
A STRUCTURED APL APPROACH TO
COMPUTER AIDED INSTRUCTION

Wilbur R. LePage
Department of Electrical and Computer Engineering

Syracuse University
Syracuse, N.Y. 13210

315-423-4377

Abstract

The APL-based system for Computer
Aided Instruction described in this paper
is presented as a general purpose system
having interest in its own right, and also
as an illustration of a "structured"
approach to the solution of a relatively
complex computing problem. The system
meets the more or less mandatory requirement
that neither the student user nor the
teacher who creates the CAI instructional
material should be required to know APL; but
the main features are the ease with which a
CAI lesson can be created, edited, and
modified by a teacher, the "transparency"
of the APL system with respect to a student
user, and a "modular" design which permits
modifications of the system to be made
easily. A student employs only one APL
function, and there are four functions used
in writing the text. Also, in files there
are related sets of permanent control
functions, and functions and variables
related to the text material, which exist
in the active workspace only while the
system is in use. The system includes a
capability for monitoring the progress of
students.

Introduction

The work described in this paper
evolved as a result of the need for
supplementary instruction in an APL-based
problem solving course in engineering.
Because of the problem solving orientation,
and the reasonably high level of APL
involved, there was no desire to use CAI
for the entire course. However, the
delegation of certain aspects to CAI, such
as workspace management and function
editing, seemed to be a time saving

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01981 ACM 0-89791-035-4/81/I000-0181 $00.75

possibility. It was further recognized
that the system should be easy to use and
highly flexible, that the teacher would not
have much time for "writing" lessons, and
that with the gaining of experience there
would be frequent occasions for revising
the CAI material. This context is mentioned
with the thought that there might be similar
applications in other subject areas.

Many of the principles incorporated in
this system have been recognized previously 1
but some were difficult or impossible to
attain on earlier APL systems. The
realization described here is on an I.P.
Sharp system and employs files, error
trapping, and packages. These make it
possible for a student's active workspace
to remain free of all objects other than
the one function employed to initiate a
lesson, except during execution of that
function, and for APL error reports to be
suppressed. A file capability is an
absolutely minimum requirement.

A considerable amount of sophisticated
programming is involved, particularly in
the function for checking student answers
according to various criteria, but for the
most part standard idioms are used, and so
the details of the functions are omitted.
Emphasis is on the design of the system
and specifications of required properties
of the functions.

Overall Design Criteria

The design criteria outlined below
stem from a consideration of the process
of learning, modified by compromises which
are necessary to keep the complexity of
the system within reasonable bounds.

(a)Very little knowledge of APL should be
required of the student and the teacher
who writes the CAI text material. For
the student the only requirement should
be an ability to sign on, load a
workspace, and execute one prepared
function. The teacher should be required
only to be able to use a few prepared
functions, and catenation, for the
purpose of composing and editing the text
material.

W. R. Le Page 181 Computer Aided Instruction

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800142.805356&domain=pdf&date_stamp=1981-09-01

(b)The CAI programs should provide optional
branching to remedial material in the
event of a wrong answer (with an optional
remedial question), but such branching
should not be selective in accordance
with the nature of a wrong answer.
Furthermore, the teacher should not be
required to write explicit branching
statements.

(c)The CAI text material should be organized
into groups of "lessons," each having an
appropriate length for one learning
session. Furthermore, particularly for
the convenience of the person who writes
the text, each lesson should be composed
of a set of numbered "sections" to be
executed sequentially by a student. In
general, a section should deal with
closely related topics, but with the
possibility of including more than one
statement of information and question,
and optional remedial material associated
with each question. It should be
possible for the teacher to schedule an
interruption of the normal sequencing of
sections, for example, at a point where
a student is expected to do some original
experimenting on the computer.

(d)There should be a facility for revising
individual sections, removing them
completely, or adding new ones without
disturbing the others.

(e)A simple method should be provided
whereby the writer of the text material
can specify how student answers should
be compared with predetermined standard
answers (check for complete identity,
search for one or more keywords, ignore
punctuation marks and extra spaces or
not, etc.).

(f)A student should be able to use the
system either by loading his or her own
library workspace (which will contain a
previously copied function) or by loading
a workspace from another number.
Provision should be made for the
automatic reloading of the pertinent
workspace whenever there is a return to
the immediate execution mode: when the
lesson sequence is completed, a scheduled
interruption occurs at the end of one of
the sections, an error is trapped, or the
student terminates the lesson prematurely
(see item h below).

(g)There should be a central record of
student progress on each lesson, and if
desired a list of cutoff dates beyond
which a student would not receive credit.
This record would provide information
for grading (if desired) and would
include control values for each student,
to provide restarting a previously
uncompleted lesson at the proper section.

(h)A student should be able to terminate a
lesson at any point where a response is

called for, by typing STOP. Whenever
there is an action terminating a lesson,
a student should receive an intelligible
message concerning the computer's
updating of records. The CAI system
should be inoperable if a student's
workspace condition is not proper (there
is a suspended function, the user number
is not valid for operating the CAI
system, etc.), and an appropriate
message should describe the difficulty.
A student should be permitted to do a
lesson even if the cutoff date is past,
but not for credit, and should also be
permitted to do the lesson repeatedly
after credit has been received, with the
option of selecting particular section
numbers (as might be convenient for
review).

Example of Operation

The following print-out is a contrived
lesson designed to illustrate some features
of the system rather than for educational
content. It consists of only one numbered
section. It is assumed that a library
workspace which contains the function LESSON
has been loaded. Simulated student
responses, which follow three dots, are
correct for all questions.

LESSON 6
i) IF YOU HAVE EXECUTED THE STATEMENTS

D÷5
E÷8

AND THEN EXECUTE
W÷D+E

GIVE THE NUMERIC VALUE OF THE ARGUMENT ON
THE RIGHT OF +...8
CORRECT
WHAT DOES THE STATEMENT ABOVE DO TO THE
VARIABLE W?...ASSIGNS IT A VALUE
CORRECT
REWRITE THE STATEMENT

2+D×E
$0 THAT 2 PLUS THE VALUE OF D WILL
MULTIPLY THE VALUE OF E...(2 + D) × E
CORRECT
FOR A STATEMENT WITH MORE THAN ONE
FUNCTION AND NO PARENTHESES, THE EFFECTIVE
ARGUMENT ON THE RIGHT OF ANY ONE OF THE
FUNCTIONS IS (COMPLETE THE SENTENCE)
...RESULT OF EVERYTHING TO ITS RIGHT
CORRECT

CONGRATULATIONS: THE FACT THAT YOU HAVE
COMPLETED LESSON 6

HAS BEEN RECORDED. YOU DO NOT NEED TO DO
IT AGAIN.

The answers shown are not the only
ones acceptable. For example, in the
third question Ex2+D would also be
appraised as "correct" (any correct
possibility is recognized). The means
for dealing with alternative correct
answers are discussed later. Also, the
third question demonstrates a case where
extra spaces are ignored; (2+D)×E is
acceptable.

Computer Aided Instruction 182 W.R. Le Page

Some of the answer-checking
possibilities are illustrated by the
printout shown below, in which all questions
are answered incorrectly. Observe the
remedial statement and additional question
following the first incorrect answer,
material that does not appear in the first
printout.

LESSON 6
I) IF YOU HAVE EXECUTED THE STATEMENTS

D+5
E÷8

AND THEN EXECUTE
W÷D+E

GIVE THE NUMERIC VALUE OF THE ARGUMENT ON
THE RIGHT OF +...E
WRONG: THE CORRECT ANSWER IS 8
VARIABLE E IS ON THE RIGHT OF + AND
HAS BEEN ASSIGNED THE VALUE 8.
GIVE THE NUMERIC VALUE OF THE ARGUMENT ON
THE LEFT OF +...
WRONG: THE CORRECT ANSWER IS 5
WHAT DOES THE STATEMENT ABOVE DO TO THE
VARIABLE W?...NAMES IT
WRONG. TRY AGAIN...GIVES IT A NUMBER
GIVE UP: THE KEYWORD IS SPECIFIES
REWRITE THE STATEMENT

2+DxE
$0 THAT 2 PLUS THE VALUE OF D WILL
MULTIPLY THE VALUE OF E...2+(DxE)
WRONG. TRY AGAIN...(2+DxE)
GIVE UP: THE CORRECT ANSWER IS (2+D)xE
FOR A STATEMENT WITH MORE THAN ONE
FUNCTION AND NO PARENTHESES. THE EFFECTIVE
ARGUMENT ON THE RIGHT OF ANY ONE OF THE
FUNCTIONS IS (COMPLETE THE SENTENCE)
°..THE PART TO THE RIGHT
WRONG: THE KEYWORDS ARE: VALUE RIGHT

Attention is called to the provision
for second tries in some instances, and
the use of keywords in two cases. Where
it is appropriate, alternative keywords
are supplied in the standard answers. All
words in the student's response except
keywords are ignored. For example, in
the question concerning what W÷D+E does to
W, the keywords stored as the standard are:
SPECIFIES, SPECIFIED, ASSIGNS, and ASSIGNED.
Thus, some examples of answers that will
be accepted as "correct" are

SPECIFIES IT
IT IS SPECIFIED
ASSIGNS A VALUE TO W
W IS ASSIGNED A VALUE

Details of how alternative keywords are
arranged in array structures, and how such
structures are employed in checking student
answers are given later.

The APL Functions for Presenting a Lesson

A student must load a workspace
containing the function LESSON, from an
appropriate library. Other functions are
created automatically from file storage,
and remain temporarily in the student's
active workspace only while the system is

running. The main features of the functions
are described in the following:

LESSON

This is a monadic function, taking the
lesson number as its argument. It performs
the following tasks:

(a)Set traps for exiting the function if
there is an error or interruption.

(b)Tie files of student records,
subfunctions, and variables (4 files).
Read files and fix functions.

(c)Make several checks of operating
conditions, such as: validity of
student's user number and whether there
are suspended functions in the active
workspace. If the conditions are not
proper, display an appropriate message,
terminate the operation, and reload the
workspace.

(d)Check whether the deadline date for
doing the lesson is past, and check a
control variable to determine whether
the student has previously done the
lesson. If the result of either check
is affirmative, display an explanatory
message (including "not for credit," if
the deadline is past) and give the
student an option (by answering YES or
NO to a query) as to whether to continue.
If the answer is NO, terminate the
operation; if it is YES, ask the student
for the desired starting section number.
Set a control variable for the section
number, at the number designated by
the student if the lesson is late or a
repeat, otherwise at i.

(e)Execute the subfunction LESRUN.

Each lesson is represented in files by
two packages. One package consists of a set
of what we shall call "section functions"
(having names A~I, A~2, etc.), and the
other package consists of a set of "section
variables" (named AM~I, A~2, etc.). One
section function and its corresponding
section variable contain all the information
pertinent to the section having the same
number as the suffix on the names. Control
information is shared by a section function
and its corresponding section variable, and
the text material is in the variable.
Examples for the material illustrated
previously are as follows:

V A~i
/1] MAI÷'8'
/2] RAI÷'5'
[3] MA2÷'SPECIFIESIASSIGNSIASSIGNEDI'
[4] MA2÷FXA MA2,vSPECIFIED'
[5] MA3÷'(2+D)xEI(D+2)×EIEx2+DIExD+21'
[6] MA3÷FXA MA3, tEx(2+D)IEx(D+2)'
[7] MA4÷FXA'VALUEIRIGHTIIRESULTXRIGHT'
[8] 1 0 CTRL 7 1 I 2 S 2 3 1

W. R. Le Page 183 Computer Aided Inst ruct ion

~ 1
IF YOU HAVE EXECUTED THE STATEMENTS

D÷5
E÷8

AND THEN EXECUTE
W÷D+E

GIVE THE NUMERIC VALUE OF THE ARGUMENT ON
THE RIGHT OF +...
e VARIABLE E IS ON THE RIGHT OF + AND
HAS BEEN ASSIGNED THE VALUE 8.
GIVE THE NUMERIC VALUE OF THE ARGUMENT ON
THE LEFT OF +...
oWHAT DOES THE STATEMENT ABOVE DO TO THE
VARIABLE W?...
°REWRITE THE STATEMENT

2+DxE
SO THAT 2 PLUS THE VALUE OF D WILL
MULTIPLY THE VALUE OF E...
oFOR A STATEMENT WITH MORE THAN ONE
FUNCTION AND NO PARENTHESES, THE EFFECTIVE
ARGUMENT ON THE RIGHT OF ANY ONE OF THE
FUNCTIONS IS (COMPLETE THE SENTENCE)

, o .

A section function such as A~F1
carries specifications of standard
answers, in terms of "answer variables"
MAi, MA2, etc., and RA1. Those beginning
with M are answers to main (primary)
questions, those beginning with R are
answers to remedial questions. The
function FXA appearing within ~I
converts its vector argument to an array
of alternative correct answers or keywords
in accordance with the locations of the
separator symbol I (I-beam symbol). FXA
is effectively equivalent to the reshape
function, but does not require the
inclusion of filler spaces in its argument.
If one does not mind counting characters,
reshape can be used instead. Further
details about FXA and how answer
variables are structured are given later.
Those produced by FXA in A~I are

MA2
SPECIFIES
ASSIGNS
ASSIGNED
SPECIFIED

MA3
(2+D)×E
(D+2)×E
Ex2+D
E×D+2
Ex(2+D)
E×(D+2)

MA4
VALUE
RIGHT

RESULT
RIGHT

A section variable such as ~1
contains one or more items of primary
instructional text and questions, and
optional items of remedial material.
Primary text material is identified by a

control symbol o at the beginning of the
first line of each item except the first.
A remedial item is always identified by
the control symbol • at the beginning of
the first line. (In the present system,
two ® symbols cannot appear in sequence
without an intervening o symbol.) These
control symbols are suppressed when the
text is presented to a student.

The section and answer variables are
global to the control function CTRL, which
is executed at the end of a section
function. The left-hand argument of CTRL
has two elements: the first is the section
number, the second is 0 if the corresponding
section is the last one in the lesson, or
999 if the lesson continues but there is a
planned return to the immediate execution
mode (as when the student is instructed to
originate some APL operations), or
otherwise I.

The right-hand argument of CTRL
consists of one pair of nonnegative
integers for each main question. The
first integer of a pair is a specification
of the mode (described later) to be used
by the computer in checking a student's
answer against the standard answer, and
the second integer indicates the number of
tries a student should be allowed on the
question. The specification for a remedial
question is not included explicitly; by
implication it is the same as for the main
question to which it relates.

Functions LESRUN, FXA, CTRL, and
CHECK (and some other subfunctions) are
created from the files when LESSON is
executed. The main tasks performed by
these are as described below.

LESRUN

(a) Read the value of a control variable K
from a file; the number of the last
section completed, and other control
information.

(b) Execute

until the second element of the
left-hand argument of CTRL in the
current section function is 0 or 999,
or the student signals STOP.

(c)Update the files with new information
about the student's progress, including
the time of day and date.

(d)Print an appropriate message to the
student regarding conditions Of the
termination.

FXA

(a) If the argument contains no I symbol
(except possibly at the end), return
the value of the argument unchanged,
but with any trailing I removed.

Computer Aided Instruction 184 W.R. Le Page

(b) If the argument contains one or more I
symbols (not counting any at the end),
expand the argument with any required
filler spaces, remove the I symbols,
and form a matrix in which each I marks
the end of a line. FXA interprets the
argument as ending with i, but the
explicit inclusion of I at the end is
optional.

(c)If the argument contains one or more
II pairs (not counting any at the end),
expand the argument with any required
filler spaces, remove the I and II
symbols, and form an array of rank 3 in
which each i marks the end of a line,
and each II pair marks the end of a
page (plane). FXA interprets the
argument as ending with IX, but the
explicit inclusion of II at the end is
optional.

CTRL

(a)Analyze the corresponding ~S variable
(identified by the first element of the
argument on the left), separating it
into parts on the basis of locations of
the control symbols o and ® at the
beginnings of lines.

(b)Print text material pertinent to a
question, and the question. Execute
the function CHECK, which accepts a
student's answer and checks it in the
mode determined by the appropriate pair
of elements from the right-hand
argument. If the student's answer is
wrong, print remedial text and question
(if any); and if there is a remedial
question, execute CHECK in the same
mode. Continue in this manner until
all parts of the text in the section
variable have been exhausted, or the
student enters STOP as an input.

(c)Set a control variable for LESRUN which
indicates whether execution of LESRUN
should continue to the next section
(LESRUN is not continued if the student
replies with STOP, or the second
element of the left-hand argument is 0
or 999).

(d)Return execution to LESRUN.

CHECK

Accept character input from a student.
If the student's input is STOP, set
returned value to -i and exit; otherwise
check the student's input against the
standard provided by the appropriate MA
or RA variable, in the mode transmitted
to it from the right-hand argument of
CTRL. Print CORRECT or, if the answer is
wrong, print a message appropriate to the
mode of checking. Set the returned value
to 0 if the answer is wrong, or 1 if it is
correct.

Modes for Checking Answers

The first digit of each successive
pair in the right-hand argument of CTHL is
a control digit that specifies the type of
check to be made on a student's answer.
Prior to comparing with standard answers,
any trailing punctuation mark is removed
from the student's response. Then, a
check is made against the standard answer
in accordance with the mode corresponding
to the control digit. These modes are
describedas follows (with the control
digit shown on the left):

0: Extra spaces and punctuation marks are
removed from the student's reply. The
standard is a vector or matrix of one or
more acceptable answers. Complete
agreement is required.

i.- All punctuation marks are removed from
the student's reply, and individual
words of that reply are put into
separate rows of a matrix. Each row
of this matrix is checked against each
row of the standard matrix of keywords.
The answer is correct if there is a
match for any pairing.

2: The student's input is modified as in
case l, but the standard contains two
kaywords in preferential order. If
there are alternatives, the standard
is of rank 3, with alternatives for the
first keyword in the first rows of the
pages (planes), and alternatives for
the second keyword in other rows. The
result is correct if the student's input
contains any of the alternative first
and second keywords in the proper order.

3: The student's input is modified as in
case i, but is checked for N keywords
against a standard of rank 2 or 3 (rank
3 when there are alternative keywords)
in such a way that if any keyword from
each row of the standard is found in
the answer, the answer is correct. The
order of the keywords is not significant.

4: This is similar to case 0, except that
extra spaces and punctuation marks are
not removed. This case was designed to
deal with exercises in function editing.
Accordingly, if the computer prints the
correct answer, it begins at the margin.

5: All spaces are removed from the
student's input, but punctuation marks
are retained. An exact check against a
vector or any row of a matrix standard
is required. This case is useful in
checking APL statements, in which
spaces are not relevant.

6: Similar to case 0, but punctuation marks
are not removed.

7: Makes a numerical check of the student's
answer against the standard.

W. R. Le Page 185 Computer Aided Instruction

For those modes involving keywords, if
a negative word such as NOT is included in
the student's response, this word will be
rejected if it is not a keyword, and
therefore an incorrect evaluation will be
made. Accordingly, a special check is made
against a list of words which imply
negation, and if one is found that is not
a keyword, the answer is rejected with an
appropriate message.

In cases where there are alternatives
in the standard, the answer presented by
the computer as "correct" when a student
is unsuccessful on the question is the
first one listed in the standard.
Therefore, if there is a preferred answer,
that one should occur first in the answer
variable.

Creating New Text Material

The files for section variables and
section functions, for a new lesson, are
initialized as packages of an empty vector.
New sections are added, one at a time, by
the use of two functions: NEWTEXT and
INSERT. An example of the creation of the
sample section displayed previously is as
follows:

NEWTEXT
NEW OR EDIT? NEW

[i]

[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[2o]

[21]
[22]
[2 3]
[24]
[25]
[26]
[27]
[283
[29]
[30]
[31]
[32]

AA 1
IF YOU HAVE EXECUTED THE

STATEMENTS
D÷5
E÷8

AND THEN EXECUTE
W÷D+E

GIVE THE NUMERIC VALUE OF THE
ARGUMENT ON

THE RIGHT OF +...
@VARIABLE E IS ON THE RIGHT OF + AND
HAS BEEN ASSIGNED THE VALUE 8.
GIVE THE NUMERIC VALUE OF THE

ARGUMENT ON
THE LEFT OF +...
oWHAT DOES THE STATEMENT ABOVE DO TO

THE
VARIABLE W?...
°REWRITE THE STATEMENT

2+D×E
$0 THAT 2 PLUS THE VALUE OF D WILL
MULTIPLY THE VALUE OF E...
oFOR A STATEMENT WITH MORE THA.N ONE
FUNCTION AND NO PARENTHESES, THE

EFFECTIVE
ARGUMENT ON THE RIGHT OF ANY ONE OF

THE
FUNCTIONS IS (COMPLETE THE SENTENCE)
, , .

MAi÷' 8'
RAI÷' 5 '
MA 2÷ ' SPECIFIESIASSIGNSxASSIGNEDI '
MA 2÷FXA MA 2. ' SPECIFIED '
MAS÷' (2*D) xEI(D+2) ×EIExT+DIExD+21 '
MA3÷FXA MAS,'E×(2+D)IEx(D+2)'
MA4÷FXA ' VALUEIRIGHTXIRESULTIRIGHT '
1 0 CTRL 7 1 1 2 5 2 3 I

This portrayal is distorted because of the
column width limitation of this document.
The words shown at the ends of unnumbered
lines would really be at the ends of the
lines above. Also, with longer lines, MAT
and MA3 could each be specified on one line.

The main feature of NEWTEXT is that
the AEDITOR text editor functions are
employed.2 These operate in the immediate
execution mode, and are executed within
NEWTEXT through the subfunction.

V CALCSIM;B;OTRAP
[i] DTRAP÷'V 0 E ''ERROR, AGAIN''O+LI'
[2] Li:~÷6+'*'
[3] +(^/'÷'=4+B+6+~)/0
[4] ~B
[5] +LI

9

which simulates the immediate execution
mode, except that * appears at the margin
as a prompt symbol, and normal error
reports and suspensions are suppressed in
favor of the general message "ERROR, AGAIN"
followed by retyping of the prompt symbol.
Typing +÷÷~ causes exiting from CALCSIM.

The question NEW OR EDIT? refers to
whether a new section is to be written, or
editing of a new section not yet in the
files is desired. The AA 1 op~s~e'the
prompt symbol is an execution of the
AEDITOR function for adding lines, starting
with line i. The numbers in brackets are
supplied by AA but do not appear in the
resulting matrix. The return without input
at [3 2] causes exiting from AA, and ++÷~
causes exiting from CALCSIM, allowing
NEWTEXT to run to completion. In this
mode (NEW is the reply to the initial
question) NEWTEXT initializes an empty
matrix which is expanded as input lines are
typed, and upon completion of the text
entries NEWTEXT causes this matrix to be
stored in a temporary file.

In the mode of NEWTEXT when EDIT is
the reply to the initial question, the
matrix in the temporary file is brought
back into the workspace so as to be
available for modification through the
various editing functions of AEDITOR.
For example, line [9] can be replaced by
a different version by executing

NEWTEXT
NEW OR EDIT? EDIT
* AR 9

[9] HAS THE VALUE 8.

The details of AEDITOR are too
extensive to be described here; suffice
it to say that it is very flexible,
permitting selective editing of lines,
insertions, deletions, and display.

When the text is ready, it is
inserted in its proper position in the
lesson sequence by executing the dyadio

Computer Aided Instructi.on 186 W.R. Le Page

function INSERT. The arguments on the
left and right are, respectively, the
lesson number and the position in the
sequence of sections where the new
section is to be inserted. As a
precaution, there is a check to ensure
that the right-hand argument of INSERT
agrees with the first element of the
left-hand argument of CTRL which appears
on the last line of the text. INSERT can
be used to imbed a new section within an
existing sequence, and causes the proper
renumbering of those #xisting sections
which follow it.

INSERT reads the text created by
NEWTEXT from the temporary file, produces
the variable ~i from the material above
the separator ****, and creates the
function ~S~I from the material below the
separator. These are then incorporated in
the appropriate packages in the two files
mentioned earlier. A test is included to
ascertain whether arguments of the FXA
functions appearing in the section
functions (such as ~EI) are properly
formed.

In order to specify the answer
variables appearing below the separator,
the person writing the text must know how
to choose a shape for the array appropriate
to the desired answer-checking mode, and
be able to position I markers in the
arguments of the FXA functions so as to
yield that shape. Possibly, catenation
will be needed in forming these arguments.
It is noted that all answers are in
character form, even if the check is to
be numeric. This is for the convenience
of the writer, providing the uniformity of
having all answers in character form. The
use of FXA in those cases where an answer
variable has a vector or scalar value is
optional. If there are no I symbols in the
argument of FXA, it returns its argument
unchanged.

Revising Old Text Material

A section can be deleted from a lesson
by executing the function REMOVE. It takes
the lesson number as the argument on its
left, and the section number on its right.
Remaining sections are automatically
renumbered.

A function REVISE is available for
modifying any section which has previously
been inserted in the files. It takes the
same arguments as described above for
REMOVE. When REVISE is executed, it
recombines the material of the corresponding
~M~ and ASF objects, into a single matrix,
and executes CALCSIM, allowing the functions
of ~EDITOR to be used for displaying and
making revisions. When ~÷÷÷ is entered,
to terminate CALCSIM, the execution of
REVISE goes to completion, remaking the ~
and ~SF objects and reconstituting the

packages in the files. Arguments of the
FXA functions are checked for validity in
the same manner as with INSERT.

It would be beyond the scope of this
paper to discuss the pros and cons of
computer aided instruction, but it is
suggested that a system such as this can be
usefully applied in certain clearly defined
portions of many subjects (not necessarily
computer programming) which require a
large amount of student interaction.

The system has been used for two years
at Syracuse University (with a total of
about 600 students) in connection with the
APL course mentioned in the introduction.
There are five lessons, each taking about
one-half hour of a student's time, on
variable names and values, workspace
management, the execution rule, function
editing, and structure of arrays (done in
that order). Acceptance of the system by
the students is very high. Since the
introduction of these lessons, it has been
possible to drop a "workshop," previously
required as an aid in getting students
started, with a concomitant acceleration
of student progress. In this instance
students are not graded on answers to the
questions (only on the amount done)
because the intent is to encourage them to
do the lessons very early in the course;
some students would have anxiety and
procrastinate if they were graded on
answers. However, the system could easily
be changed so as to record right and wrong
answers on a single pass through a lesson,
or to permit multiple passes and record
ultimately attained correct answers.

The modes for checking answers
described in the text comprise a modestly
sophisticated system that is adequate for
the purpose for which the system was
designed, where there is no grading of
correctness of answers. Undoubtedly there
are occasions when substantially correct
student responses are incorrectly appraised,
but there have been absolutely no complaints
from students. Apparently the number of
incorrect evaluations is tolerable.
However, the design permits the inclusion
of additional checking modes, merely by
modifying the function CHECK. The present
policy of making exact comparisons of
keywords is not adequate if students are
graded on their responses. Many students
are poor spellers or poor typists, but
usually one would not want to penalize
them for those reasons. This is a
fundamental and difficult problem for
which some modest improvement can be
envisioned.

Concerning experience with the design
and realization of the system itself,
workable APL programs for a rudimentary
realization of the original design were
realized is only a few days of programming.
Subsequent revisions have been incorporated,

W. R. Le Page 187 Computer Aided Instruction

but with practically no necessity for
rewriting anything but the part being
changed.

References

(i) APL as a Coursewriting Language, R.W.W.
Taylor; APL Quote-Quad, June, 1972,
pp. 3-12.

(2) ~Editor-APL Function and Data
Maintenance System, R.G. and J.W.
Burgeson; APL 76 Conference
Proceedings, pp. 166-177.

Computer Aided Instruction 188 W.R. Le Page

