
AN IMPROVED HANDS-ON APPROACH TO TEACHING SYSTEMS PROGRAMMING AND THE IMPACT OF STRUCTURED PROORAMMINO

Roger T. Cooper and Malcolm G. Lane

Department of Statistics and Computer Science
West Virginia University

Morgantown, West Virginia 26506

ABSTEACT

The use of the hands-on approach for teaching sys-
tems programming presented at the 1974 SIGCSE
Conference has proved to be even more successful
in the past two years. The reasons for the in-
creased success are given. An approach of using
structured assembler language concepts as an in-
tegral part of the systems progr~mnnlng course is
introduced and discussed. Specific examples of
the use of several structured programmlngmacros
are presented.

INTRODUCTION

There has been a dramat ic improvement i n the suc-
cess of the hands-on approach to t each ing systems
programming used a t West V i r g i n i a U n i v e r s i t y over
the pas t two y e a r s . [5] The i n c r e a s e d success can
be a t t r i b u t e d to s e v e r a l improvements which have
been made i n the pedagog ica l t echn iques used in
the course.

This paper will concentrate on the improvements
in the course assignments themselves and on the
most recent improvement, the introduction of
structured programming concepts into the course.
Approaches for implementing structured prograznnlng
macros for teaching systems programming will be
presented, and specific examples of the use of
several of the macros which have been implemented
will be given. Finally, the impact of structured
programming (structured assembler language) on
teaching systems progr-mm~ng will be investigated.

AN OVERVIEW OF THE COURSE

The basic prlnclple used in the hands-on approach
to teaching systems progr-mmlng is that students,
worklng in groups, will Implement a small multl-
progrtmnalng executive using an IBM 1130 in order
to learn the basic principles in the design of
such a system. In 1974 [5], the success of the
approach was demonstrated by a figure which con-
talned~the information found in column 1 of Fig-
ure i.

Figure 1 summarizes several important success in-
dicators by comparing the first three of the
course years (1971-1973) against the past four
semesters. The most significant changes in the

course a re the dec rease in group s i z e s , the im-
proved q u a l i t y and thoroughness of the documenta-
t i o n , and most i m p o r t a n t l y the pe rcen tage of the
s y s t e m s w h i c h were s u c c e s s f u l l y implemented.
These~ i n d i c a t o r s ~r l l l be d i s cus sed l a t e r .

IMPROVEMENTSIN COURSEPROJECTS

The systems progra~ning c l a s s i s based on a m u l t i -
progrAmm%ng e x e c u t i v e (MPX) which the s t uden t s
must implement in groups. The MPX assignment i n -
c ludes the f o l l o w i n g :

A Task Scheduler
A Command I n t e r p r e t e r Task
An I n p u t / 0 u t p u t Superv i so r
An Er ro r Message Handler
Memory A l l o c a t i o n F a c i l i t i e s

One o f the major f a c t o r s which i n c r e a s e d the suc-
c e s s o r the hands-on approach to t e ach ing systems
prog~anm~ing was the r e d e s i g n of ass ignments l e a d -
ing up to the MPX. I t was d i s c o v e r e d t h a t s t uden t s
had d i f f i c u l t y implementing and debugging a t a sk
schedu le r in the MPX ass ignment .

To remedy this problem, one of the first assign-
ments that students now undertake is the Implemen-
tatlon of a small round-robln scheduler. Students
are provided with small test tasks (subroutines)
to dispatch. They must give CPU control to each
task in its turn, handle the saving and restoring
of registers in control blocks maintained for the
tasks (via llnked 1lets), and flnally "cancel"
tasks upon request and remove the control blocks
from the scheduler queue. When their scheduler
detects an Idle state (all taskstermlnated), the
student scheduler must end its execution.

Early design specifications of the student IBM 1130
Multlprogram~ug Executive (MPX) called for the
implementation of an Input/Output Supervisor. How-
ever, the early assignments for wrlting I/O hand-
lers for the card reader, llne printer, and key-
board/console printer did not glve specifications
totally consistent with the I/O supervisor needed
for the MPX.[5] The solutlon to this problem was
to rewrite the specifications for all Input/Output
handlers. The resulting assignment calls for the
writing of a more general Input/Output Control
System (IOCS) which can be used in the MPX with

115

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952991.804772&domain=pdf&date_stamp=1976-07-01

1971-1973 1974-1976
(3 Classes) (4 Classes)

AVERAGE CLASS SIZE 27 22

AVERAGE GROUP SIZE 3.7/GROUP 2.9/GROUP

AVERAGE NUMBER OF GROUPS 7.0 7.5

AVERAGE LENGTH OF DOCUMENTATION 10 53
(Typewritten Pages)

TOTAL NUMBER OF SYSTEMS 21 30

SUCCESS OF SYSTEMS IMPLEMENTED:

A 4 i0

B 7 ii

C 6 7

D 4 2

PERCENT IN CATEGORIES A & B 52% 70%

A= Number of group projects with all features implemented.
B= Number of group projects with most features implemented.
C= Number of group projects which partially worked.
D= Number of group projects which did not work.

FIGURE i. A COMPARISON OF THE FIRST THREE YEARS OF
THE HANDS-ON APPROACH TO TEACHING SYSTEMS

PROGRAMMING TO THE LAST TWO YEARS

only slight (if any) modifications. This project
is a group project, as is the MPX.

The course improvements indicated in Figure 1 can
be attributed to several things. The major im-
provement was due to the redesign of the assign-
ments discussed above. Students more thoroughly
understand schedulers before undertaking the MPX.
Also, a thoroughly tested IOCS can be used in the
MPX and thus IOCS should (theoretically) not cre-
ate major debugging problems when interfaced to
MPX.

Another factor was the reduction in the number of
students assigned to a group. In the particular
course being discussed, it has been observed that
students working in groups of two or three seem to
produce better projects than those working in
groups of four. Thus, recent groups have been lim-
ited to a maximum of three students, and students
are encouraged to work in groups of two.

Finally, more stringent standards have been adopt-
ed for design specifications, flowcharts, and do-
c=mentatlon produced by the students. This has
dramatically improved the quality of written do-
cumentation of the student Multlprogramming Exec-
utives while at the same time forcing students to
put more thought into the design of the MPX. Fig-
ure 1 illustrates that more detailed documentation
is now being provided by the students.

STRUCTURED PROGRAMMING IN ASSEMBLER LANGUAGE

The use of macros to facilitate structured pro-
gra~ing in assembler language has b e e n undertaken
in varlous ways in the past few years [1,2,4].
Because of the particular need to avoid many of
the common errors (discussed later) that students
in the Systems Programming course make in assem-
bler language and in order to facilitate the com-
pletion of the Multlprogrammlng Executive project,
structured programming macros for the IBM 1130
were developed.[3] The development of the macros
was undertaken with the basic assumption that they
were for use in the Systems Programming course.
The system configuration of the IBM 1130 used in
the course and for macro development is shown in
Figure 2.

Many of the macros developed are peculiar to the
systems programming environment for the IBM 1130.
Others are general macros typically implemented to
accomplish structured programmlng.[l,2,4]

It should be pointed out that the extreme slowness
of the IBM 1130 macro assembler in resolving a
macro (primarily due to the slowness of the disk
drive) could detract from the use of such macros.
However, it is felt that the resulting improvement
in coding, debugging and maintenance of assembler
programs can offset the increased assembly time.

116

TO THE IBM 360175

IBM 1130
8K WORDS

I 1 o3 I "' -

I FRINTER ! CARD
READER

FIGURE 2. CONFIGURATION OF THE IBM 1130

FIRST IMPLEMENTATION OF MACROS

The earliest macros written for use by the Systems
Programming class were called DSAB, ENAB, SAVE,
and RSTO. These macros were designed to alleviate
very specific problems encountered by students who
were writing a Multiprogramming Executive (MPX)
for the IBM 1130.[5] These macros were very suc-
cessful in their restricted uses. However, they
did not provide any assistance !o the students
who were trying to develop their first large
assembler language programming assignment.

During the Fall semester of 1975, a new group of
macros was added for experimental use. These
macros were for defining loops and subroutines.
An example of the looping control would be the
DO...ENDD0 block. The DO macro recognized one
operand, which was the number of times that the
loop was to be executed. The ENDDO closed the
loop and performed the incrementing and testing.
The loop count always was incremented by one.
The blocks DOi...END 1 and DO2...END 2 were very
similar to the DO...ENDDO block. However, the
DO1 and DO2 loops also allowed for the automatic
increment, by one, of the specified index regis-
ter (i or 2). The macro used to define the be-
ginning of a subroutine was called PROC. The
PROC macro saved registers upon entry to the sub-
routine; the code that restored the registers was
also contained in the PROC macro.

Although these macros saw limited use, they proved
successful when used. One of the major reasons
for the lack of use of the early macros was that
they were introduced after the students had begun
programming. The students preferred to continue
coding the way they knew, rather than learn some-
thing new. Also, the macros were not powerful
enough to compensate for the fact that they slowed
down assembly time. Students could not see a suf-
ficient return for the extra assembly time.

In general, the early macros suffered from the
following problems:

i) They were all post-test loops. This fact
is not, in itself, bad; but the implementa-
tion was such that control information had
to be divided between the beginning and the
end of the block. Consequently, blocks
could be difficult to understand.

2) The macros were inflexible. Users had very
few, if any, options that they could use.

3) The names used for macros followed no pat-
tern, and the formats for labeling and op-
erands specified were not standardized in
any way.

4) The block structure could not be viewed at
a glance. The labeling of loop termination
macros was unnecessary and at the discre-
tlon of the user. This made vlsual check-
Ing of code very difficult where nesting or
large blocks occurred.

PRESENT IMPLEMENTATION OF MACROS

The macros written for the Fall semester of 1975
were supplanted by a more comprehensive set of
macros for the Spring semester of 1976. With the
exception of the PROC macro, the old macros were
quietly discarded wlth no regrets. The best thing
that could be said about the old macros is that
they provided the authors with experience.

The structured progr-,,mlng macros in the new im-
plementation are designed around the concept of a
block. For the purposes of this discussion, a
block is a unit of code that starts with a macro,
contains one or more instructions that perform
some easily definable function, and ends wlth an-
other macro. Blocks can be combined to form larg-
er blocks or modules. Blocks can also be nested
within other blocks. A program may be one or more
blocks. This approach lends itself both to Top-
Down and Bottom-Up progrannning.

In this section, a brief description of all the
macros will be given. Of the macros described,
the macros @WHLE, @UNTL, @AND, @OR and @ASRT have
the same condition specification formats as those
described for the @IF macro in a later section.

Labels are necessary on any macros that define a
block of code. These labels are used to pass In-
formation to following macros within a block. All
of the macros that define a block must start with
the same label.[1] The only macro that actually
generates that label is the first macro in the
block. All other macros in that block generate a
derivation of that label that starts with an "@"
(if they generate a label at all).

Since the macros of a block are designated by a
common label, nesting of blocks can be done. The
user is responsible for closing blocks with the
proper macro. If a block is not closed, an unde-
fined label error generated by the assembler will
prevent execution of the program.

117

SELECTIVE BLOCK EXECUTION

@IF...@END

The @IF macro defines the beginning of a b l o c k t h a t
i s e ~ e c u t e d i f t h e c o n d i t i o n s p e c i f i e d i n t h e o p e r -
and field of the macro i s true. The b l o c k i s ter-
minated by the @END macro.

@SLCT...@CASE...@DFLT...@END

The @SLCT macro defines the beginning of a "se-
lect-one-of-many" block. The accumulator is test-
ed for a value between zero and the number of
cases defined. A branch is made to the corres-
ponding case. Each case is defined by an @CASE
macro. If the accumulator contains a number out~
side the range of case numbers, the code begin-
ning with the @DFLT macro is executed. The @END
macro always terminates the @SLCT block.

REPETITIVE BLOCK EXECUTION

@DO... @END

The @DO macro defines the beginning of a pre-test
DO loop that is similar to the DO loop of PL/i.
The loop index must be specified by the user. It
is incremented and then tested. An exit from the
loop occurs when the index exceeds the limit-
ing bound. The @DO block is always terminated by
the @END macro.

@WULE... @END

The @WHLE macro defines a pre-test loop that is
executed while the condition specified is true.
The @WHLE block is always terminated by the @END
Nacro.

@PERT... @U~TL

The @RPET macro defines the beginning of a block
that is repeated until thecondltion specified
on the @UNTL macro is true. The @UNTLmacro al-
ways defines the termination of an @RPET loop.

EXTENDING CONDITION TESTS

@AND

The @AND macro defines another condition that
must be true before an @IF block wi11 be executed.
The @IF block could then appear as:
@IF@AND...@END. There is no limit on the number
of @AND macros that may be associated with one
@IF macro. This macro may also be used in an
@WHLE block.

@o~

The @OR macro defines an alternate condition that
may be true to allow the execution of an @IF
block. The present implementation allows only one
@OK to be associated with an @IF block. Using the
@OK macro, an @IF block would look something like:
@IF@OR...@END; or perhaps: @IF@AND@OR...@END.
This macro may also be used in an @WHLE block.

@ELSE

The @ELSE macro defines an alternate path that is
executed when the conditions that allow execution
of the @IF block are falso. The @IF block could
then look something like: @IF@AND@OR..@ELSE..@END.

SUBROUTINE BLOCK EXECUTION

@PEOC...@RETN

The @PROC macro defines the beginning of a sub-
routine and provides standard linkage for all sub-
routines. The @PR0C macro saves all registers on
entry to the subroutine. A subroutine is always
terminated by the @RETN macro. The @RETNmacro
can specify that the contents of certain registers
be transmitted to the calling routine. If no such
registers are specified, all registers are re-
stored before control is returned to the caller.

@EXEC

The @EXEC macro is used to call internal subrou-
tines. The @EXEC macro allows for the passing of
an argument list to a subroutine.

@CALL

The @CALL macro is identical to the @EXEC macro,
except that it is for the calling of external
subroutines. An external subroutine is one that
is assembled separately from the calling routine.

@ARG#

The @ARG# macrois used internal to a subroutine
to ge E the count of arguments in theargument
list. This count is placed in the accumulator.

@OETA

The @@ETA macro is used internal to a subroutine
to get the value of an argument that was passed to
the subroutine. The value of the argument is
placed in the accumulator.

@PUTA

The @PUTA macro is used internal to a subroutine
to change the value of an argument.

SYSTEM MACROS

PROGH, SETUP

The PROGMmacro must be the first statement en-
countered by the assembler in any user program.
This macro generates only global SET symbols that
are necessary for the proper assembly of all other
macros. The SETUP macro must be the first state-
ment executed in a user program. The SETUP macro
initializes certain necessary values that are used
during execution of user programs.

@DSAB, @ENAB

The @DSAB macro is used to disable interrupts so
that critical sections of code can be executed

118

w i t h o u t i n t e r r u p t i o n . The @ENAB macro e n a b l e s i n -
t e r r u p t s so t h a t n o r m a l p r o c e s s i n $ can c o n t i n u e .
These macros are slightly modified forms of the
DSAB and ENABmacros presented in Lane [5].

@INT4, @ZLSW

The @INT4 macro defines the beginning of the in-
terrupt handler. This macro saves the contents of
all registers on entry to the interrupt handler.
The save area specified is identical to that de-
scribed for the @SAVE macro in a later section.
This macro is also necessary to the proper func-
tioning of the @DSABmacro. The @ILSW macro is
used by the interrupt handler to determine which
device caused the interrupt and to branch to an
appropriate routine.

@SAVE, @RSTO

The @SAVE macro saves the contents of all regis-
ters in a standardized save area. The @RSTO macro
accesses a standard save area and restores the
contents of the registers to the saved values.
(These two macros are generalized versions of the
SAVE and RSTO macros.[5])

@ASRT

The @ASRT macro is used to test the truth of a
specified condition. If the assertion is true,
execution continues normally. Otherwise, the
macro causes execution to enter an infinite loop.
In this way, the programmer can catch errors be-
fore they cause other errors.

@BZT#

The @BIT# macro returns the bit position of the
first bit on (counting from left) in the accumu-
lator. Since bit zero may be on, a value of 31
is returned if no bits are on. This macro was
designed to be used with @SLCT.

DESCRIPTION OF @IF AND @DO

In order to give the reader an understanding of
the specific macros being discussed, the formats
of the @IF and the @DO macros will be brlafly
presented. The descriptions of macros include
example formats for macro calls. In these for-
mats, words that are capitalized are macro key-
words with special meanings. Words that are in
small type indicate that the user may vary the
word that appears in that field.

Many instructions are built from SET symbols as
macros are expanded. This allows readability of
the example expansions. Readers will also find
that the examples show single quote characters
where "@" symbols should be. Also, equal signs
appear instead of the "#" symbol. This occurs be-
cause the 1130 system substitutes certain charac-
ters for some other characters that do not appear
on its print chain.

@IF...@END

The @IF macro defines the beginning of a block of
code that is executed if the condition test

specified in the operand field of the macro is
true. The @IF macro has several simple formats.
They are as follows:

lab @IF varl,cond,var2,L
lab @IF varl,cond,var2
lab @IF var,@ZERO
lab @IF x

The word "lab"
bel. The word
can be written

denotes a three character user la-
"cond" denotes a comparison that
in any of the following ways:

cond meanin~

@EQ
~NE
@GT
@GE
@LT
@LE

varl equal to vat2
varl not equal to var2
varl greater than vat2
varl greater than or equal to vat2
varl less than vat2
varl less than or equal to var2

Wherever the expression "varl" occurs in the for-
mats above, the word @ACC may appear to indicate
that the comparison is to be done using the IBM
1130 accumulator.

When the letter "L" occurs as the fourth parameter
in the above format, the expression "var2" is used
as a llteral value rather than an address. Other-
wise, the expressions "varl", "var2", and "vat"
are regarded as addresses of the data to be com-
pared. The word "@ZERO", when usedas shown above,
indicates that the block is to be executed if the
variable "vat" is zero.

The letter "x" in the short format above represents
a simple comparison against the condition of the
accumulator, The codes that can be used and their
meanings are as follows:

x meaning

P ACCUM positive
N ACCUM negative
Z ACCUM zero
NP ACCUM not positive
NN ACCUM not negative
NZ ACCUM not zero
ODD ACCUM odd
E ACCUM even
O Overflow bit on
C Carry bit on

The @END macro must always close an @IF block.

@DO...@END

The @DO macro creates a repetitive loop that is
much like the DO loop in PL/I. @DO sets up a loop
with a pre-test, so that the specified condition
is always tested before the loop is entered. The
forms of the @DO macro are as follows:

lab @DO var,bndl,bnd2
lab @DO var,bndl,bnd2,L
lab @DO var,bndl,bnd2,BY,incr
lab @DO var,bndl,bnd2,L,BY,incr

The operand "bndl"specifles the starting value of
the loop. This is considered to be a literal

119

value, unless replaced by the word "@ACC". @ACC
indicatesthat the starting value for the loop is
in ~he accumulator.

The operand "bnd2" specifies the terminating value
of the loop. This operand is considered to be the
address of the bound unless the letter "L" appears
as an operand. When "L" appears, "bnd2" is taken
as a literal value.

The operand "vat" is the address of the loop in-
dex. Since the index registers of the IBM 1130
are located at memory locations i, 2, and 3, the
index registers can also be used as the loop in-
dex in any @DO loop. This feature allows flexlbil-
ity for indexing through tables of data.

The loop index is modified by +i, unless the word
"BY" appears as an operand, In which case the in-
crement "incr" specified by the user is used to
modify the loop index. Increments may be positive
or negative. The block started by the @DO macro
must always be closed by the @END macro.

DESIGN CONSIDERATIONS OF THE MACROS

The early macros were useful in testing out ideas.
The two biggest problems in writlng good macros
were i) making the macros both useful and easy tO
use, and 2) the IBM 1130 Macro Assembler. The
method of labeling each macro in a block wlth the
same label was implemented only after much thought
as to its aspects from a user viewpoint. Due to
restrictions imposed by the Assembler[3], any
method of passing information to following macros
through labels is both necessary and at the mercy
of users. Other methods that did not depend on
users could not be implemented on the ~BM 1130.[2]
The method used in this implamentatlon is both
easily remembered due to standardization, and
easily desk-checked. It has the added attraction
that assembly errors occur when certain critical
macros like @END are omitted. This prevents
user programs with an invalid block structure
from executing.

The macro names have been thoroughly considered
for readability and standardization where possi-
ble. Since the 1130 Macro Assembler allows only
five-character names, explanatory names used by
some authors [1,2,4] are immediately ruled out.
The names of macros used to end blocks are of
particular interest in themselves. The method
of reversing the spelling of the loop-startlng
macro to produce the terminating macro has al-
ways been unacceptable to the authors. DNA makes
a fine molecule but a poor macro name. And, KO
is one way to make a boat move (and FI on you if
you think otherwise). The combination of match-
ing labels and standardized end statements [i]
has proved to be reasonably readable and easy to
use.

The looping and selective block execution macros
n~# generate pre-test loops (except for @RPET, of
course). By do~ng so, more overhead is generated.
However, the resulting code is easy to follow and
to use. There is no possibility that a-programmer
will terminate a loop with the wrong macro, and
actually get into execution. In addition, the

macros now generate error messages and informatory
messages where applicable. This facilitates
debugging.

THE IMPACT OF STRUCTURED PROGRAMMING CONCEPTS

Over the seven semesters since the Fall of 1971
that the Systems Frogra~Ing course has been
taught, there have been a great number of errors
by students which keep occurring again and again.
The errors generally deal with "clobbering" regis-
ters, save areas, control blocks, instructions,
and pointers with incorrect data. Zn most cases
the overall design of each student project is good.
However, the tedious process of maintaining bits
and bytes at the assembler language level and the
inability of the IBM 1130 assembler to detect such
things as misplaced operands (which result in ad-
dress fields of zero and no errors) create errors
which have a negative impact on the learning ex-
perience which the course has as its basic goal.
This goal is to learn the principles of operating
system deslgn~ not how to write IBM 1130 assembler
language programs. The IBM 1130 and its assembler
language are merely tools to implement a system
that the students design themselves. (It should be
noted that the IBM 1130 is the only computer system
at the University available to computer scientists
for using the hands-on approach to teaching systems
progr~mmlng [5].)

The addition of macros for structured programming
yields a better and more powerful tool for the
students to accomplish the above-mentioned goal.
The structuring of the students I assembler language
programs exposes students to improved programming
techniques for the design of operating systems. It
also eliminates many of the bit and byte errors in
ei~nple tasks such as progra~lulng loops within their
programs. In this case, a single @DO...@END pair
can accomplish what might require ten or so in-
structions without the macros. Thus, if one as-
sumes that the number of errors made by the stu-
dents is proportional to the number of lines of
code wrltten, fewer errors should be made, and
hence~ the MPX system should become operational
earlier in the semester. Finally, the structuring
techniques which the macros introduce should fur-
ther reduce errors made by students.

Figures 3 and 4 illustrate the use of several of
the macros in the implementation of the MPX pro-
Jects. It should be pointed out that the examples
are exactly as they appeared in the students' pro-
Jects, (The appearance of AGO assembler instruc-
tions after several of the macros are the results
of meaningless warning messages printed by a
rather archaic assembler.)

One MPX project which was fully implemented in
May 1976 used a very modular approach. However,
most all macros (used earlier by the students)
were eliminated from the MPX because of the extreme
slowness of the IBM 1130 Macro Assembler in pro-
cesslng macros. The students implemented this MPX
using external subroutines to structure the system;
a data co~nunicatlon module was implemented as a
subroutine to provide access to common data areas.
Such sections as the first and second level inter-
rupt handlers for all devices, the command

120

00137 CNT ' IF
00147 O ÷CONTR AGO

0075 Ol 00000188 00171 XIO L
0077 01 C4000174 00172 LD L
0079 01 4000001E 00173 B L

00174 CNT 'END
00187 IWR ' IF
00197 Q ÷INTWR AGC

008D 01 C4000172 00221
O08F O1 84000176 00222
0091 O1 04000210 00223
0093 20 292570D6 00224
0094 0 1100 00225
0095 1 0210 00226
0096 I' 0134 00227
0097 0 0050 00228
0098 30 084078F3 00229
O09A OI C4800172 00230
0090 O1 0400017E 00231
O09E 01 94000170 00232
OOAO Ot 40300122 00233
OOA2 Ol C4800172 00234
OOA4 01 402~0122 00235
OOA6 01 C40C0172 00236
OOAB OI 80000175 00237
OOAA Ol D4000170 00238
OOAC OI C48C017D 00239

00240
OOAE 0 1804 00241
OOAF Ol D4000181 00242
0081 01 C4000[72 00243
0083 01 800C0175 00244
0085 01 D400017D 00245
00B7 01 C4800170 00246

00247
0089 01 E4000178 00248
OOBB OI 04000180 00249
OOBD 01 C40COL7E 00250
OOBF 01 40180114 00251
OOC1 01 C4000181 00252
0003 Ol 401e00D5 00253
0005 O0 650C0010 00254
0007 0 1140 00255
0 0 0 8 0 1 0 0 1 00256
O O C 9 0 I 4020012A 00257
OOCB 01 C 4 C 0 0 1 8 1 0 0 2 5 8
OOCD Ol D48COI8A 00259
888; 010CO00X8A 00260

O1 C4000174 00261
0003 O14C00001E 00262
0005 01 C4000172 00263 PRI
0007 Ol 84000176 00264
0 0 0 9 0 1 0 4 0 0 0 1 8 3 00265
OODB O1 C400017E 00266
OODD O1BCCCOI75 00267
OODF 0 1BOl 0026,~
OOEO 0 1 0 4 0 0 0 1 7 F 00269

00270 8LN
00302 Q +

OOFC 01 C400012E 00321
OOFE 0 1 D 4 8 0 0 1 2 F 00322
0100 01 7401012F 00323

00324 BLN
0104 Ol C4000130 00338
0106 O1 0400012F 00339

00340
00359

010E O1 0C000190 00360
0110 O1 C4000174 00361
0112 01 4COCO01E 00362
0114 01 C4000180 00363
0116 01 000C0188 00364
0118 01 C4000180 00365
011A O1 94000175 00366
011C O1 04000180 00367
OI1E O1 C4000174 00368
0120 O1 4000001E 00369
0122 01 C4000177 00370
0124 O14COCO01E 00371

00372
0126 Ol C 4 0 0 0 1 7 6 0 0 3 8 5
0128 014COCO01E 00386

DATA AREA
SRA
STO L
LD L
AO L
STO L
LD I

DATA AREA
AND L
STO L
LD L
BZ
LD L
BZ

FUNCT,'EQ,CONTR DO IF FUNCTION CONTRL

SKIP INITIATE THE CONTROL OPERATION
ZERO PUT CORRECT RETURN CODEIN ACC
RETRN RETURN TO USER

FUNCT,'EQ, INTWR DO IF FUNCTION INITWR

LD L ACSAV GET ADDRESS OF USERS DATA AREA
A L TWO GET ADDRESS OF USER PRINT LINE
STO L CHAR STORE THIS ADDRESS IN CHAR
LIBF ZIPCO
DC /1100
0C CHAR
DC DATA+2
DC 80
CALL HLPT3
LD I ACSAV GET COUNT OF CHARS TO PRINT
STO L NNNNN PUT THAT NUMBER IN NNNNN
S L CMAX CHECK IF GREATER THAN 120
BP ILLCT IF YES BRANCH TO ILLCT
LD I ACSAV GET COUNT OF CHARS TO PRINT
BN ILLCT IF) 0 BRANCH TO ILLCT
LU L ACSAV GET FIRST WORD OF USER IOCC
AD L ONE ADO ONE TO IT
STO L BITTS STORE IT IN BITTS
LD I BITTS LOAD ACC WITH 2ND WORD OF USER

4 ISOLATE CARRIAGE SKIP MASK
CHANM PUT CHANNEL MASK IN CHANM
ACSAV GET FIRST WORD OF USER IOCC
ONE ADD ONE TO IT
BITTS STORE IT IN BITTS
BITTS LOAD ACC WITH 2NO WORD OF USER

FIFTN ISOLATE SKIP BITS
SKIPB PUT SKIP BITS IN SKIPB
NNNNN CHECK COUNT OF CHARS TO PRINT
CONTL IF ZERO BRANCH TO CONTL
CHANM GET CHANNEL MASK IN ACC
PRI IF CHANMASK IS ZERO BRANCH PRI

LDX LI 110 PUT A 16 IN REG ONE
SLCA 1 C H E C K I F CHANNEL MASK LEGAL
SLA 1
BNZ L ILMSK BRANCH TO ILMSK IF NOT
LD L CHANM GET CHANNEL MASK IN ACC
STO I RITE PUT IT IN CHANMASK AREA OF IOCC
XIO L RITE INITIATE WRITE COMMAND
LD L ZERO PUT CORRECT RETURN CODE IN ACC
8 L RETRN RETURN TO USER
LD L ACSAV GET ADDR OF USERS DATA AREA
A L TWO GET ADDR OF USERS PRINT LINE
STO L FPTR STORE THAT ADDR IN FPTR
LD L NNNNN GET COUBT OF CHARS TO BE MOVED
AD L ONE ADJUST CHAR COUNT
SRA I D IV IDE COUNT BY 2 TO GET WORD C
STO L MMMMM STORE WORD COUNT IN MMMMM
'DO INDEX,I,60,L DO THIS CODE 60 TIMES
AGO
LD L BLANK LOAD 1403 PRINTER CODE FOR BLAN
STO I TBUF BLANK OUT MY BUFER INDIRECTLY
MDM L TBUF,1 INCREASE TBUF BY ONE
*END
LD L JBUF LOAD THE ADDRESS OF MY BUFER
STO L TBUF STORE THIS ADDRESS IN TBUF
'CALL 'MOVE,3,FPTR,TOPTR,MMMMM MOVE USER

BUFFER TO OURS
XlO L COPY INITIATE INITIATE WRITE COMMAND
LD L
B L

CGNTL LD L
XIO L
LD L
S L
STO L
LD L
B L

ILLCT LD L

IWR

ZERO PUT CORRECT RETURN CODE IN ACC
RETRN RETURN TO USER
SKIPB GET SKIP COUNT IN ACC
SKIP INITIATE SKIPPING OPERATION
SKIPB GET SKIP COUNT IN ACC
ONE DECREMENT SKIP COUNT BY ONE
SKIPB PUT REDUCED SKIP BITS IN SKIPB
ZERO PUT CORRECT RETURN CODE IN ACC
RETRN RETURN TO USER
THREE PUT CORRECT RETURN CODE IN ACC

B L RETRN RETURN TO USER
'END
LD L TWO LOAD ACC WITH ILLEGAL FUNCT CODE
B L RETRN RETURN TO USER

FIGURE 3. AN EXAMPLE OF THE USE OF TIIE @IF AND @DO IN STUDENTS' MPX PKOJECTS

121

021D 01 C#000580 00589
02 IF Ol 04000542 00590
0221 0 1010 00591
0222 01 0400053D 00592
0224 Ol C4000173 00593
0226 Ol E4000531 00594
0228 Ol 40180232 00595
0226 O~ E6000532 00596
0220 O1 40180288 00597
022E O1 C4000176 00598
0230 O1 60000538 00599

0C600
00601
00602
00603
00604
00605

0232 01 C4000172 00606
0236 O1 04000537 00607
0236 01 84000175 00608
0238 O1 D4000583 00609
023A O IO1C 00610
0238 OI 04000540 00611
0230 01 C6800172 00612
023F 01 04000538 00613

00614
00646

0266 Ol C40C0177 00679
0268 O1 40000538 00680

00681
00695

0270 01 76010530 00729
027E 01 00000590 00730
0280 O 101C 00731
0281 Ol 4000001E 00732

00733
0283 Ol 00000590 00746
0285 0 1010 00747
0286 O1 4COCO01E 00748

00749
00750
00751
00752
00753
00754
00755

288 O1 C68C0172 00756
28A OI 04000538 00757

028C 0 IO1C 00758
0280 01 D6000540 C0759

00760
00792

0284 Ol C4000177 00825
0286 01 40000538 00826

00827
00841

OZCA 01 74010530 00875
0200 01 00000590 00876
02CE 0 1010 00877
02CF 01 4COCOOlE 00878

00879
0201 01 C4000172 00892
0203 Ol 84000175 00893

205 Ol 04000533 00896
207 Ol 00000590 00895

02D9 0 1010 00896
02OA 01 4COCO01E 00897

00898
00899
00900
00901
00902
00903
00904
00905
00933

0305 Ol C400053D 00967
0307 Ol 6C18030F 00968
0309 0 lOlO 00969
030A Ol D400053D C0970
030C OO 46000202 00971
030E 0 7016 00972

KB LD L RWI2C PUT 120 IN ACC
STO L RAREA STORE IN IOCC
SLA 16 ZERO THE ACE
STD L KBCPF RESET FLAG
LD L ACSAV+I
AND L AREAD IS IT A READ FUNCTION
BZ KEYBD IF YES~ GO TO KEYBOARD ROUTINE
ANC L AWRIT IS IT A WRITE FUNCTION
BZ CONSL IF YES~ GO TO CONSOLE ROUTINE
LD L TWO RETURN C00E=2 IF BAD FUNCTION
B L ERRSB BRANCH TO ERROR SUBROUTINE

WHEN A READ REQUEST COMES I N , THE CHAR
*COUNT AND BUFFER ADDRESS ARE SAVED. KBFLG IS SETS
~TC ONE(BEGIN READ FLAGIeAND A CARRIAGE RETURN IS
,ISSUED,

KEYBD LO L ACSAV GET FIRST WORD OF IOCC
STO L CCADR SAVE ADOR OF WHERE COUNT IS
A L ONE
STD t UADDR STORE BUFFER ADDRESS
SLA 16
STO L POINT RESET THE POINTER
LD I ACSAV LOAD ACE WITH CHAR COUNT
STO L CHARC STORE CHARACTER COUNT

RRR ' IF CHARC~'GT~I20~L
RRR 'OR CHARC,'LT~O,L

LD L THREE RETURN CODE=3 IF BAD COUNT
B L ERRSB BRANCH TO ERROR SUBROUTINE

RRR 'END
RRA ' IF CHARC,'EQ,O.L

MDN L KBCPF,1 OPERATION COMPLETE FLAG ON
XIO L CRGRT ISSUE A CARRIAGE RETURN
SLA 16 RETURN CDDE=O IN ACE
B L RETRN RETURN FROM IOCS

RRA 'END
XIO L CRGRT DO A CARRIAGE RETURN
SLA 16
B L RETRN RETURN FROM IOCS

WHEN A WRITE REQUEST COMES IN, THE CONSOLE
$1S CHECKED TO SEE IF BUSY AND IF READY, THE CHARS
tCCUNT AND DATA ADD OF THE MESSAGE ARE SAVED~ CHAR=
=CCUNT CHECKED. CPRFG SET TC ONE(BEGIN WRITE FLAG),$
*AND ISSUES A CARRIAGE RETURN. *

CChS1 LD I ACSAV
STC l CHARC STORE HERE
SLA 16
STO L POINT RESET THE POINTER

RRZ ' I F CHARC~'GT~120,L
RRZ 'OR CHARC~*LT,O~L

LD L THREE RETURN CODE=3 IF ILLEGAL COUNT
B L ERRSB

RRZ 'END
RRX ' IF CHARC~'EQ,OtL

MDM L KBCPF~I OPERATION COMP FLAG ON
XIO L CRGRT ISSUE A CARRIAGE RETURN
SLA 16 RETURN CODE=O IN ACC
B L RETRN RETURN FROM IDCS

RRX 'END
LD L ACSAV GET ADDRESS OF CHAR COUNT
A L ONE GET ADDRESS OF DATA AREA
STO L BFADR STORE ACDRESS IN BFADR
XIO L CRGRT DO A CARRIAGE RETURN
SLA 16 RETURN CODE=O
B L RETRN RETURN FROM IOCS

$ILS04 SAVES THE ADDRESS OF THE NEXT INSTRUCTION *
~TE BE EXECUTED WHEN THE INTERRUPT OCCURED .
SIT ALSO SAVES THE REGISTERS AND STATUS.

ILSO4 * INT4 PTSAV MACRO FOR ILS06
'ILSW INTPR,INTRD,IN/CP SENSE AND SAVE ILSW

RESTO LD L KBCPF CHECK THE KBICP FLAG
BZ CHKPT CHECK THE PR FLAG
SLA 16 • TO L KBCPF RESET KB/CP FLAG

SI l QIT BRANCH TO QIT IF OPERATION COMP
B JUSRS SKIP NEXT SECTION

FIGURE 4. THE USE 0~ @IF, @0E, @INT4, ~ @ILSW IN A STUDENT MPX PROJECT

122

interpreter, etc., were all implemented as external
subroutines. This is not an unusual approach if
one has a reasonably good assembler (with such
facilites as GLOBAL symbols), but using the IBM
1130 system, the students had to carefully select
techniques for using external subroutines which
would work under the constraints of the assembler.
The point here is that the structuring of this
project greatly decreased debugging time. The
fact that the project was a class A implementation
(see Figure i) attests to the fact that this par-
ticular structured approach was successful.

Students who completed the course in May 1976
were instructed in class on the use of the macros
described in this paper. The use of these macros
was highly recommended to the students and all
students in that class used the macros in some or
all of their assignments. The results of the
recent introduction of the macros is perhaps best
conveyed to the reader by comments of the students:

"The macros were very helpful in the imple-
mentation of our MPX project. By using the
macros we saved time whlchnormallywould
be spent keypunching, coding, and debugging.
Fewer wild branches were taken since the use
of the @IF macro needs no branching."

"The macros were extremely good for the mod-
ular approach to programming, their best
points being looping control, case testing,
conditional testing, and the ability to
change core memory compared to the previous
case of only being able to work off the
accumulator. Conditional testing proved to
be quite powerful, especially in the use of
IF-THEN-ELSE tests and the IF-AND~OR-THEN
tests.

"We initlally used the macros extensively
in our first project (IOCS). They proved
to provide quick, easy, error-free coding.
But, because of the slow disk on the 1130,
the assembly times for IOCS were unreal =
istic."

"In writing the MPX, we have found that the
macros can be a very effective and time
saving approach. Several of the macros
provided a means of writing code without
getting bogged down with the details of
every step of the program."

"Use of macros made program implementation
easier because of the followlng:
i. Programs were easier to write since a

macro is a form of a higher level In~
struction. Many operations could be
done with only one statement.

2. Programs were easier to organize and
debug because blocks of code are nat-
urally divided and isolated by the
macro and its @END statement.

3. Problems were easier to isolate be-
cause the macros could be assumed
correct, pointing to programmed code
as the source of trouble.

4. Fewer statements had to be written
and therefore fewer cards had to be
keypunched, eliminating another
source of error.

"Given a faster machine which was designed to
incorporate macros efficiently, a programmer
would be foolish not to use them to his ad-
vantage. However, their use on the IBM 1130
is not attractive because of the great a-
mount of time requlred to resolve a program
incorporating macros due to the slow disk."

The conclusions given by the students were unani-
mous: 1) the macros are a valuable tool and
proved to be very useful in eliminating program-
mer errors; 2) as projects got larger, the ex-
treme slowness of macro resolution on the IBM 1130
forced many students to abandon the use of many of
the macros. Hence, the machine being used for the
course does not have sufficient power to make the
use of macros attractive for larger projects.

It is hoped that a new system, more suitable to
the structured approach described in this paper,
can soon be acquired for use in the systems pro-
grammlng course. In the meantime, methods for im-
proving the IBM 1130 macro assembler are being
investigated.

SUMMARY

The hands-on approach to teaching systems program-
ming has been successful in the past and is im-
proving every semester. More stringent standards
for specifications, flowcharts, and documentation
have greatly improved the course. The use of
structured programming concepts (e.g., via the use
of macros) ~nwrlting student MPX projects will
likely produce even more dramatic improvements
when a more suitable computer system is acquired
for use in the course.

Five years',experlence in the hands-on approach to
teaching systems progra~ing has proved that stu-
dents who finish the~eourse discussed in this pa-
per possess a thorough knowledge of the basic prin-
ciples of operating system design. ~any have been
successful assystems programmers in ~ndustry wlth-
out further experience in systems programming.)

The hands-on approach indeed gives students enthu-
siasm and motivation which produce remarkable re-
sults. The addition of structured progr-mmlng
techniques to the students' hands-on experience
will make them far more accomplished in the design
of operating systems.

ACKNOWLEDGEMENT

The macro block labeling method described in this
paper and other ideas were contributed by
James F. Williams of the West Virginia University
Computer Center.

REFERENCES

1. Harris Corporation (DAta Communications Divi-
sion), Remote Communications Processor Assem-
bler Language User's Manual, Dallas, 1975.

123

2.

3.

4.

5.

Herman-Giddens, et al., "An Approach to
Structured Progra~ing for Users of Small
Computers", ACM Southeastern Regional Meeting,
April 14-16, 1975.

International Business Machines Corporation,
IBM 1130/1800 Assembler Language, Boca Raton,
Florida~ 1971.

Kimura, Takayuki, "StructUred Progr-nw, ing in
PDP-llAssemblyLanguage", UnpubllshedManu-
script, University of Delaware, Newark,
Delaware, 1974.

Lane, Malcolm G., "A Hands-On Approach to
Teaching Systems Progr--,,Ing, SIGCSE Bulletin,
Volume 7, Number 1, February, 1975.

124

