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A TIME-SPACE TRADEOFF FOR SORTING ON A GENERAL
SEQUENTIAL MODEL OF COMPUTATION

A. BORODINT AND S. COOKt

Abstract. In a general sequential model of computation, no restrictions are placed on the way in which
the computation may proceed, except that parallel operations are not allowed. We show that in such an
unrestricted environment TIME-SPACE = Q(N?/log N) in order to sort N integers, each in the range
[1, N?].
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1. Introduction. Within the field of computational complexity, our inability to
establish lower bounds on the complexity of ‘“natural problems’ stands in marked
contrast to the progress that has been made in algorithmic design and analysis, and
the progress in characterizing the central issues. To be fair, there are the following
important exceptions:

1. Relative to an appropriate reducibility, a problem can be shown “hard” for
an entire complexity class. Then diagonalization can be used to infer a corresponding
complexity lower bound. For example, see the discussion in Aho, Hopcroft and Ullman
[1, Chapt. 11].

2. For certain natural but ‘“‘structured’’ models of computation, we have a number
of interesting lower bounds. We use “structured” in the sense of Pippenger and
Valiant’s [2] use of “conservative” to mean that the computation can only proceed
within a fixed mathematical structure (e.g., a partial order for comparison based
models, a ring or field for algebraic complexity) and only uses the relations and
functions within that structure for the computation (see also Borodin [3]). For example,
using comparison trees it is well known that sorting » elements requires at least n
log n + O(n) comparisons.

3. On certain nonstructured but restricted models of computation we have a few
results. For example, to recognize the set {w # w™} on a one-tape Turing machine
requires ((n 2 steps.

A general sequential model of computation can be viewed as a string processing
machine. While the input string may arise as the encoding of a set of mathematical
objects, there is no obligation to process these objects in ways prescribed by the
mathematical structure. In this context complexity is measured as a function of the
input (plus output) length. If we ignore ‘‘diagonalization based results”, the following
barriers are well recognized:

a. To establish a nonlinear lower bound on time.

b. To establish a nonlogarithmic lower bound on space.1

c. To establish a nonlogarithmic lower bound on depth (= parallel time).

Having recognized these barriers, it might seem wise to see if we can at least
show that for some problem we cannot simultaneously achieve (say) linear time and
logarithmic space. Such a result already appears in Cobham [4], where he shows that
for recognizing the set of perfect squares (or for recognizing {w $ w*}) we must have
T - S =Q(n?) for any computational device (including a multitape T - M.) having a

* Received by the editors July 28, 1980, and in final form May 4, 1981.
+ Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A1.
! That is, prove space is not O(log n).
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separate one head-read only input tape. Here T =number of steps, S = “capacity’” =
log, (number of configurations the machine enters when processing all strings of length
n). The concept of “capacity”’ introduced by Cobham seems to capture just that
property of space which lends itself to lower bound analysis. But whereas we accept
a capacity lower bound on one of Cobham’s general machines to be an ‘“‘intrinsic”
lower bound (i.e., independent of the choice of any reasonable computational models)
on space requirements, we cannot say thata T - S =Q(n %) lower bound has the same
intrinsic quality, because of the restriction of having only one input head. More
specifically, by easily adapting Cobham’s argument (based on Hennie’s [5] crossing
sequence technique), Tompa [6] shows that sorting m numbers, each of length log m
bits (hence n =m log m), requires T - S =Q(n?). But the proof literally states and
shows that merging two lists of m sorted numbers would require the same lower
bound. But for merging, the use of (say) two input heads would trivially (via a linear
merge) permit a simultaneous linear time and logarithmic space merge. We are then
led to the following question: Given k ‘“‘random access” input heads, can we sort (say
on a multitape T + M. or unit cost RAM) in simultaneous linear time and logarithmic
space? The main result of this paper shows that indeed this is not possible. In fact
we will establish a lower bound analogous to (and based upon) the lower bound of
T - S = Q(n?) established for sorting in the structured context of “‘branching programs”’
by Borodin, et al. [7]. Specifically we show T - S = Q(N?/log N), N the number of
inputs and N = Q(n/log n) where n is the input length. To the best of our knowledge
this is a unique result in that it establishes a lower bound (without diagonalization)
on a completely unrestricted general model of computation. Unfortunately, we have
not yet been able to establish a similar bound for a set recognition problem and we
should also note that our methods do not appear applicable to Knuth’s [8] problem
of in situ sorting.

2. The formal model and an outline of the proof. In a general model of computa-
tion, we might be able to solve a given problem by processing the input string in a
manner which is completely outside the mathematical domain within which the
problem has been defined. For example, consider solving for the existence of a path
on a graph by using Strassen’s matrix multiplication algorithm and modular arithmetic
(see Fischer and Meyer [9]). It seems almost impossible to make sense out of the
individual bit operations in terms of the original problems.

The “fortunate” fact for sorting is that such a problem, with its explicit requirement
for “ongoing progress” (in the sense of having to output ranks) allows us to enjoy a
structured view of the computation even though we are working within a general
computational model. Indeed we shall try to mimic the proof for the structured case
[7]. That proof was based on the following intuitive idea: if we don’t compare many
elements, then we can’t know the ranks of many elements for many input permutations.
We will need a somewhat more involved argument to show an analogous statement
for the general model.

Before discussing the model, we should define the problem formally. We consider
an input of the form x, #x, #- - - #xx where each x; is an integer in [1, N*] and is
coded in binary. Hence the total length of the input is O(N log N). The sorting
problem is to output a sequence of distinct pairs i1, 71; iz, 725 * * * ; in, I~ such that x,,
has rank 7. (Without loss of generality we can assume that x;’s are distinct.) As in
Borodm et al [7] we can deﬁne the k-ranking subproblem; namely, output a sequence

indices i; which are ass1gned ranks may be different for different input values )
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This definition of sorting is not standard. Usually, one requires outputting the x;
values in sorted order. However, for the model we are considering, any algorithm
which sorts in this usual manner can be adapted to one which outputs pairs (i;, 7;) by
assuming that the index i has been concatenated onto x; as the low order bits. It will
follow that a TIME - SPACE lower bound in our framework for inputs in the range
[1, N*] will imply the same lower bound in the usual setting for inputs in the range
[1, N°].

Our formal models are as follows:

DEFINITION. An R-way integer tree program is an R-ary tree (hereafter called
an R tree), where each branch is labelled by elements of [1, R], and each internal
node is labelled by some index i (referring to x;). The interpretation is that if the
computation has proceeded to an internal node labelled by ‘““x;” then it will continue
to proceed along edge u iff x; = u. Output takes place at the leaves. In particular, it
should now be clear to say how a computation tree solves the k-ranking problem, or
more generally how a computation tree solves the k-ranking problem for some subset
I of the possible inputs. The time complexity of a computation tree is its depth; that
is, the maximum number of times inputs are accessed in a computation. Since we
assume all x; are distinct, any branch which has two edges with the same label u for
distinct x; will be inaccessible. We assume these inaccessible paths have been pruned.

An R-way integer branching program (hereafter called an R branching program)
is the nonstructured analogue of a comparison branching program [6]. Namely, it is
a directed acyclic rooted graph with each nonsink node having out-degree R, with
the R out edges labelled 1, 2, - - - , R. Without loss of generality, we can assume that
the graph is in levels and that an edge out of a node at level / is directed to a node
at level /+1. (See Tompa [6] for a discussion of the analogous assumption for
comparison branching programs.) Outputs can now occur on any edge. The time
complexity is again the depth and space = capacity = log, (number of nodes in the
graph). We can now state:

MAIN THEOREM. Let 7 be an R branching program for sorting N integers and let
R=R(N)=N?> Then T -S=Q(N?/logN) where T and S denote, respectively, the
time and space complexity of 7.

Before proceeding to the proof, we should comment briefly on the generality of
the model. Suppose we have a general computational machine with k read-only,
“random access”’ heads. It should be clear that by assuming k =1 we will only slow
down the machine by at most a constant factor (i.e., k). Our tree and branching
programs assume that we will know an entire input x; if we access any bit of that
input. Hence, we are willing to ignore the log N factor it might cost to look at a given
input. Each node of the computation graph represents a distinct state of the computa-
tion. Like Cobham [4], it is profitable for us to ignore completely how (and if) the
storage can be represented and manipulated. Again, we are willing to ignore the time
spent manipulating the storage between accesses of the input. We thus argue that our
model and the time and space measures are sufficiently general that any lower bounds
do reflect an intrinsic property of the function (sorting) being computed.

Having presented and justified the model, we can now informally sketch the
proof. To do so, it is helpful to review the proof for the structured case [7]. The basic
lemma in that proof states that a {<, >} comparison tree program on » inputs of
depth (time) ¢ can solve the k ranking problem for at most (t+1)*(n —k)! input
permutations. This lemma is applied with k = S = space. Thus for any ¢ > 1, by making
t = an for « sufficiently small, we can say that the S ranking problem has been solved
for at most a fraction (1/c)® of the n! possible input permutations. Now if = is a
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{<, >} branching program for sorting, we consider the computation at the ith
“stage” = (i - f)th step, i = n/S. In going from stage i to stage i + 1, we can only correctly
calculate S more ranks for at most n12°- 1/ ¢)’ input permutations, since there are
at most 2° nodes at the ith stage, each of which can be considered the root of a tree
program. Thus by an appropriate choice of ¢ ={(n) we have ¢ >2 so that in going
from stage i to stage i +1 we have computed more than S new ranks for at most a
fraction (1/d)° of all possible input permutations. It follows that we will need at least
i=n/S stages to complete the computation, and hence T = Q(n?*/S).

We want to establish the analog of the basic lemma, after which the rest of the
proof follows exactly as before. We will show that for any ¢ > 1, we can find suitable
@ such that any R-tree program (R =N?) of depth t=aN can solve the S log N
ranking problem for at most a fraction (1/¢)° of the the possible inputs. In our case,
that are N!(X) possible input sequences (xi,-:*,xn) since we are assuming
distinct {x;}.

In viewing the proof of the structured case, we can observe that every path in a
computation tree can successfully solve the k ranking problem for at most a fraction
(t+1)*/[n - (n=1) -+ (n—k +1)] of the permutations following that path. In our case,
we can see that some short paths can be very successful; indeed if we discover that
some x;=1 (or x;=N?) on a given path, then we know the smallest (respectively,
largest) element for every input sequence on that path. Moreover, if we find some
x; =2 (and no x; seen so far is equal to 1) we still have a pretty good chance if we
guess that x; is the smallest element. But, we can also see intuitively that our chance
of guessing correctly as to which is the smallest element starts to decrease if we have
only seen a few not so small numbers.

So this will be our approach for establishing the analogous main lemma: We
assert that, with sufficiently high probability, at a leaf of an R-tree program the
elements that we have seen on this path will be “spread out” in such a way that there
is only a small probability (i.e., for only a small fraction of all possible input sequences)
that we will correctly output S ranks.

3. The proof of the main lemma. Throughout this section we will be considering
R tree programs 7 such that each leaf 6 of 7 is labelled with a ranking sequence i,

problem for an input sequence (xi,* * +, xn) provided this input leads to a leaf 6 for
which /s = m, and all /, ranks are correctly specified (i.e., x;, is the r,th smallest input,
1=j=l). The following notation will be maintained: t <3N is the depth of the R
tree program 7 (we may asssume all paths in 7 have length ¢ by extending shorter
ones if necessary), N =2 is the number of input elements, k is a positive integer
satisfying 2f(k) =N, and f(k) stands for k [log N]. We will see that R = R(N)=N>
is sufficiently large for our purposes, and since all results hold a fortiori for larger R,
we will assume R = N2, Our proofs will be formulated in the language of probability
theory and we will speak of a random input in the sense that any of the N(X) possible
input sequences are considered to be equally likely.

We are now ready to state the main lemma, which says that any sufficiently
shallow R tree program (regardless of its capacity) cannot output many ranks correctly.

LEMMA 1. For all ¢ >0 there is an a >0 such that for all v+ with t=aN and N
sufficiently large, and for all k with f(k)=t, the set I of inputs for which T solves the
2f(k) ranking problem satisfies #I/(N (X)) = (1/c)*. Restated: with probability at most
(1/¢)%,  correctly outputs 2f(k) or more ranks for a random input.
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DEFINITION. A set §={x;,* "', x;} of inputs is {p, k) spread out if for every
subset §' = § with #S' = f(k) there is a subset {y;, * - *, y«} (listed in increasing order)
of §' such that y;.;—y;—1=p, for 0=j=k. (Here yo=0 and y,-1=R+1.)

LEMMA 2. For all integers B >0 there is an a >0 such that, for all + with t =aN
and all k with f(k)=t, P[r, k, B1=(1/N)*, where P[r, k, B] is the probability that a
random input (x1, * * + , xx') to T will follow a path along which the accessed input elements
are not {BR/N, k) spread out.

LeEMMA 3. Foralld >0 there is an integer B > 0 such that for all  with N sufficiently
large and for all k with 2f(k) = N if the accessed input elements {x;,, " * * , x;,) at a leaf
0 of T are {BR/N, k) spread out and the ranking sequence labelling 6 contains at least
2f(k) ranks, then the fraction of those inputs leading to 6 that are correctly ranked is at
most (1/d)~.

Lemma 1 follows from Lemmas 2 and 3 as follows. Choose d =2¢ in Lemma 3
to get B and apply Lemma 2 to get a. By Lemma 2 it does no harm to assume all
leaves whose accessed inputs are not spread out always correctly solve the 2f(k)
ranking problem, and the remaining leaves either output fewer than 2f(k) ranks or
(by Lemma 3) are correct for too few inputs.

Proof of Lemma 2. Every leaf 6 of 7 uniquely determines a ¢-tuple (x,, - * -, x;,)
of accessed elements, written in the order in which they are accessed on the path to
0. Conversely, every t-tuple of distinct integers in the interval [1, R] uniquely deter-
mines a leaf. Thus there is a one to one correspondence between leaves and ¢-tuples,
and exactly a ¢! to one correspondence between leaves and sets of ¢ distinct integers
from [1, R]. Further, any two leaves have the same number of input sequences
(x1,***, xn) leading to them. Therefore P[r, k, B8] is just that fraction of sets of ¢
distinct integers from [1, R] which are not (BR/N, k) spread out.

Divide the interval [1, R] into N equal subintervals called bins of length N each
(recall R =N?). Let ﬁ[t,N, k, 8] be the probability that, when ¢ balls are drawn
(without replacement) from an urn of R balls numbered 1,2, -, R, there exists
some set of f(k) of the drawn balls which lie in at most & bins®>. We claim that
P[t, N, k, 8] is an upper bound on P[r, k, B] where 8 = k(B8 +1)+B. For, if S is the
set of ¢t drawn balls and if every subset §'< S of f(k) balls lies in § +1 or more bins
By, ,Bs.1 (listed in the order in which these intervals occur in [1, R]), then we
can choose one ball from each of the k bins Bjg+1), 1 =j=k, to form the required
subset {yy, * * *, y«} in the definition of (8R/N, k) = (BN, k) spread out. This is because
at least B bins lie entirely to the left of y,, at least B bins lie entirely to the right of
yr, and any two adjacent y;’s are separated by at least B bins (8 bins equals SN
elements).

To estimate P[t, N, k, 8], let p(b;) be the probability that a particular bin B; has
at least b; balls (after ¢ are drawn). We claim that [[?-; p(b;) is an overestimate of the
probability that a particular set of § bins By, -+, Bs get packed (respectively) with
at least by, - -+, bs balls. This is because the condition that a set of bins has some
minimum number of elements can only decrease the probability that a particular bin
has at least b; elements. Hence

. N\ 5
PN ksl= T () o).
(b -, bs N0/ i=1
Y bi=f(k)
5;=0

2 Here is the essential place that the log N factor in our main result T - §=Q(N 2/log N) enters the
proof. Specifically, we cannot assert that P would be sufficiently small if f(k) were O(k) rather than k log N.
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Here (3) gives the number of ways to choose a set of crowded bins, and the summation
represents the number of ways to pack a set of crowded bins.
We claim that for all ¢ =1 there is @ >0 such that p(b)=(1/c)® (where t=aN).
Proof. The probability that a particular bin has exactly / balls is given by

N>—
(7)((1\,;2)" IN) éN,EZZ:f){)'—I' 1!(:1 1)!§(1%/“> o= (%)lé(za)"
t

1

Thus

- Qa)® b 1
p(b)= z(z)<1 - () fora=o-,

assuming b = 1. The claim is obvious if 4 = 0.
We thus have

o 8
Punksls L (5) 1
b1+ +bs=f(k) =
1 F0O
= (f(k)+1)°N® (—)
¢
1 k [log N1
(since f(k) <N, f(k) = k[log N]) =N?° (~)
c
1 k
(for 5 =k(B+1)+B) = N2KBrIT28 (Nl—g)
1 k
= (ﬁ) for sufficiently large c. O
Proof of Lemma 3. Let {x;,," * -, x;} be the input elements accessed on the path
to 6. Suppose at 6 the labels assert that x;, has rank 7, for 1 =» =2f(k). Note that we
are not necessarily implying that any x; €{x;," -, x;} but, intuitively, one would

expect a better chance at “guessing” the rank of an element which has been seen.
Suppose that fewer than half of the indices for which 6 assigns ranks are among the

set {i1, "+, i;}. Then there is a set S of u =k [log N indices i for which 6 assigns a
rank and whose corresponding value x; can be anything in the set {1,2, -, R}—
{*i, * + + +, x;,}. In particular, all u! possible orderings of the set {x;| i € S} are possible

and equally likely, and a necessary condition that # rank them properly is that they
be in the right order. Hence at most a fraction 1/u! of the inputs leading to 6 are
correctly ranked, and 1/u!=(1/d)* for sufficiently large N, since u = k log N.

The remaining case is that half or more (that is at least k [log N] = f(k)) of the
indices for which 6 assigns ranks are among the set {i1, - - -, i,}. Let S’ be the set of
inputs at these indices (so #S'=f(k)). Since {x;, -, x;} is (BR/N, k) spread out,
there is a subset {y1, -, y«} of S’ such that y,.;—y;—1=BR/N, 0=j=k, where
y0=0, yx+1=R+1. Let 0 output the assertions that y; has rank 7, 1 =j=k. These
assertions are equivalent to saying that exactly r; —r;_; — 1 of the inputs lie in the open
interval (y;-1, y;), 1l =j =k + 1, where we understand that 7o =0 and 7.1 = N + 1. This
in turn is equivalent to saying that exactly k; of the inputs which 6 does not access lie
in the set C;=(yj_1,y;)—{xi,",x.}, where kj=ri—ri-1—1—u;, and u;=
#(yj=1, i) N {xi, * + +, x;,} (i.e., u; is the number of inputs which 6 knows to lie between
yj-1 and y;).
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We have thus reduced our problem to a more traditional probability setting,
namely that of the hypergeometric distribution (see Feller [10, p. 43]). We have a
population of size n = R —t, made up of »n; elements of “‘color i’ (i.e., member of the
set C;), 1=i=1/=k+1. We seek an upper bound on the probability

() () (&)
ki/ \k» ki
()
r

that a sample (without replacement) of size r =N —¢ = Z§=1 k; will contain exactly k;
elements of color, i, 1 =i =/ The required bound is given by Lemma 4 below. For
our application we have rn;/n = (N —t)(#C;)/(R—t)=(N —t)(BR/N —t)/(R —t). But
t =3N and furthermore® R = N*so that BR/N —t =38R/ N for B = 1. Thus rn;/n = B/4
since N —t=3N. Further I-1=k = N/log N. Hence the constraints on r, n, n; and /
for Lemma 4 will be satisfied for sufficiently large N. Lemma 3 now follows from the
following:

LEMMA 4. For all d >0 there exists a B>0 such that if m;/n=p for 1=i=],

r=2IB, and n =2r, then for all ki, - - -, k; the hypergeometric distribution satisfies
1

1
pkr“kzé(;;) .

We need the following two lemmas to prove Lemma 4. Note that Lemma 5 states
that the value of k; for which the hypergeometric distribution is maximal is close to
the expected value rp; of the number of elements of color i obtained in r draws. If
this optimal value were exactly rp;, the proof of Lemma 4 would be substantially
simpler.

LEMMA 5*. The values of k; in the maximal term of the hypergeometric distribution
Dk, - - - kg SQLSY

(1) Pyl =

Di
2 — 1<k, <rm;+(-1)p:i+1,
(2) 1+1n 1<k;<mi+(I-1p
where p,=n;/n, 1=i=1l
Proof. For any pair (i, j) of distinct indices we calculate the ratio

p“~k,+1,~~~,k]—l~~~= (ni'—ki)k]'
Pky,-,k (ki+l)(n,-—k,~+1)'
A necessary condition for py,,...r, to be maximal is that the numerator does not

exceed the denominator, or (n;—k;)k; = (k;+1)(n;—k;+1). If we divide by n and
rearrange this becomes

i~k +1
(3) pik; = pjki + p; +k__l“_-

If we sum (3) over all j # i and use the identities ), p, =1 and ¥, k; = r, then we obtain
the left half of (2). Similarly, if we sum (3) over all i # j we obtain the right-hand side
of (2). O

3 This is the only place we need assume that R is as large as N 2,
4 Feller [10, p. 171, Exercise 28] states a similar result for the multinomial distribution. Our proof is
suggested by Feller’s hints.
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LEMMA 6. For all € >0 there is a z. such that for all 6 and for all z = z.|6|
(1 +ZQ) =(1+e) 7"

Note that z. does not depend on 6.

Proof. From elementary calculus we have lim,.o (1+6/z)* =e°. Setting 6 =1
and —1 we conclude (1+1/z)*=(1+¢) ' e and (1-1/2)°=(1+¢) ' e for z=z..
Setting z = z'|6] we have (1+6/2)* = (1+6/(z'|6))""'=(1+) " e® for 2'=z.; i.e.,
forz=z.|6]. O

Proof of Lemma 4. We have

Piyo- i = T ni)rt(n =)/ [n! I (it (ni — k)]

Stirling’s approximation implies that 1/Co=+v2mm(m/e)™/m! = C, for some constant
Co=1 and all m=1. Using this approximation for each factorial, and substituting
rp; + 6; for k;, 1 =i = [, where p; = n;/n and 6, has been chosen to maximize (1), we obtain

4) Diy g =ABCI™3,
where
_ (I n)r(n—r)
©) 4= \/(2,,):—1,,“ (rpi + 6)((n P — 60
and
©) B= Ini)r'(n=r""

Cn" TLLpi+6) ™ (n—r)pi— )"

For (5) and (6) we have used the identity n; — k; = (n — r)p; — 6;. Notice that all occurren-
ces of e cancel, since Y n; = n.

Since Y p;=1 and } k; =r, it follows that ) §; = 0. This fact can be used to verify
that if B’ is the number obtained by substituting O for the two occurrences of 6; in
the denominator (but not in the exponents) in the expression for B, then B'= 1. Thus
if we multiply and divide the denominator of (6) by [T [(rp:)™ ™ %((n —r)p;)) " "% we
can simplify and obtain

-\ Pt ) (n=r)p;~6,
p-[0((1+2)" (755 )]

Now we apply Lemma 6 and use the fact that (1+6/z)° =1 for all z>0 and all
6 to obtain B = (1+¢)*¥'%|, provided

-1

(7) mwizz.|6;| and (n—r)pizz.|6], 1sisl

A

By Lemma 5, we have |6;| = Irp;/(n + 1)+ (I —1)p; +2, so |6;| =2Ip; + 2. By assumption,
we have rp; =B, (n —r)=r and r=2IB. Hence

®) (n—rp;Zm; = B—‘?,

so the provisos (7) are satisfied for 8 =4z,.. Now summing the bound |6;| =2/p; +2,
we obtain ¥ |6;| =41, so

(9) B=(1+¢)*
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It remains to estimate A from (5). We rewrite the product [] in the denominator

as the product of five factors:

6; r ! (4

Mop) T (1+2) T (1-5) T (1-—).

p; n (n—r)p;
To estimate the first factor [] 7p;, notice that Y’ rp; = r, and each rp; = 8 by assumption.
With these constraints, this product obtains its minimum when all but one of the
factors are as small as possible (namely 8). Thus

Mep)zB ' r=(U-1)B)>3rB"".

From (8), we have 1+ 0i/(rpi)§% for B=8,so [J(1+ 0,~/(rp,-))§2_'. The same bound
applies to the fifth factor and (since n =2r) to the fourth. The third factor cancels
with the numerator. Thus

l

1
< 1-1pi-15=31+19-1/2 [ 1
A=[2m)"g! 1273 =(c)

for any ¢ and B = B.. Lemma 4 follows from this, (4) and (9). 0O

4. Proof of the main theorem. As indicated earlier in the paper, we will follow
the general argument used in the structured case. As in § 3, we again assume R =
R(N)=N?. We let T denote the time (that is, the depth) of a branching program,
and let S denote the space (that is, the capacity = log, # nodes). Since we must clearly
(by the simplest adversary argument) have T= N and S =log, T, we have S =log, N.
Let us restate the main theorem.

THEOREM. Let 7 be an R branching program for sorting N integers. Then T - S =
Q(N?/log N).

Proof. Letting ¢ =4, use Lemma 1 to obtain a for N sufficiently large. We will
now consider 7 in stages, where every stage represents ¢ = |aN | steps.

For 1=i=N/(2f(S)), let P; be the fraction of input sequences for which 7 has
output at least 2if(S) ranks by the end of the ith stage. We shall now prove

(%) P=iG)%.

For each node @ on the (i - t)th level (=end of stage i) let P;, be the fraction
of input sequences which lead to 8 and for which 7 outputs at least 2f(S) ranks during
the i+ 1st stage. If we expand the part of the (i +1)st stage that is rooted at 6 into
an R tree, we see by Lemma 1 that (regardless of what has happened in earlier stages)
Piy= (3)%. Since there are at most 2° nodes 6 at level i - £, we have Pi,; =P, +Y oPio=
Pi+25 - (%)%, or P;11 = P;+(3)5. This inequality holds for 0 = i = N/(2(f(S)), if we define
Py =0. The inequality (*) now follows by induction on i.

Recall f(S)=S[log N.If 2f(S)> N then S >N/2[log N1,s0 ST = Q(N?*/log N)
in this case. If 2f(S)= N, then we can set i =ip= [N/(2f(S))] in (*) to obtain (since
S=log N) P,,=(N/(2£(S))) - 1/N =1/(2f(S))<1. Hence at stage i, for some input,
7 has output fewer than 2iyf(S)=N ranks, so T=iot=|N/(Q2f(S))] - laN] =
Q(N?/(S log N)) steps. O

5. Conclusion. In order to better appreciate the application of the main theorem,
we offer the following example.

Let M be any machine (say, a unit cost RAM or vector machine with operations
+, —, X, +, 1) whose inputs are accessed from a random access read-only input device.
We only insist that there is a bound on the number of inputs accessible on a given
computation step. Choose any ‘“fair’” definition of space, e.g., space=
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max,~§::.=1 [log (r}+1)] where r} is the contents of register i at time j and ¢ is the
largest register used. For such a machine the theorem yields T - S = Q(N?/log N).
And, of course, the same result holds for multidimensional Turing machines, etc.

Although the lower bound T - § = Q(N?/log N) established in this paper for a
general model of computation differs by a log factor from the lower bound for the
structured case [7], the upper bounds for the structured case apply unchanged. This
is because a “‘structured algorithm” isa{< , >}branchingprogram,andacomparison
x; <x; over the domain [1, R] can be carried out on an R branching program in two
time steps and R +2 nodes. However, in order to be sure that the time and space of
the simulating program are of the same order as the time and space of the original
program, it is necessary to assume R = O(N k) for some k. Under this assumption,
the upper bound T - S = O(N?log N), for Q (log N) = § = O(N) recently established
by Frederickson [16] for a unit cost “structured’’ random access machine with suitable
instructions applies to an R branching program. (Frederickson’s bound generalizes
the one in [7]). It is worth noting that for ‘“‘unstructured” (i.e., general) random access
machines, the upper bound can be extended, using radix sort, to the case 7= O(N)
and S = O(N log N).

We thus have a log> N discrepancy in the upper and lower bounds. We note that
we can improve on the upper bounds when R = N + O(N), say by finding the missing
elements.

It seems to us, however, that the discrepancy in the bounds is far less important
than the need to establish analogous results for a set-recogrition problem; for example,
determining if X N'Y = (. At the present time such a time-space result has not yet
been established for the structured comparison model. We believe that our results
suggest that proofs for the structured model may provide a framework for the general
model. However, it must be noted that the less constructive variant of branching
programs for “silent sorting” mentioned in Borodin et al. [7, Conclusion] becomes
trivial in the general setting.

In retrospect, we can see that our methods are quite ‘‘brute-force”. In particular,
we do not make an essential use of an adversary. Rather what we have is basically a
counting argument. Moreover, we do not make full use of the fact that space is limited
throughout the computation; we only use the fact that it is restricted at certain points
of the computation. We suspect that the set recognition problems will entail a more
sophisticated argument.

A more general view of time-space complexity is captured in Cook’s class SC
[11], [12] (formerly PLOPS); that is, those problems for which there exist algorithms
which run simultaneously in polynomial (sequential) time and log® (for some k) space.
Obviously, any problem (e.g., sorting, X N'Y = J?, etc.) which is in log space, is also
in SC. A central issue for computational complexity is to establish the conjecture
(assuming it is true) that P N (U, DSPACE (log")) 2 SC. Cook and Tompa (see Tompa
[6]) show that the structured branching program model (with either {=, #} or
{<, =, >} as the allowable comparisons) may provide a sufficiently general setting
for this conjecture.

Another important direction for future work lies in the related (but apparently
different) question of size vs. depth. The recent work of Pippenger [13], Ruzzo [14],
and Dymond and Cook [15], has focused attention on the stability and importance
of the class NC; that is, those problems for which there are algorithms which run
simultaneously in polynomial size (= sequential operations) and log® depth (= parallel
time). Again, it is a central issue in complexity to establish the conjecture PN (U
parallel time (log“)) 2 NC.
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Motivated by the results of this paper, we would like to find a problem for which
(say) size - depth = Q(N?). Sorting will not suffice since we can sort simultaneously in
log® depth and N log” N size using a Batcher sorting network. However, one is tempted
to conjecture that any Boolean circuit for sorting which uses only k log N depth
requires cN ¢ size where ¢ and ¢ will depend upon k. The class of problems which
are computable by a log depth, N log® N size circuit is a class of practical importance.
We suspect that it will be difficult to prove that a given problem does not belong to
this class.
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