
GENERIC FUNCTIONS BY NONSTANDARD NAME SCOPING IN APL

James T. Kajiya
Assistant Professor

Computer Science Department
California Institute of Technology

Pasadena, California 91125
(213) 356-6841

Abstract

We show how to acheive generic
functions as in abstract datatypes (such
as the Simula CLASS construct or ADA
Package notion) for typeless languages,
specifically APL. We do this by altering
the standard dynamic scoping of names in
APL to a scheme we call downward scoping.

Introduction

There are two features which are
often proposed as desirable extensions to
the current APL language. The first is a
capability for user extension of APL's
primitive datatypes, the second is the
structuring of the global space of names
into smaller, more meaningful units. This
paper will show that these two extensions
are related and can be economically
handled by a single mechanism which is
upward compatible and consistent with
APL's typelessness. We will discuss a
scheme which introduces into APL a modest
capability for user extension of the
available datatypes. This scheme will
appear to the programmer much as the
feature of abstract datatypes offered by
current typed languages such as SIMULA,
Smalltalk, or ADA. We do this however in
the spirit of APL, not requiring a series
of tiresome and redundant type
declarations, but rather an assignment of
types by type constructors. During the
course of this discussion it will become
clear how to use the same mechanism to
obtain heirarchically structured
namespaces. Furthermore, we do this by
avoiding the rather unfortunate situation
of having to mix both dynamic and static
scope rules. These ideas will be
incorporated into an experimental
implementation of an Array theory
interpreter which we are currently in the
process of constructing.

Permission to copy without f¢¢ all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 AC~L 0-89791-035-4/81/i000-0172 $00.75

Types and their Services

At no time is the APL programmer
forced to specify a large collection of
tiresome type declarations specifying the
types of various identifiers. Rather,
type is associated with a value instead of
an identifier--and these values are
generated from certain type constructors,
e.g. monadic iota for the case of
integers; or restructured from constants
as in

IOp 'ABC'

Because datatypes in APL are associated
with values rather than with identifiers,
we call APL dynamically typed. Languages
in which type declarations for identifiers
are required we call statically typed.
ALGOL would be an example of a statically
typed language.

It has been said that type
declarations are necessary to manage the
complexity of software--but the APL
programmer knows that in many cases this
complexity is borne from the low level of
most computer languages rather than any
inherent complexity in the problem.
Nonetheless, the point must not be
ignored. Even APL programmers will
encounter complexity problems if the
programming task becomes large enough. As
the efficiency of APL implementations
grows and as compilers for APL become
available we fully expect that APL will be
used for tasks of the greatest complexity.
Let us then examine the complexity
management services that explicit
datatyping purports to offer.

Services of types

The services of types are three:
protection, selection, and
summarization. Datatypes offer a
protection service against erroneously
applying a function which has no meaning
on that type of data: e.g. APL's DOMAIN
error. If we attempt to apply "+" to two
character vectors then the typing
mechanism causes such an error.

Generic Functions by Non-standard Scoping 172 J . T . Kajiya

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390007.805354&domain=pdf&date_stamp=1981-09-01

A second service that types offer is
selection of the right definition of a
function to apply to the arguments. The
machine instructions for addition of two
numbers are different for real and integer
arguments. The type associated with the
arguments trigger a selection of the
proper code as well as possibly invoking a
datatype conversion mechanism. If this
same mechanism selects among user defined
functions with differing definitions but
with identical names then we may say that
a generic function mechanism is at
work. APL currently has this capability
with respect to only the primitive
datatypes built into the language.

Finally, types--especially user
defined types--are often used to summarize
key properties of an identifier. This is
a particularly effective way to mitigate
the horrendous complexity that so often
crops up in the use of ordinary computer
languages. For example, let us say that
two matrices ACCOUNTS and EMPLOYEES, are
used to represent information in a typical
payroll program. It would not make sense
to apply a function HIRE to the matrix
ACCOUNTS just as it would not make sense
to apply a function AUDIT to EMPLOYEES.
Now ACCOUNTS and EMPLOYEES might be arrays
which have identical representations in
computer memory but nonetheless typing
reminds the programmer of the purpose of a
particular identifier or value. Because
we have no way of introducing user defined
datatypes into APL this kind of activity
is currently closed to us.

Abstract Datatypes

An abstract datatype facility is a
feature which has been included in almost
all the new statically typed languages.
Essentially it is a way to define not only
new datatypes but also the allowable
functions that operate on them. This is
the Simula CLASS construct. With each
CLASS, the state configuration of a
particular datatype is specified--the
so-called data attributes of the class.
Furthermore, the possible functions which
can operate on that type are also
declared--the so-called procedural
attributes of the class. Many different
procedures with identical names may be
associated with different CLASSes, the
selection service assures that the right
procedure is selected.

More significantly, the abstract
datatype mechanism offers a way of
structuring datatypes in a type hierarchy,
in Simula this is implemented via the
SUBCLASS concept. In a type hierarchy
data and procedural attributes are
inherited (and possibly synthesized--via
VIRTUAL procedures) by a subclass from "its
superclass. Thus any given function which
may be applied to a class may also be
applied to its subclasses. It has been

said that a datatyping mechanism is only
as good as its subtyping mechanism (Codd
1981). We note that many new languages
which purport to offer an abstract
dataytype feature do not offer subtyping,
for example ADA.

With the abstract datatype
mechanism, all the features and operations
on a particular datatype are encapsulated
in a single module, the CLASS definition,
aka datatype declaration. Complexity is
managed effectively by breaking up quite
large programs into small modules each of
which comprise the CLASS declaration
containing the functions which act as the
sole custodians of objects of that type.
For example, ACCOUNTS and EMPLOYEES may be
two CLASSes in which every function which
manipulates them is defined. In
particular, they may both have print
functions which both have the name PRINT.
PRINT ACCOUNTS and PRINT EMPLOYEES would
in general have quite different output
formats. This is an example of the generic
function mechanism.

It is controversial whether APL
could benefit from some form of user
definable abstract datatype mechanism.
APL is a delicate balance of carefully
chosen features meshing together in a
manner which reminds one of a fine
timepiece. The inclusion of user
definable datatypes might spoil this
balance. We run the real danger that
inclusion of such a feature would add a
hodgepodge of ad hoc conventions: a
situation painfully familiar to the APL
user who is unlucky enough to be forced to
program in conventional languages!

Our proposal sidesteps the
fundamental question whether user
definable datatypes are a desirable
feature in APL. We present a mechanism in
which much of the advantages of abstract
datatypes accrue while doing what we hope
is minimal violence to the structure of
APL. In particular, we do not require the
inclusion of any type declarations
whatsoever. Rather, we define type
constructor functions--like monadic
iota--which construct new datatypes from
old. Before we present the proposal we
must first discuss the issue of
namescoping.

Namescoping and its Services

In this discussion we distinguish
between an identifier (or name), its
reference (or location), and its
value (Wegner 1971). The name is
simply a string of characters which
appears in the program text. A reference
is a pointer to a particular piece of
storage in the computer memory. A value
is simply the value contained in the
storage location to which the reference is
referring.

J. T. Kajiya 173 Generic Functions by Non-standard Scoping

The association of references to
identifiers in languages is governed by a
series of sometimes extremely complex
rules, e.g. in ALGOL (Boyle and Grau 1970)
an identifier may be a keyword whose
denotation is independent of its context;
or it may be a formal parameter or local
variable whose reference is on the
recursion stack; or in the case of PASCAL
or PL/I it may be a field of a record in
which case its reference is defined in the
environment associated with the type
declaration of the identifier it modifies.
This service of associating references
with identifiers is roughly analogous to
the selection service of the typing
mechanism. For example, in APL a local
variable may have the same name as a
global. All instances of that name are
associated with the local instead of the
global, viz. the local name shadows the
global. Thus we say that the dynamic
scoping rule has updated the environment
to one which selects the local reference
instead of the global.

Another service offered by
namescoping is that scoping rules hide
irrelevant identifiers. Thus while local
variables appear during a given function
invocation, outside of this invocation
they are not defined. This is a rough
analog of the protection mechanism offered
by types. Indeed, the ability or
inability to name an object has been used
in operating systems as a very effective
protection mechanism, we mention the
capability based systems (Fabry 1974).

Finally, environments can be used to
summarize the processes that occur within
them. A workspace is a universal
environment in which names are associated
with functions and values. Most
workspaces summarize the properties of
that particular environment by including
HOW and DESCRIBE identifiers and
associating with them string constants.

Downward Scoping

The above discussion attempts to
make a rather vague analogy between the
action of types and the action of
namescoping. These two mechanisms are
generally considered to be quite
different. There are a number of
characteristics which differ between the
two concepts. Environments are associated
with a particular activation instance of a
function while types are associated with
values (in dynamically typed languages
such as APL) or with references (in
lexically typed languages). Types do not
change during invocation of a function,
while the process of parameter binding and
localization are the principal mechanisms
for modifying environments. Furthermore,
under expression evaluation, environments
do not change but the datatype of a value
does. Finally, the strongest reason for

the common belief in the distinctness of
these two concepts is that environments
are really runtime structures while types
(in statically typed languages) may be
considered to be compile time structures.

In the world of ordinary programming
programming languages oriented toward
batch execution the distinction between
compile time and run time is clear. In
interactive languages this distinction is
blurred The natural question in view of
the above analogies is His the distinction
between types and environments blurred
also?". That is, can we fuse the
functions of namescoping and datatyping
into a single coherent mechanism which
provides the services of both? The scheme
we call downward scoping does this.

In downward scoping we associate not
a type but an environment with each value.
Each environment not only may have local
variables which may shadow global
variables but also may have local
functions which shadow primitive functions
defined in the global environment through
a scoping discipline, viz. APL's dynamic
scoping mechanism. Thus we may think of
environments as attached to values. This
gives an ENVAL object which is very
similar to the LISP FUNARG (Allen 1978)
except that all objects and not just
function objects are associated with
environments.

Let us look at a simple example.

PRINT EMPLOYEE
PRINT PAYCHECKS

Here the parse tree looks like

PRINT PRINT

L
EMPLOYEES ACCOUNTS

In downward scoping the environment
of an identifier is calculated from the
environments passed up the parse tree.
This is in contrast to lexical scoping in
which the environment of an identifier
comes from upward the parse tree, viz. a
BEGIN END block. In Knuthian terms the
environment associated with an identifier
is synthesized from its subtrees (Knuth
1968). Now with EMPLOYEE we have somehow
associated an environment in which a local
function PRINT is defined. Similarly in
the environment attached to ACCOUNTS a
different local function PRINT is defined,
say with a different output format. How
we set up the environments will be
explained in the next section. Thus we
have simulated the selection mechanism of
types by identifier scoping. This gives
us a generic function mechanism.

Generic Functions by Non-standard Scopin9 174 J . T . Kajiya

What about the protection services?
Let us try to evaluate the expression

PRINT UNPRINTABLE
where the environment attached to value of
UNPRINTABLE has no local PRINT function
defined in it. Then instead of getting a
domain error, we get a syntax error: PRINT
is an unbound identifier and most APL
implementations assume it to be an
array--thus we elicit a syntax error.

Finally, summarization may be
accomplished simply by including a
DESCRIBE local variable in the environment
attached to a value. So that

DESCRIBE VAR
will print out a description of the
variable VAR.

The downward scoping rule is stated
as follows:

The environment of a function
identifier is determined from
the environments of its
arguments by the following
procedure: Look up the
function identifier in the
environment attached to one of
the two arguments which is
most deeply nested in the
dynamic chain. If both
environments are equally
nested then resolve to the
right.

If the function is monadic then the
rule looks up the function definition in
the environment attached to its single
argument. This corresponds to the SIMULA
or Smalltalk rule. For dyadic functions
the Smalltalk rules always resolve to the
left, treating the other argument as a
parameter. In our rule we may resolve
either way. If an argument is attached to
an environment of nesting level 0, i.e.
it is a global variable,then it is a
primitive datatype. Thus when a dyadic
function is applied to a primitive
datatype and a nonprimitive datatype (a
value whose attached environment is at a
higher nesting level), then the rule
invokes the function defined in the
nonprimitive environment.

Problems with APL Dynamic Namescoping.

The dynamic scoping rules in APL are
similar to a great many other interactive
languages, e.g. LISP,SNOBOL. These
languages suffer from the annoyances of
flat namespaces. That is, environments
cannot be effectively structured in a
hierarchical manner using the dynamic
scoping rule. Certainly, if an identifier
occurs purely locally then it may be
safely tucked away in some function.
However, if there needs to be a
communication between two different
function invocations then the only way for

those functions to communicate is via
global variables. Furthermore, if two
functions call a common function then the
choice is to either define the subfunction
a multiple number of times or, as is
usually done, to define the function in
the global environment. Thus, all of us
have had the experience of loading an
application workspace to be confro ted
with a bewildering collection of all sorts
of bizzare, meaningless names--names which
denote internal functions or
variables--that should not appear in the
global environment. More seriously, if
these names are not bizzare and
meaningless then they are likely to clash
with natural, meaningful names one has
already chosen before loading the package.
This name clash will then cause
unpredictable redefinitions. Of course,
such a clash effectively ensures that no
two related application packages may be
loaded in the same workspace.

It is for these reasons that
proposals to heirarchically structure
namespaces is high on the top ten list for
APL extensions (Orgass 1977). How can we
hierarchically structure our environments
so that use of reasonable names in
application packages will not be punished
by name clash? How how can we avoid the
unnecessary proliferation of global names?
The usual proposals include some sort of
lexical scope mechanism. Unfortunately
this complicates the identifier semantics
tremendously. Instead let us look for
solutions consistent with the practice of
APL. We show how one can construct a
hierarchical namespace structure with
dynamic namescoping only.

Setting up Hierarchical Namespaces

Under the dynamic scope rules we are
able to hierarchically structure
environments in a very limited manner. The
environment of three functions A,B, and C
are nested within one another if they call
each other,e.g, if A calls B which in turn
calls C then one may picture a skinny tree
(with branching ratio i) as the
hierarchical structure of the
environments. It is clear that we would
not be able to set up any other
structures.

We would like at least to be able to
structure our environments as trees.
Since the environment scoping follows the
call chain, this is accomplished simply by
extending the allowable control
structures. Thus we extend the possible
control forms to include not only a
function call but also a coroutine
mechanism. The introduction of coroutines
into a dynamic scoping discipline allows
one to structure environments in other
than a strict first in first out sequence.

J. T. Kajiya 175 Generic Functions by Non-standard Scoping

In our proposal let all the current
primitive function definitions be included
in the BASE. The base is the control
level at which the user normally
interacts, viz. the interpreter. Let us
say that the user types the expression "A
i" then during the execution of A, the
following environment is set up:

base
{

A

and any expressions evaluated during the
execution of A reference identifiers
either defined locally or predefined in
the base. When the function returns, the
current environment is restored to the
base.

Now le% us look at an example which
includes a coroutine. Say the user types
an expression containing A which locally
defines and then calls B, furthermore B,
instead of performing a simple return,
performs a coroutine RESUME. This gets up
the environment shown as follows:

base
I

A
{

B

Note that although B has
relinquished control, its environment has
not been popped from the dynamic chain.
Function B has been suspended but its Llc
although retained is not accessible. We
are again at the top level of APL. Now if
an expression which calls a function C is
typed to the interpreter the following
environment structure will be set up
during the execution of function C.

base

I

I {
A C
{

B

Using the dynamic scoping discipline
we see that B is able to access all the
identifier definitions in A and in the
Base, while A and C are able to reference
only either local definitions or
definitions in the base. A and C are not
able to reference the locals defined in
each other. Thus we have set up a tree of
hierarchical definitions through the
coroutine control structure. Note that C
is able to call A, since the definition of
A occurs in the base, but that C is not
able to call B since it was locally
defined in A.

Using the coroutine call and resume
mechanisms we can structure namespaces
into any arbitrary unordered tree.

Downward Scoping

We attach environments to values via
the downward scoping rule. This in
essence is the 'type' of the data
value--it contains a summary of all the
relevant operations and state structure of
that value--which may contain comments.

Type Hierarchies: Subclassing

Datatypes have more than a simple
structure. They can also be
hierarchically structured. In SIMULA this
corresponds to the SUBCLASS construct. Let
us examine an example of a SUBCLASS
object.

CLASS A ;

A CLASS B ;

B CLASS C ;

The Proposal

We now possess a scheme which
accomplishes generic procedures and
abstract datatyping mechanisms without
imposing an artificial type structure on
typeless languages. It does this by
combining the notion of type with that of
scoping environment. Basically, the
proposal mimics the action of types by
assigning environments to values. In
statically typed languages types are
explicitly declared. In abstract
datatypes this declaration includes
procedural attributes which express the
allowable functions which can operate on
the data. In this proposal the type
declaration would be set up via the
dynamic scoping rules of environments. We
build up environments hierarchically
during the execution of a type constructor
and then attach them to the value
calculated via the downward scoping rule.
A coroutine RESUME is executed at the end
of each type constructor to ensure that
the environment of the type is retained,
viz. the local functions and variables
which serve as attributes of the type are
kept.

In this example C is a SUBCLASS of B
which in turn is a SUBCLASS of CLASS A.
Thus among the attributes accessible to C
are those accessible to B. B in turn may
define locals and inherit attributes from
A. How is this to be accomplished in our
dynamic scoping scheme? We cannot simply
call the procedure defining C from B and B
from A for although the nesting of the
attributes would be correct by the
standard dynamic scope rules, the global
names would not be right. Specifically, B
and C would not be accessible from the
base. Thus we could not construct an
object of type C simply because we need to

Generic Functions by Non-standard Scoping 176 J .T . Kajiya

call A and B first. If we were to call B
from C and A from B then the constructor
for C would be accessible from the base
but the scoping would be backwards--an
attribute of class C would not be able to
access those of A. The solution is
contained in the following code.

VZ~C
VZ+SUBSUBCLASS;DATA ATTRIBUTES OF C

VFUNCTION ATTRIBUTES OF C
V
SUBSUBSUBCLASS

V
B

V

VZ~B
VZ~SUBCLASS;DATA ATTRIBUTES OF B

VFUNCTION ATTRIBUTES OF B
V

SUBSUBCLASS
V
A

V

VZ~A;DATA ATTRIBUTES OF A
VFUNCTION ATTRIBUTES OP A
V
SUBCZASS

We assume in the base that there are
defined functions named
SUBCLASS,SUBSUBCLASS,SUBSUBSUBCLASS,etc.
each of whose definition looks like

VZ÷SUB SUBCLASS

[3RESUME V

Let us now follow the execution of an
invocation of the type constructor C.
First the function C is called and the
following definition is set up:

base: SUBCLASS,SUBSUBCLASS,
SUBSUBSUBCLASS,
SUB...SUBCLASS

C: SUBSUBCLASS

then C calls B and the following
definition is set up:

base: SUBCLASS,SUBSUBCLASS,
I SUBSUBSUBCLASS,
I SUB...SUBCLASS

C: SUBSUBCLASS
I
B: SUBCLASS

C then calls A to get the following
definition:

base: SUBCLASS,SUBSUBCLASS,
I SUBSUBSUBCLASS,
I SUB...SUBCLASS

C: SUBSUBCLASS

~: SUBCLASS
I
A: data attributes,

function attributes

A then calls SUBCLASS which defines the
attributes for B.

base: SUBCLASS,SUBSUBCLASS,
I SUBSUBSUBCLASS,

SUB...SUBCLASS

C: SUBSUBCLASS
I
B: SUBCLASS
I
A: data attributes for A,
I function attributes for A

SUBCLASS: data attributes for B,
function attributes for B

This goes on until finally SUBSUBSUBCLASS
is about to be called in the SUBSUBCLASS
routine.

base: SUBCLASS,SUBSUBCLASS,
SUBSUBSUBCLASS,
SUB...SUBCLASS

C: SUBSUBCLASS
I
B: SUBCLASS
I
A: data attributes for A,

function attributes for A

SUBCLASS: data attributes for B,
function attributes for B

SUBSUBCLASS:data attributes for C,
function attributes for C

Finally SUBSUBSUBCLASS is called, it has
not been shadowed by any other definition
so the predefined function is executed.
Thus we simply resume. So finally we are
left with the following environment.

.... base: SUBCLASS,SUBSUBCLASS,
I I SUBSUBSUBCLASS,

SUB...SUBCLASS

* C: SUBSUBCLASS
I
B: SUBCLASS

I
A: data attributes for A,

function attributes for A

SUBCLASS: data attributes for B,
I function attributes for B

SUBSUBCLASS:data attributes for C,
I function attributes for C

SUBSUBSUBCLASS

This example illustrates the
semantics of how the subclassing mechanism
would be set up. Syntactically, this is
an unacceptable mode of definition. We
leave it up to the reader to devise some
pleasant syntax for the above actions. For
example, Smalltalk syntax would donicely
(Ingalls 1978).

J. T. Kajiya 177 Generic Functions by Non-standard Scoping

Examples of Generic Functions at Work

We now present an example of user
definitions of generic functions. Suppose
that the user wishes to include the
complex numbers as an APL datatype. Using
the current proposal the programmer would
define the function J, which takes two
arguments and returns a complex number.
Here is the code for J:

VZ~R J I
VX4-cL x B"
X÷(Z[I;]×RE B)-Z[2;]xIM B
X÷X J (Z[I ;]xIM B)+Z[2;]×RE B
V

VX÷A x
X+(Z[I;]xRE A)-Z[2;]xIM A)
X÷X J (Z[I ;]xIM A)*Z[2;]×RE Z
V

V X+.p
X÷I~pZV

VX÷RE
X÷Z[1;]V

VX÷IM
X÷Z[2 ;]V

VDESCRIBE
'THIS IS A COMPLEX ARRAY' V

-~ERRORxiI MATCH J
Z÷(R EXPAND I)pR
Z÷Z.[.5](R EXPAND I)pI
SUBCLASS

ERROR: 'SHAPE ERROR'
V

The above routine is written in a
pseudo-APL syntax. The routine called J
generates a complex_array, e.g.

Zw-I 0 1 0 J 0 1 0 1
generates a vector with items the four
units of the ring of complex integers.
Each indented function definition is
intended to represent the dynamic
definition of the various extended
functions. Note that multiplication is
defined twice, once for the left argument
and once for the right argument. The
shape function is also redefined to return
only the shape vector with the first
coordinate removed. This assures that a
complex vector will display the correct
shape. The functions MATCH and EXPAND are
intended to test whether the shapes of the
two arguments are compatible: a scalar or
vector of length one is compatible with
any array, otherwise they must match.
EXPAND calculates the correct shape for
the vectors. Also in the base we must
define two new functions RE and IM which
are the identity and the zero function
respectively. This complex number example
illustrates the generic function
capability. The multiply and shape
functions are redefined for complex
objects but not for ordinary arrays in the
base. Downward scoping keeps track of
which function to apply.

One should mention that the user, in
order to get complex datatypes, must
redefine practically all of the functions,
plus all the operators. This illustrates
why such comprehensive datatype extensions
such as complex numbers and nested arrays
are best done in the interpreter instead
of by the user. Ordinary languages are
able to get away with user extensions
because relatively few primitive functions
and no operators are defined on any given
datatype. APL has an unusually wide set of
functions and operators, asking the user
to redefine them all for each
comprehensive datatype is really not the
right thing to do. Thus we envision the
downward scoping scheme not as a way to
eliminate the datatype extensions
currently under consideration (viz.
complex numbers (Penfield 1979) and nested
arrays (Gull and Jenkins 1979)) but rather
a way for the user to implement a number
of temporary datatypes useful to manage
his program complexity in a convenient
way.

Advantages/Disadvantages of Proposal

The first disadvantage of the
downward scoping proposal is that it is
syntactically complicated--particularly
for the case of type hierarchies. We leave
it to the reader to determine what
syntactic form should be adopted for type
hierarchies as well as dynamic nested
definitions of functions.

The second disadvantage is that the
proposal is not really a complete
extension. Major datatype definitions such
as complex numbers require complete
redefinition of almost all the functions
as well as the operators. We point out
that any user datatype definition scheme
will suffer from this same problem to
varying degrees. In any language with a
rich set of functions and operators, basic
datatype extension is best done in the
interpreter. APL is a delicate balance of
carefully chosen functions that mesh well.
Requiring user extension for basic
datatypes results in a patchwork of
incomplete and arbitrary restrictions.
This can do much to spoil the beauty of
this balance. Our proposal on the other
hand gives us a method for making
temporary extensions to datatypes as a
means of handling program complexity.
Granted, it is a weaker extension facility
but it also has the advantage of not
disturbing the delicate balance of
functions and operators.

Finally, there is a technical snag
in the definition of the downward scoping
rule. In APL it is impossible to tell if
an identifier references an array or a
defined function until its looked up in an
environment. During the parse of an
expression such as A F B, how does the
interpreter know whether this is an

Generic Functions by Non-standard Scoping 178 J . T . Kajiya

instance of a dyadic function applied to
two arguments or two monadic functions
succesively applied? The interpreter
decides which case holds upon scanning F,
according to whether F is bound to a
dyadic or monadic function in the current
environment. The downward scoping rule
complicates this procedure. This is
because the environment in which to look
up F is not determined until the deeper of
the two environments associated with A and
B are determined. This causes some messy
backtracking to occur in the
implementation.

There are three advantages of the
above proposal. First, this proposal is an
(almost) upward compatible extension.
Almost all existing APL programs will
execute using the downward scoping
discipline. This is simply because all
environments of identifiers are either in
the base or on the top of a call chain.
Without a way to hierarchically structure
the environments downward scoping
collapses to dynamic scoping. The cases
which are not extendable are those
functions in which local function
definitions are made via the system
function "FIX" (Jaffe 1979). These cases
can be suitably isolated by a simple
syntactic scan.

A second advantage of this proposal
is that the hierarchical environment
structures handle the name clash problem
associated with flat namespaces. Thus a
persistent problem in APL is solved not by
introducing an ad hoc mechanism to handle
it but rather introducing a feature which
adds real power to the language while
solving the problem.

Finally, a third advantage of this
proposal is that the coroutine control
mechanism is added to the language. In
contrast to other control extension
proposals motivated by current and past
doctrines of structured programming, the
coroutine mechanism has been found in
practice to be actually useful in
simplifying many programming tasks,
especially a number of interactive
programming paradigms (Lindstrom 1978).

Conclusions

Viewed in its most beneficial
light a type is a characteristic of data
which is used to disambiguate a function
identifier associated with a function
application. Unfortunately for most
typeless languages this forces a type
declaration--something which we would like
to avoid in APL. The use of downward
scoping enables environments to
disambiguate function names simply through
a scoping mechanism, which is a
straightforward extension o~ the dynamic
scoping discipline.

References

J. Allen (1978) Anatomy of Lisp,
McGraw-Hill, New York.

J.M. Boyle and A.A. Grau (1970) "An
Algorithmic Semantics for ALGOL 60
Identifier Denotation" J. ACM v.17,No.2
April 1970, pp.361-382.

E.F. Codd (1981) "The notion of type in
databases" Proceedings of the workshop on
data abstraction, databases and conceptual
modelling. Pingree Park, Colorado June
23-26, 1980. SIGPLAN Notices v.16, No.l
p.47.

R.S. Fabry (1974) "Capability based
addressing" Comm. of the ACM v.17, No.7,
pp. 403-412.

W.E. Gull and M.A. Jenkins (1979)
"Recursive Data Structures in APL" CACM
v.22, No. 2, pp. 79-96.

S.B. Jaffe (1979) "Applications of Local
Functions in APL" Quote Quad v.10, No. 2,
pp.26-29.

D.H. Ingalls (1978) "The Smalltalk-76
Programming System: Design and
Implementation" Conference Record of the
Fifth Annual ACM Symposium on Principles
of Programming Languages, Tucson, Arizona,
pp.9-16.

D.E. Knuth (1968) "Semantics of Context
Free Languages" Math. Systems Theory v.2,
No.2, pp.127-145.

G. Lindstrom (1978) "Control Structure
Aptness: a case study using top-down
parsing" Conf. Software Eng., Atlanta,
Ga., pp.5-12.

P. Penfield Jr. (1979) "Proposal for a
Complex APL" APL79 Conference Proceedings,
Rochester, New York, Quote Quad v.9, No.
4-Part I. pp.47-53.

R. J. Orgass (1977) "The iE6?IE6 APL
Workshop: another view" Quote Quad v.8,
No.2, pp.8-11.

G.M. Seeds, A. Arpin, and M. LaBarre
(1978) "Name Scope Control in APL Defined
Functions" Quote Quad v.8, No. 9, June
1978, pp. 15-19.

P. Wegner (1971) "Data Structure Models
for Programming Languages" Proc. Symp. on
Data Structures in Programming Languages,
SIGPLAN Notices v.6, No.2, pp.l-54.

d. T. Kajiya 179 Generic Functions by Non-standard Scopin 9

