we consider the maximal nonscalar complexity of univariate polynomials of degree sd 

with O,1-coefficients: 

Co,lns (d) := max{Lns(~d1=oa. Xi)l I (a o,'-,a d) ~ {O,I}d+I} 

By rather lengthy calculations we obtained lower bounds 

ns 
CO, I (d) m ~/(4 log d) (Schnorr 1978) and 

ns 
CO, I (d)~ q d/log(2d)°-3 (Schnorr, Van de Wiele 1978) m 

We now give an elegant proof for a better result. 

Corollary 3.3 

(I) #{(a O, 'ad) ~ {O'1}d+l]Lns(~i d oai xi) S ~23 d ' •" log d 
2 d ns (d) ~ -I 

(2) CO, I 3 ~  

-2} ~ 2 d- /3 d log d 

Proof We use proposition 2.3 and theorem 3.2 to bound #(W(d,l,v)~ {O,I}d+1). {0,I} d+l is 

the intersection of hypersurfaces H i which are defined by zi(zi-1) = O for i=1,..,d+1. 

Applying proposition 2.3 to El:= W(d,l,v) and E1+i := H i i=1,..,d+l we obtain 

#(W(d,l,v)~ {0,1}d+1)sdeg W(d,l,v)-2 dim W(d'1'v)~(2vd) (v+l) (v+2)2(v+1) (v+2)=(4vd) 

In order to prove (I) it is sufficient to verify: 

V~ log d -2 and d~2 imply (v+l) (v+2)log(4vd)~d- ~d log d'. I~ 

(v+1) (v+2) 

It turns out that the lower bounds on specific polynomials with algebraic coefficients in 

Heintz and Sieveking (1978) and von zur Gathen and StraBen (1979) can be obtained in the 

same way. Following Mignotte and Morgenstern we obtain: 

2 d "-I 
d ~j xj)a /3 log d ' Corollary 3.4 Lns(Zj= o 

for any choice of pairwise distinct primes pj. 

The proof is similar to the proof of Corollary 3.3• In this case we intersect W(d,l,v) 

with V:= ( ~o'''' w~) which consists of all conjugates of (~o .... ~d )" V is de- 

2 = O i = O, ,d and the points in V define equally hard fined by the equations pi-zi .. 

polynomials. 

d I/d i 
In the same way one proves Lns(Zi=oP i x )~ ~7~-2 

for pairwise distinct primes Pi" This lower bound is sharp up to a constant factor. The 

corresponding upper bound is known from Paterson, Stockmeyer (1973). 

The above methods apply to other complexity measures as well. For instance they can be 

used (I) if we count additions/subtractions no matter how many multiplications/divisions 

are used (2) if we separately count additions/subtractions and nonscalar steps (3) if we 

count the total number of arithmetical operations. This is a consequence of the repre- 

sentations of the polynomials which are easy to compute given in Schnorr and Van de Wiele 

(1978) • 

Another extension of these results concerns the approximate evaluation of polynomials. 
Let @ be the Cartesian distance on ~d+l, ~:= C. Since W(d,n,v) is topologically closed 
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with respect to p it follows that W(d,n,v) contains all polynomials which can be approxim- 

ately evaluated with ~v nonscalar steps, i.e. for n=l: 

{P~cd+I I re>O: ~Pe~ W(d,l,v) :p(P,Pe)<e}CW(d,l,v) 

Hence there exists £>Osuch that every approximate evaluation of zd n~/dx i which for all 
-i=oCl 

aE £ with lal&1 has an error <e,requires ~ - 2  nonscalar steps. 

4. On the verification of polynomial identitie s 

We consider the following problem: given a short computation for a polynomial 

P E K[Xl,..,Xn~, decide whether P~O. 

Schwartz (1979) suggested a probabilistic algorithm in the spirit of the Rabin, Solovay, 

StraBen primality test: choose random values al~ ~n i=l,..,s and check whether 

p(~i) = 0 for i=1,..,s. Of course we like to draw the ai out of a domain where P can be 

evaluated efficiently and where P has not too many zero's provided P~O. The following 

Lemma may be helpful. 

Lemma 4.1 Suppose P~[Xl,..,Xnl, deg P~d and let Eic ~n i=1,..,r be closed sets, 

deg Ei.~m and let E :=~i~rEi be finite. Then #{~ ~ ELP(~) = O}~dm n-1 provided PrO. 

Pro__~f If P~O then P defines a hypersurface HpC ~n over ~ with dim Hp=n-1, deg Hpf~d. 

Then by proposition 2.3 we have #{xE E[P(x) = O} = deg(Hpm ~isrEi)~dm n-1. mmm 

Im 

In particular the bound of Lemma 4.1 applies to direct products E = I1×I2×..×I 
n 

#li~m. In this case E is the intersection of hypersurfaces Hic|Kn defined by 

with 

K(xi-a) = O for i=1,...,n. 
a&I i 

However, in this special case, Lemma 4.1 can be proved by elementary induction, see 

Schwartz (1979). 

We shall discuss whether the probabilistic choice of test points 1,...,aS~_ ~n is ap- 

propriate or whether we can find a universal set of test points for a correct O-test over 

large classes of polynomials. We call al,..,~s~ ~n a correct test sequence for 

Uc~[Xl,...,Xn~ iff ~PEU: p(~1) = ... = p(~S) = 0 implies P~O. 

Kroneckers method yields a correct single test point for polynomials P~ ~[Xl,..,Xn~ with 

bounded weight and bounded degree. The weight w(P) is the sum of the absolute values of 

the coefficients of P. 

Lemma 4.2 (Kronecker) Let PG ~[Xl,..,x ~ , w(P)~m, deg P~d then 

d, d 2 (2m)d n-1 
P(2m,(2m) (2m) ,..., ) = 0 implies P~O. um mm 

(2m) dn- I Unfortunately a test point (2m, (2m)d,..., ) as in Lemma 4.2 is impractical since 

this test point has exponentially binary length dn-11og(2m) and we do not know any ef- 

ficient method for verifying P(2m,(2m)d,..,(2m) dn-1) = O. However this can efficiently be 

verified by a random algorithm which randomly choosed small prime~/mbers pl,..,p s and 

checks whether P(2m,..,(2m)dn-1)~O mod Pi for i=1,..,s. Surprisingly we can establish 

nice test points with algebraic coefficients which are correct for all polynomials 

P6 @[Xl,.. ,xn] with bounded degree: 
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Lemma 4.3 Let U(d,n):= {P~ ~[x I .... x~]Ideg P~d}. 

Then every choice of pairwise distinct primes Pl''''Pn E ~q yields a correct test point 

(P11/(d+1) ~I/(d+I)) for U(d,n) 
''" '~n 

Proof by contradiction. Suppose P~O and P(pl I/(d+I) ,..,pn I/(d+I)) = O. 

Let V: (pl I/(d+1) I/(d+1) ,. = ''''Pn ) be the closure of (pl I/(d+1) .,pn I/(d+I)) with respect 

to the closed sets definable over ~J. V consists of all conjugates of 

(pl I/(d+I) ,..,pn I/(d+I)). Clearly #V = (d+1) n and V is contained in the intersection of 
d+1 

the hypersurfaces Hic ~<n which are defined by Pi-Xi = 0 for i=I,.. ,n. Let Hp be the 

hypersurface defined by P, then dim Hp = n-l,deg Hp~d. 

n 
Hence VCHP~i~=iH i and Proposition 2.3 implies ~V~deg Hp" (d+l)n-1<(d+1) n which yields a 

contradiction to 4~V = (d+1) n. mm 
Ul 

Presumably the test point of Lemma 4.3 is impractical, too. We do not know an efficient 

method for verifying whether P(pl 1/(d+I) ,..,pn I/(d+I)) = O. Thus the question remains 

whether there exist "practical" correct test points. There cannot exist "practical" test 

sequences -al,.. ,-ad 6 ~n of length d which are correct for all P~[x 1,..,xn],deg P~d which 

are easy to compute. Observe that such a test sequence is falsified by the simple poly- 

nomial Hdi=1 (x'1-a%)" Nevertheless we shall establish the existence of short, practical 

and correct test sequences for all polynomials which are easy to compute, i.e. test se- 

quences which are correct for the classes W(d,n,v). 

Theorem 4.4 For every v,d~ and for u:= 2v(d+1) 2 and s:= 6(v+1+n) 2 the number of 

correct test sequences (-al,..,-as) E [u] ns for W(d,n,v) is at least unS(1-u-S/6). 

n+d. 
Proof Let t:=( d ) and for all P6~[Xl,..,xh] with deg P~d identify P with its coef- 

ficient vector in ~t. Then 

V(d,n,v,s):= { (al ,aS,p)~ ~ns+t I P~ W(d'n'v) I _  ~s:p(-a~))=O 

is a closed set definable over @. Let xi, 9 i=1,..,n,v=1,.,s and z~,i~_l~d be the coordin- 

ates of ~<ns+t. Then V(d,n,v,s) is defined by the polynomial equations defining W(d,n,v) 

together with the following equations of degree d+1: 

Pi 
Z l ~ l ~ d = n y = l x i ,  ~ ,  . = o ~ = 1  . . . . .  s 

By Bezout's inequality and Theorem 3.2 we have 

deg V(d,n,v,s) ~ deg W(d,n,v) (d+1) s (2vd) s/6 (d+1) s 

Let Zl:V(d,n,v,s) ÷ ~ns and ~2:V(d,n,v,s) ÷ W(d,n,v) ciK t be the projections. Let Cj jg J 

be all those components of V(d,n,v,s) such that ~2(Cj) contains some polynomial P~O. 

Clearly ~i ( U C.)c ~ns contains all incorrect test sequences for W(d,n v) In order to 
j~J J ' • 

bound the cardinaiity of ~I (jVjCj){~ [u]nS we need the following 

Fact dim Cj~(n-1)s+s/6 for all JEJ. 

- ~1 Proof Let P~ ~2(Cj), P}O. Then clearly dim ~21(P) = (n-1)s, since (P) = 

{(_ al .... -- as) I ~s:P(-a ~) = 0}. 
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Applying theorem 2.2 to E:= Cj, D:= W(d,n,v) yields 

dim z21 (P)adim C.-dim W(d,n,v) . 
3 

Hence dim Cj~(n-1)s+s/6. 

Let H. C~ns+t be the hypersurface defined by 
i,~ 

(xi, -I) (xi, -2)... (xi, -u) = 0 for i=1,..,n,9=1,..,s. 

= Cj ~ Hi, ~) Then ~i ( ~ Cj) ~ [u] ns Zl ( j~j 
j~J i,~ 

Therefore #(z1( ~ Cj) ~ [u] ns) 
jeJ 

= &~1 ( ~J Cj ~ i~, Hi,9) 
j6J 

deg( ~ Cj ~ ~ Hi, ~) 
jeJ i,v 

applying proposition 2.3 to El:= 

~deg(~J Cj)u (n-1)s+s/6 
j~J 

~(2vd)S/6(d+l) s u(n-1) s+s/6 

ls 
-3 = u ns u-S/6(2vd)S/6(d+1) s u 

u ns u -s/6 since u~2v(d+1) 2 

Hence at most u ns u -s/6 sequences in [u] ns 

This proves the theorem. 

Cj, dim El~(n-1)s+s/6 yields 
j&J 

are incorrect test sequences for W(d,n,v). 
Bm 
mm 

I~ is an interesting observation that so far the provably correct test sequences for 

W(d,n,v) and the coefficient vectors of multivariate polynomials which are provably not in 

W(d,n,v) both are of the following three types: 

(1) integer vectors with doubly exponentially increasing components, 
d d 2 d k-1 

e.g.: (m,m , m ,...,m ) 

(2) vectors (al,..,ak) with algebraic coefficients that generate a large 

closure (al,..,ak)C ~k with respect to closed sets definable over ~. 

(3) for sufficiently large u6~ almost all (al,..,a k) ~ ~u] k. 

Indeed so far our methods for proving substantial lower bound on the arithmetical complex- 

ity of polynomials and the methods for establishing a correct test sequence for 

W(d,n,v) are essentially the same. This does not happen accidentally. Indeed we can re- 

duce the problem of establishing multivariate polynomials not in W(d,n,v) to the problem 

of constructing a correct test sequence for W(d,n,v). 

For a sequence ( 1,..,a s )_ ~ ~ns with _a ~ = (a~,..,a~)6 Z n we define the weight as 

w(~1,..,~s):= ~i,~la~l. As before we identify a polynomial P~[x I .... Xn],deg P~d with 

its coefficient vector in ~t, t:= (nEd). Moreover, we fix an arbitrary ordering of the 

coefficients of P and for r<t we identify ~r with the set of all polynomials that have 

non zeros only within the first r coefficients and all other coefficients being zero. 
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Theorem 4.5 

Given a correct test sequence _a 1,..,as6_ ~n for W(d,n,v) we can construct a polynomial 

P6 ~s+1 (i.e. the polynomial P has non zeros only within the first s+1 coefficients),deg P 

d, P~ W(d,n,v) and the construction time is polynomial in s d log w(a 1,..,_a s ) . In 

particular log w(P) = O(s2d log s log w(_al,..,_as)). 

Given a correct test sequence _al,..,_as for W(d,n,v) then the construction of a polynomial 

P~W(d,n,v) deg P.~d ispar£icularly easy if d is sufficiently large, i.e. d~s: 

Lemma 4.6 Let _al s ~ns ,-.,_a E be a correct test sequence for W(d,n,v) and dks. Then 
s i 

Lns(~i=1(x~-a~))Zv for 9 = I .... n. 

Proof Every polynomial ~s (x~-ai) falsifies the test sequence (a I .,a s ) Since s~d 
i=I v - '" - " 

this implies Lns(~i=1(x~-a~ l))~v" mmm" 

Acknowledgement Our interest in this subject was greatly stimulated by several convers- 

ations with Steve Cook and by the talk of M. Mignotte at the occasion of the 1979 Ober- 

wolfach Conference on Complexity Theory. 

Re ferences 

I. Adleman, L.: TWO THEOREMS ON RANDOM POLYNOMIAL TIME. Proceedings of 19th Symposium 
on Foundations of Computer Science, Ann Arbor, 1978, pp. 75-83 

2. yon zur Gathen, J. and StraBen, V.: SOME POLYNOMIALS THAT ARE HARD TO COMPUTE. 
Preprint Universit~t ZOrich, 1979 

3. Heintz, J.: DEFINABILITY BOUNDS OF FIRST ORDER THEORIES OF ALGEBRAICALLY CLOSED FIELDS. 
Extended abstract in the Proceedings of the FCT Conference, Berlin/Wendisch 
Rietz 1979, Ed. L. Budach. Berlin: Akademie-Verlag 1979, pp. 160-166 

4. Heintz, J. and Sieveking, M.: LOWER BOUNDS FOR POLYNOMIALS WITH ALGEBRAIC COEFFICIENTS. 
Preprint Universit~t Frankfurt/Main 1978, to appear in Theoretical Computer 
Science 

5. Kendig, K.: ELEMENTARY ALGEBRAIC GEOMETRY. New York: Springer-Verlag 1977 

6. Lov~sz, L.: ON DETERMINANTS, MATCHINGS AND RANDOM ALGORITHMS. Proceedings of the FCT- 
Conference, Berlin/Wendisch-Rietz 1979, Ed. L. Budach, Berlin: Akademie- 
Verlag 1979, pp. 565-574 

7. Mignotte, M. and Morgenstern, J.: personal communication at the 1979 Oberwolfach 
Conference on Complexity Theory 

8. Paterson, M.S. and Stockmeyer, L.J.: ON THE NUMBER OF NONSCALAR MULTIPLICATIONS 
NECESSARY TO EVALUATE POLYNOMIALS. SIAM J. Comput.2, 1973, 60-66 

9. Schnorr, C.P.: IMPROVED LOWER BOUNDS ON THE NUMBER OF MULTIPLICATIONS/DIVISIONS WHICH 
ARE NECESSARY TO EVALUATE POLYNOMIALS. Theoretical Computer Science 7, 1978 
pp. 251-261 

10. Schnorr, C.P.: AN EXTENSION OF STRASSENS'S DEGREE BOUND. Preprint in the Proceedings 
of the FCT Conference Berlin/Wendisch-Rietz 1979, Ed. L. Budach, Berlin: 
Akademie-Verlag 1979, pp. 404-416 . Full version to appear in SIAM J.of Comp. 

271 



11. Schnorr, C.P.: HOW MANY POLYNOMIALS CAN BE FASTER APPROXIMATED THAN THEY CAN BE 
EVALUATED? Preprint Universit~t Frankfurt/Main 1979 

12. Schnorr, C.P. and Van de Wiele, J.P.: ON THE ADDITIVE COMPLEXITY OF POLYNOMIALS. 
Theoretical Computer Science 10, 1980, 1-18 

13. Schafarewitch, I.R.: GRUNDLAGEN DER ALGEBRAISCHEN GEOMETRY. Berlin: VEB Deutscher 
Verlag der Wissenschaften 1972 

14. Schwartz, J.T.: PROBABILISTIC ALGORITHMS FOR VERIFICATION OF POLYNOMIAL IDENTITIES. 
Proceedings of the Eurosam Symposium Marseille 1979, Lecture Notes in 
Computer Science 72, Ed. E.W.Ng. Berlin-New York: Springer-Verlag 1979, 
pp. 216-226 

15. StoB, H.J.: UNTERE SCHRANKEN FUR DIE ZAHL DER OPERATIONEN BEI DER BERECHNUNG VON 
POLYNOMEN. Preprint Universit~t Konstanz, 1979 

16. StraBen, V.: DIE BERECHNUNGSKOMPLEXIT~T DER ELEMENTARSYMMETRISCHEN FUNKTIONEN UND 
YON INTERPOLATIONSKOEFFIZIENTEN. Numerische Mathematik 20, 1972, pp. 238-251 

17. StraBen, V.: POLYNOMIALS WITH RATIONAL COEFFICIENTS WHICH ARE HARD TO COMPUTE. 
SIAM J. Computing 3, 1974, pp. 128-149 

18. Van der Waerden, B.L.: EINFUHRUNG IN DIE ALGEBRAISCHE GEOMETRIE (zweite Auflage) , 
New York: Springer-Verlag, 1973 

272 


