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Abstract 

We show how to acheive generic 
functions as in abstract datatypes (such 
as the Simula CLASS construct or ADA 
Package notion) for typeless languages, 
specifically APL. We do this by altering 
the standard dynamic scoping of names in 
APL to a scheme we call downward scoping. 

Introduction 

There are two features which are 
often proposed as desirable extensions to 
the current APL language. The first is a 
capability for user extension of APL's 
primitive datatypes, the second is the 
structuring of the global space of names 
into smaller, more meaningful units. This 
paper will show that these two extensions 
are related and can be economically 
handled by a single mechanism which is 
upward compatible and consistent with 
APL's typelessness. We will discuss a 
scheme which introduces into APL a modest 
capability for user extension of the 
available datatypes. This scheme will 
appear to the programmer much as the 
feature of abstract datatypes offered by 
current typed languages such as SIMULA, 
Smalltalk, or ADA. We do this however in 
the spirit of APL, not requiring a series 
of tiresome and redundant type 
declarations, but rather an assignment of 
types by type constructors. During the 
course of this discussion it will become 
clear how to use the same mechanism to 
obtain heirarchically structured 
namespaces. Furthermore, we do this by 
avoiding the rather unfortunate situation 
of having to mix both dynamic and static 
scope rules. These ideas will be 
incorporated into an experimental 
implementation of an Array theory 
interpreter which we are currently in the 
process of constructing. 
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Types and their Services 

At no time is the APL programmer 
forced to specify a large collection of 
tiresome type declarations specifying the 
types of various identifiers. Rather, 
type is associated with a value instead of 
an identifier--and these values are 
generated from certain type constructors, 
e.g. monadic iota for the case of 
integers; or restructured from constants 
as in 

IOp 'ABC' 

Because datatypes in APL are associated 
with values rather than with identifiers, 
we call APL dynamically typed. Languages 
in which type declarations for identifiers 
are required we call statically typed. 
ALGOL would be an example of a statically 
typed language. 

It has been said that type 
declarations are necessary to manage the 
complexity of software--but the APL 
programmer knows that in many cases this 
complexity is borne from the low level of 
most computer languages rather than any 
inherent complexity in the problem. 
Nonetheless, the point must not be 
ignored. Even APL programmers will 
encounter complexity problems if the 
programming task becomes large enough. As 
the efficiency of APL implementations 
grows and as compilers for APL become 
available we fully expect that APL will be 
used for tasks of the greatest complexity. 
Let us then examine the complexity 
management services that explicit 
datatyping purports to offer. 

Services of types 

The services of types are three: 
protection, selection, and 
summarization. Datatypes offer a 
protection service against erroneously 
applying a function which has no meaning 
on that type of data: e.g. APL's DOMAIN 
error. If we attempt to apply "+" to two 
character vectors then the typing 
mechanism causes such an error. 
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A second service that types offer is 
selection of the right definition of a 
function to apply to the arguments. The 
machine instructions for addition of two 
numbers are different for real and integer 
arguments. The type associated with the 
arguments trigger a selection of the 
proper code as well as possibly invoking a 
datatype conversion mechanism. If this 
same mechanism selects among user defined 
functions with differing definitions but 
with identical names then we may say that 
a generic function mechanism is at 
work. APL currently has this capability 
with respect to only the primitive 
datatypes built into the language. 

Finally, types--especially user 
defined types--are often used to summarize 
key properties of an identifier. This is 
a particularly effective way to mitigate 
the horrendous complexity that so often 
crops up in the use of ordinary computer 
languages. For example, let us say that 
two matrices ACCOUNTS and EMPLOYEES, are 
used to represent information in a typical 
payroll program. It would not make sense 
to apply a function HIRE to the matrix 
ACCOUNTS just as it would not make sense 
to apply a function AUDIT to EMPLOYEES. 
Now ACCOUNTS and EMPLOYEES might be arrays 
which have identical representations in 
computer memory but nonetheless typing 
reminds the programmer of the purpose of a 
particular identifier or value. Because 
we have no way of introducing user defined 
datatypes into APL this kind of activity 
is currently closed to us. 

Abstract Datatypes 

An abstract datatype facility is a 
feature which has been included in almost 
all the new statically typed languages. 
Essentially it is a way to define not only 
new datatypes but also the allowable 
functions that operate on them. This is 
the Simula CLASS construct. With each 
CLASS, the state configuration of a 
particular datatype is specified--the 
so-called data attributes of the class. 
Furthermore, the possible functions which 
can operate on that type are also 
declared--the so-called procedural 
attributes of the class. Many different 
procedures with identical names may be 
associated with different CLASSes, the 
selection service assures that the right 
procedure is selected. 

More significantly, the abstract 
datatype mechanism offers a way of 
structuring datatypes in a type hierarchy, 
in Simula this is implemented via the 
SUBCLASS concept. In a type hierarchy 
data and procedural attributes are 
inherited (and possibly synthesized--via 
VIRTUAL procedures) by a subclass from "its 
superclass. Thus any given function which 
may be applied to a class may also be 
applied to its subclasses. It has been 

said that a datatyping mechanism is only 
as good as its subtyping mechanism (Codd 
1981). We note that many new languages 
which purport to offer an abstract 
dataytype feature do not offer subtyping, 
for example ADA. 

With the abstract datatype 
mechanism, all the features and operations 
on a particular datatype are encapsulated 
in a single module, the CLASS definition, 
aka datatype declaration. Complexity is 
managed effectively by breaking up quite 
large programs into small modules each of 
which comprise the CLASS declaration 
containing the functions which act as the 
sole custodians of objects of that type. 
For example, ACCOUNTS and EMPLOYEES may be 
two CLASSes in which every function which 
manipulates them is defined. In 
particular, they may both have print 
functions which both have the name PRINT. 
PRINT ACCOUNTS and PRINT EMPLOYEES would 
in general have quite different output 
formats. This is an example of the generic 
function mechanism. 

It is controversial whether APL 
could benefit from some form of user 
definable abstract datatype mechanism. 
APL is a delicate balance of carefully 
chosen features meshing together in a 
manner which reminds one of a fine 
timepiece. The inclusion of user 
definable datatypes might spoil this 
balance. We run the real danger that 
inclusion of such a feature would add a 
hodgepodge of ad hoc conventions: a 
situation painfully familiar to the APL 
user who is unlucky enough to be forced to 
program in conventional languages! 

Our proposal sidesteps the 
fundamental question whether user 
definable datatypes are a desirable 
feature in APL. We present a mechanism in 
which much of the advantages of abstract 
datatypes accrue while doing what we hope 
is minimal violence to the structure of 
APL. In particular, we do not require the 
inclusion of any type declarations 
whatsoever. Rather, we define type 
constructor functions--like monadic 
iota--which construct new datatypes from 
old. Before we present the proposal we 
must first discuss the issue of 
namescoping. 

Namescoping and its Services 

In this discussion we distinguish 
between an identifier (or name), its 
reference (or location), and its 
value (Wegner 1971). The name is 
simply a string of characters which 
appears in the program text. A reference 
is a pointer to a particular piece of 
storage in the computer memory. A value 
is simply the value contained in the 
storage location to which the reference is 
referring. 
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The association of references to 
identifiers in languages is governed by a 
series of sometimes extremely complex 
rules, e.g. in ALGOL (Boyle and Grau 1970) 
an identifier may be a keyword whose 
denotation is independent of its context; 
or it may be a formal parameter or local 
variable whose reference is on the 
recursion stack; or in the case of PASCAL 
or PL/I it may be a field of a record in 
which case its reference is defined in the 
environment associated with the type 
declaration of the identifier it modifies. 
This service of associating references 
with identifiers is roughly analogous to 
the selection service of the typing 
mechanism. For example, in APL a local 
variable may have the same name as a 
global. All instances of that name are 
associated with the local instead of the 
global, viz. the local name shadows the 
global. Thus we say that the dynamic 
scoping rule has updated the environment 
to one which selects the local reference 
instead of the global. 

Another service offered by 
namescoping is that scoping rules hide 
irrelevant identifiers. Thus while local 
variables appear during a given function 
invocation, outside of this invocation 
they are not defined. This is a rough 
analog of the protection mechanism offered 
by types. Indeed, the ability or 
inability to name an object has been used 
in operating systems as a very effective 
protection mechanism, we mention the 
capability based systems (Fabry 1974). 

Finally, environments can be used to 
summarize the processes that occur within 
them. A workspace is a universal 
environment in which names are associated 
with functions and values. Most 
workspaces summarize the properties of 
that particular environment by including 
HOW and DESCRIBE identifiers and 
associating with them string constants. 

Downward Scoping 

The above discussion attempts to 
make a rather vague analogy between the 
action of types and the action of 
namescoping. These two mechanisms are 
generally considered to be quite 
different. There are a number of 
characteristics which differ between the 
two concepts. Environments are associated 
with a particular activation instance of a 
function while types are associated with 
values (in dynamically typed languages 
such as APL) or with references (in 
lexically typed languages). Types do not 
change during invocation of a function, 
while the process of parameter binding and 
localization are the principal mechanisms 
for modifying environments. Furthermore, 
under expression evaluation, environments 
do not change but the datatype of a value 
does. Finally, the strongest reason for 

the common belief in the distinctness of 
these two concepts is that environments 
are really runtime structures while types 
(in statically typed languages) may be 
considered to be compile time structures. 

In the world of ordinary programming 
programming languages oriented toward 
batch execution the distinction between 
compile time and run time is clear. In 
interactive languages this distinction is 
blurred The natural question in view of 
the above analogies is His the distinction 
between types and environments blurred 
also?". That is, can we fuse the 
functions of namescoping and datatyping 
into a single coherent mechanism which 
provides the services of both? The scheme 
we call downward scoping does this. 

In downward scoping we associate not 
a type but an environment with each value. 
Each environment not only may have local 
variables which may shadow global 
variables but also may have local 
functions which shadow primitive functions 
defined in the global environment through 
a scoping discipline, viz. APL's dynamic 
scoping mechanism. Thus we may think of 
environments as attached to values. This 
gives an ENVAL object which is very 
similar to the LISP FUNARG (Allen 1978) 
except that all objects and not just 
function objects are associated with 
environments. 

Let us look at a simple example. 

PRINT EMPLOYEE 
PRINT PAYCHECKS 

Here the parse tree looks like 

PRINT PRINT 

L 
EMPLOYEES ACCOUNTS 

In downward scoping the environment 
of an identifier is calculated from the 
environments passed up the parse tree. 
This is in contrast to lexical scoping in 
which the environment of an identifier 
comes from upward the parse tree, viz. a 
BEGIN END block. In Knuthian terms the 
environment associated with an identifier 
is synthesized from its subtrees (Knuth 
1968). Now with EMPLOYEE we have somehow 
associated an environment in which a local 
function PRINT is defined. Similarly in 
the environment attached to ACCOUNTS a 
different local function PRINT is defined, 
say with a different output format. How 
we set up the environments will be 
explained in the next section. Thus we 
have simulated the selection mechanism of 
types by identifier scoping. This gives 
us a generic function mechanism. 

Generic Functions by Non-standard Scopin9 174 J . T .  Kajiya 



What about the protection services? 
Let us try to evaluate the expression 

PRINT UNPRINTABLE 
where the environment attached to value of 
UNPRINTABLE has no local PRINT function 
defined in it. Then instead of getting a 
domain error, we get a syntax error: PRINT 
is an unbound identifier and most APL 
implementations assume it to be an 
array--thus we elicit a syntax error. 

Finally, summarization may be 
accomplished simply by including a 
DESCRIBE local variable in the environment 
attached to a value. So that 

DESCRIBE VAR 
will print out a description of the 
variable VAR. 

The downward scoping rule is stated 
as follows: 

The environment of a function 
identifier is determined from 
the environments of its 
arguments by the following 
procedure: Look up the 
function identifier in the 
environment attached to one of 
the two arguments which is 
most deeply nested in the 
dynamic chain. If both 
environments are equally 
nested then resolve to the 
right. 

If the function is monadic then the 
rule looks up the function definition in 
the environment attached to its single 
argument. This corresponds to the SIMULA 
or Smalltalk rule. For dyadic functions 
the Smalltalk rules always resolve to the 
left, treating the other argument as a 
parameter. In our rule we may resolve 
either way. If an argument is attached to 
an environment of nesting level 0, i.e. 
it is a global variable,then it is a 
primitive datatype. Thus when a dyadic 
function is applied to a primitive 
datatype and a nonprimitive datatype (a 
value whose attached environment is at a 
higher nesting level), then the rule 
invokes the function defined in the 
nonprimitive environment. 

Problems with APL Dynamic Namescoping. 

The dynamic scoping rules in APL are 
similar to a great many other interactive 
languages, e.g. LISP,SNOBOL. These 
languages suffer from the annoyances of 
flat namespaces. That is, environments 
cannot be effectively structured in a 
hierarchical manner using the dynamic 
scoping rule. Certainly, if an identifier 
occurs purely locally then it may be 
safely tucked away in some function. 
However, if there needs to be a 
communication between two different 
function invocations then the only way for 

those functions to communicate is via 
global variables. Furthermore, if two 
functions call a common function then the 
choice is to either define the subfunction 
a multiple number of times or, as is 
usually done, to define the function in 
the global environment. Thus, all of us 
have had the experience of loading an 
application workspace to be confro ted 
with a bewildering collection of all sorts 
of bizzare, meaningless names--names which 
denote internal functions or 
variables--that should not appear in the 
global environment. More seriously, if 
these names are not bizzare and 
meaningless then they are likely to clash 
with natural, meaningful names one has 
already chosen before loading the package. 
This name clash will then cause 
unpredictable redefinitions. Of course, 
such a clash effectively ensures that no 
two related application packages may be 
loaded in the same workspace. 

It is for these reasons that 
proposals to heirarchically structure 
namespaces is high on the top ten list for 
APL extensions (Orgass 1977). How can we 
hierarchically structure our environments 
so that use of reasonable names in 
application packages will not be punished 
by name clash? How how can we avoid the 
unnecessary proliferation of global names? 
The usual proposals include some sort of 
lexical scope mechanism. Unfortunately 
this complicates the identifier semantics 
tremendously. Instead let us look for 
solutions consistent with the practice of 
APL. We show how one can construct a 
hierarchical namespace structure with 
dynamic namescoping only. 

Setting up Hierarchical Namespaces 

Under the dynamic scope rules we are 
able to hierarchically structure 
environments in a very limited manner. The 
environment of three functions A,B, and C 
are nested within one another if they call 
each other,e.g, if A calls B which in turn 
calls C then one may picture a skinny tree 
(with branching ratio i) as the 
hierarchical structure of the 
environments. It is clear that we would 
not be able to set up any other 
structures. 

We would like at least to be able to 
structure our environments as trees. 
Since the environment scoping follows the 
call chain, this is accomplished simply by 
extending the allowable control 
structures. Thus we extend the possible 
control forms to include not only a 
function call but also a coroutine 
mechanism. The introduction of coroutines 
into a dynamic scoping discipline allows 
one to structure environments in other 
than a strict first in first out sequence. 
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In our proposal let all the current 
primitive function definitions be included 
in the BASE. The base is the control 
level at which the user normally 
interacts, viz. the interpreter. Let us 
say that the user types the expression "A 
i" then during the execution of A, the 
following environment is set up: 

base 
{ 

A 

and any expressions evaluated during the 
execution of A reference identifiers 
either defined locally or predefined in 
the base. When the function returns, the 
current environment is restored to the 
base. 

Now le% us look at an example which 
includes a coroutine. Say the user types 
an expression containing A which locally 
defines and then calls B, furthermore B, 
instead of performing a simple return, 
performs a coroutine RESUME. This gets up 
the environment shown as follows: 

base 
I 

A 
{ 

B 

Note that although B has 
relinquished control, its environment has 
not been popped from the dynamic chain. 
Function B has been suspended but its Llc 
although retained is not accessible. We 
are again at the top level of APL. Now if 
an expression which calls a function C is 
typed to the interpreter the following 
environment structure will be set up 
during the execution of function C. 

base 

I 

I { 
A C 
{ 

B 

Using the dynamic scoping discipline 
we see that B is able to access all the 
identifier definitions in A and in the 
Base, while A and C are able to reference 
only either local definitions or 
definitions in the base. A and C are not 
able to reference the locals defined in 
each other. Thus we have set up a tree of 
hierarchical definitions through the 
coroutine control structure. Note that C 
is able to call A, since the definition of 
A occurs in the base, but that C is not 
able to call B since it was locally 
defined in A. 

Using the coroutine call and resume 
mechanisms we can structure namespaces 
into any arbitrary unordered tree. 

Downward Scoping 

We attach environments to values via 
the downward scoping rule. This in 
essence is the 'type' of the data 
value--it contains a summary of all the 
relevant operations and state structure of 
that value--which may contain comments. 

Type Hierarchies: Subclassing 

Datatypes have more than a simple 
structure. They can also be 
hierarchically structured. In SIMULA this 
corresponds to the SUBCLASS construct. Let 
us examine an example of a SUBCLASS 
object. 

CLASS A .... ; 

A CLASS B .... ; 

B CLASS C .... ; 

The Proposal 

We now possess a scheme which 
accomplishes generic procedures and 
abstract datatyping mechanisms without 
imposing an artificial type structure on 
typeless languages. It does this by 
combining the notion of type with that of 
scoping environment. Basically, the 
proposal mimics the action of types by 
assigning environments to values. In 
statically typed languages types are 
explicitly declared. In abstract 
datatypes this declaration includes 
procedural attributes which express the 
allowable functions which can operate on 
the data. In this proposal the type 
declaration would be set up via the 
dynamic scoping rules of environments. We 
build up environments hierarchically 
during the execution of a type constructor 
and then attach them to the value 
calculated via the downward scoping rule. 
A coroutine RESUME is executed at the end 
of each type constructor to ensure that 
the environment of the type is retained, 
viz. the local functions and variables 
which serve as attributes of the type are 
kept. 

In this example C is a SUBCLASS of B 
which in turn is a SUBCLASS of CLASS A. 
Thus among the attributes accessible to C 
are those accessible to B. B in turn may 
define locals and inherit attributes from 
A. How is this to be accomplished in our 
dynamic scoping scheme? We cannot simply 
call the procedure defining C from B and B 
from A for although the nesting of the 
attributes would be correct by the 
standard dynamic scope rules, the global 
names would not be right. Specifically, B 
and C would not be accessible from the 
base. Thus we could not construct an 
object of type C simply because we need to 
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call A and B first. If we were to call B 
from C and A from B then the constructor 
for C would be accessible from the base 
but the scoping would be backwards--an 
attribute of class C would not be able to 
access those of A. The solution is 
contained in the following code. 

VZ~C 
VZ+SUBSUBCLASS;DATA ATTRIBUTES OF C 

VFUNCTION ATTRIBUTES OF C 
V 
SUBSUBSUBCLASS 

V 
B 

V 

VZ~B 
VZ~SUBCLASS;DATA ATTRIBUTES OF B 

VFUNCTION ATTRIBUTES OF B 
V 

SUBSUBCLASS 
V 
A 

V 

VZ~A;DATA ATTRIBUTES OF A 
VFUNCTION ATTRIBUTES OP A 
V 
SUBCZASS 

We assume in the base that there are 
defined functions named 
SUBCLASS,SUBSUBCLASS,SUBSUBSUBCLASS,etc. 
each of whose definition looks like 

VZ÷SUB .... SUBCLASS 

[3RESUME V 

Let us now follow the execution of an 
invocation of the type constructor C. 
First the function C is called and the 
following definition is set up: 

base: SUBCLASS,SUBSUBCLASS, 
SUBSUBSUBCLASS, 
SUB...SUBCLASS 

C: SUBSUBCLASS 

then C calls B and the following 
definition is set up: 

base: SUBCLASS,SUBSUBCLASS, 
I SUBSUBSUBCLASS, 
I SUB...SUBCLASS 

C: SUBSUBCLASS 
I 
B: SUBCLASS 

C then calls A to get the following 
definition: 

base: SUBCLASS,SUBSUBCLASS, 
I SUBSUBSUBCLASS, 
I SUB...SUBCLASS 

C: SUBSUBCLASS 

~: SUBCLASS 
I 
A: data attributes, 

function attributes 

A then calls SUBCLASS which defines the 
attributes for B. 

base: SUBCLASS,SUBSUBCLASS, 
I SUBSUBSUBCLASS, 

SUB...SUBCLASS 

C: SUBSUBCLASS 
I 
B: SUBCLASS 
I 
A: data attributes for A, 
I function attributes for A 

SUBCLASS: data attributes for B, 
function attributes for B 

This goes on until finally SUBSUBSUBCLASS 
is about to be called in the SUBSUBCLASS 
routine. 

base: SUBCLASS,SUBSUBCLASS, 
SUBSUBSUBCLASS, 
SUB...SUBCLASS 

C: SUBSUBCLASS 
I 
B: SUBCLASS 
I 
A: data attributes for A, 

function attributes for A 

SUBCLASS: data attributes for B, 
function attributes for B 

SUBSUBCLASS:data attributes for C, 
function attributes for C 

Finally SUBSUBSUBCLASS is called, it has 
not been shadowed by any other definition 
so the predefined function is executed. 
Thus we simply resume. So finally we are 
left with the following environment. 

.... base: SUBCLASS,SUBSUBCLASS, 
I I SUBSUBSUBCLASS, 

SUB...SUBCLASS 

* C: SUBSUBCLASS 
I 
B: SUBCLASS 

I 
A: data attributes for A, 

function attributes for A 

SUBCLASS: data attributes for B, 
I function attributes for B 

SUBSUBCLASS:data attributes for C, 
I function attributes for C 

SUBSUBSUBCLASS 

This example illustrates the 
semantics of how the subclassing mechanism 
would be set up. Syntactically, this is 
an unacceptable mode of definition. We 
leave it up to the reader to devise some 
pleasant syntax for the above actions. For 
example, Smalltalk syntax would donicely 
(Ingalls 1978). 
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Examples of Generic Functions at Work 

We now present an example of user 
definitions of generic functions. Suppose 
that the user wishes to include the 
complex numbers as an APL datatype. Using 
the current proposal the programmer would 
define the function J, which takes two 
arguments and returns a complex number. 
Here is the code for J: 

VZ~R J I 
VX4-cL x B" 
X÷(Z[I;]×RE B)-Z[2;]xIM B 
X÷X J (Z[ I ; ]xIM B)+Z[2;]×RE B 
V 

VX÷A x 
X+(Z[I;]xRE A)-Z[2; ]xIM A) 
X÷X J (Z[ I ; ]xIM A)*Z[2;]×RE Z 
V 

V X+.p 
X÷I~pZV 

VX÷RE 
X÷Z[ 1; ]V 

VX÷IM 
X÷Z[ 2 ; ]V 

VDESCRIBE 
'THIS IS A COMPLEX ARRAY' V 

-~ERRORxiI MATCH J 
Z÷(R EXPAND I)pR 
Z÷Z.[.5](R EXPAND I)pI 
SUBCLASS 

ERROR: 'SHAPE ERROR' 
V 

The above routine is written in a 
pseudo-APL syntax. The routine called J 
generates a complex_array, e.g. 

Zw-I 0 1 0 J 0 1 0 1 
generates a vector with items the four 
units of the ring of complex integers. 
Each indented function definition is 
intended to represent the dynamic 
definition of the various extended 
functions. Note that multiplication is 
defined twice, once for the left argument 
and once for the right argument. The 
shape function is also redefined to return 
only the shape vector with the first 
coordinate removed. This assures that a 
complex vector will display the correct 
shape. The functions MATCH and EXPAND are 
intended to test whether the shapes of the 
two arguments are compatible: a scalar or 
vector of length one is compatible with 
any array, otherwise they must match. 
EXPAND calculates the correct shape for 
the vectors. Also in the base we must 
define two new functions RE and IM which 
are the identity and the zero function 
respectively. This complex number example 
illustrates the generic function 
capability. The multiply and shape 
functions are redefined for complex 
objects but not for ordinary arrays in the 
base. Downward scoping keeps track of 
which function to apply. 

One should mention that the user, in 
order to get complex datatypes, must 
redefine practically all of the functions, 
plus all the operators. This illustrates 
why such comprehensive datatype extensions 
such as complex numbers and nested arrays 
are best done in the interpreter instead 
of by the user. Ordinary languages are 
able to get away with user extensions 
because relatively few primitive functions 
and no operators are defined on any given 
datatype. APL has an unusually wide set of 
functions and operators, asking the user 
to redefine them all for each 
comprehensive datatype is really not the 
right thing to do. Thus we envision the 
downward scoping scheme not as a way to 
eliminate the datatype extensions 
currently under consideration (viz. 
complex numbers (Penfield 1979) and nested 
arrays (Gull and Jenkins 1979)) but rather 
a way for the user to implement a number 
of temporary datatypes useful to manage 
his program complexity in a convenient 
way. 

Advantages/Disadvantages of Proposal 

The first disadvantage of the 
downward scoping proposal is that it is 
syntactically complicated--particularly 
for the case of type hierarchies. We leave 
it to the reader to determine what 
syntactic form should be adopted for type 
hierarchies as well as dynamic nested 
definitions of functions. 

The second disadvantage is that the 
proposal is not really a complete 
extension. Major datatype definitions such 
as complex numbers require complete 
redefinition of almost all the functions 
as well as the operators. We point out 
that any user datatype definition scheme 
will suffer from this same problem to 
varying degrees. In any language with a 
rich set of functions and operators, basic 
datatype extension is best done in the 
interpreter. APL is a delicate balance of 
carefully chosen functions that mesh well. 
Requiring user extension for basic 
datatypes results in a patchwork of 
incomplete and arbitrary restrictions. 
This can do much to spoil the beauty of 
this balance. Our proposal on the other 
hand gives us a method for making 
temporary extensions to datatypes as a 
means of handling program complexity. 
Granted, it is a weaker extension facility 
but it also has the advantage of not 
disturbing the delicate balance of 
functions and operators. 

Finally, there is a technical snag 
in the definition of the downward scoping 
rule. In APL it is impossible to tell if 
an identifier references an array or a 
defined function until its looked up in an 
environment. During the parse of an 
expression such as A F B, how does the 
interpreter know whether this is an 
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instance of a dyadic function applied to 
two arguments or two monadic functions 
succesively applied? The interpreter 
decides which case holds upon scanning F, 
according to whether F is bound to a 
dyadic or monadic function in the current 
environment. The downward scoping rule 
complicates this procedure. This is 
because the environment in which to look 
up F is not determined until the deeper of 
the two environments associated with A and 
B are determined. This causes some messy 
backtracking to occur in the 
implementation. 

There are three advantages of the 
above proposal. First, this proposal is an 
(almost) upward compatible extension. 
Almost all existing APL programs will 
execute using the downward scoping 
discipline. This is simply because all 
environments of identifiers are either in 
the base or on the top of a call chain. 
Without a way to hierarchically structure 
the environments downward scoping 
collapses to dynamic scoping. The cases 
which are not extendable are those 
functions in which local function 
definitions are made via the system 
function "FIX" (Jaffe 1979). These cases 
can be suitably isolated by a simple 
syntactic scan. 

A second advantage of this proposal 
is that the hierarchical environment 
structures handle the name clash problem 
associated with flat namespaces. Thus a 
persistent problem in APL is solved not by 
introducing an ad hoc mechanism to handle 
it but rather introducing a feature which 
adds real power to the language while 
solving the problem. 

Finally, a third advantage of this 
proposal is that the coroutine control 
mechanism is added to the language. In 
contrast to other control extension 
proposals motivated by current and past 
doctrines of structured programming, the 
coroutine mechanism has been found in 
practice to be actually useful in 
simplifying many programming tasks, 
especially a number of interactive 
programming paradigms (Lindstrom 1978). 

Conclusions 

Viewed in its most beneficial 
light a type is a characteristic of data 
which is used to disambiguate a function 
identifier associated with a function 
application. Unfortunately for most 
typeless languages this forces a type 
declaration--something which we would like 
to avoid in APL. The use of downward 
scoping enables environments to 
disambiguate function names simply through 
a scoping mechanism, which is a 
straightforward extension o~ the dynamic 
scoping discipline. 
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