Check for
Updates

AN IMPROVED HANDS-ON APPROACH TO TEACHING SYSTEMS PROGRAMMING AND THE IMPACT OF STRUCTURED PROGRAMMING

Roger T. Cooper and Malcolm G. Lane

Department of Statistliea and Computer Seience
West Virginia University
Morgentown, West Virginia 26506

ABSTRACT

The use of the hands-on approach for teaching ays-
tems programming presented at the 1974 SIGCSE
Conference has proved to he even more successful
in the past two years. The reasons for the in-
creased guccess are given. An approach of using
structured assembler language concepts as an in-
tegral part of the systems progremming course is
intreoduced and discussed. Specific examples of
the use of several structured programming macroa
are presented.

INTRODUCTION

There has been a dramatic improvement in the suc—
cess 0f the hands-on approach to teaching systems
programming used at West Virginia University over
the past two yeard.[5] The increased success can
be attributed to several improvements which have
been made in the pedagoglcal techniques used in
the course.

This paper will concentrate on the improvements

in the course assignments themselves and on the
most recent improvement, the introduction of
structured programming concepts into the course.
Appreaches for implementing structured programming
macrod for teaching systems programming will be
presented, and specific examples of the use of
several of the macros which have been implemented
will be given, Finally, the impact of structured
programming (structured assembler language) on
teaching systems programming will be inveastigated.

AN OVERVIEW OF THE COURSE

The basic principle used in the hands~on approach
to teaching systems programming is that atudents,
working in groups, will implement a small multi-
programming executive using an IBM 1130 in order
to learn the basic principles in the design of
such & syastem, In 1974 [5], the success of the
approach was demonstrated by a figure which con-
tained ithe information found in column 1 of Fig-
ure 1.

Figure 1 summarizes several important success in-
dicaters by comparing the first three of the
course yearsd (1971-1973) against the past four
semeaters, The most significant changes in the

115

course are the decrease in group aizes, the im-
proved quality and thoroughfieas of the documenta-
tion, and most importantly the percentage of the
systems which were successfully implemented.
These, indicators will be discussed later.

IMPROVEMENTS IN COURSE PROJECTS

The systems programming class is based on a multi-
programming executive (MPX) which the students
must implement in groups, The MPX asasignment in-
cludes the following:

A Task Scheduler

A Command Interpreter Task
An Input/Cutput Supervisor
An Error Message Handler
Memory Allocation Faeilities

One of the major factors which increased the sucw
cegs of the handa-on approach to teaching systems
programying was the redesign of assignments lead-
ing up to the MPX. It was discovered that atudents
had difficulty implementing and debugging a task
acheduler in the MPX assignment.

To remedy this problem, one of the first assipgn—
ments that students now undertake is the implemen—
tation of a small round-robin scheduler., Students
are provided with emall test tasks (subroutines)
te dispatch. They must give CPU contrel to aach
tagk in its turn, handle the saving and reatoring
of registers in control blocks maintained for the
taske (via linked ltats)}, and finally "cancel"
tasks upon request and remove the comntrol blocks
from the scheduler queue. When thelr scheduler
detects an idle state (all tasks. terminated), the
student scheduler must end its execution,

Early deaign specifications of the student IBM 1130
Multiprogramming Executive (MPX) called for the
implementation of an Input/Output Supervisor. How-
ever, the early assignments for writing I/0 hand-
lers for the card reader, line printer, and key-
board/console printer did not give specificatioms
totally consistent with the I/0 supervisor needed
for the MPX.[5] The solution to this problem was
to rewrite the specifications for all Imput/Output
handlera, The resulting assignment calls for the
writing of a more general Input/Output Control
System (I0CS) which can be used in the MPX with

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952991.804772&domain=pdf&date_stamp=1976-07-01

1971-1973
(3 Classes)

1974~1976
(4 Classes)

AVERAGE CLASS SIZE
AVERAGE GROUP SIZE
AVERAGE NUMBER OF GROUPS

AVERAGE LENGTH OF DOCUMENTATION
(Typewritten Pages)

TOTAL NUMBER OF SYSTEMS
SUCCESS OF SYSTEMS IMPLEMENTED:
A
B
C

D

PERCENT IN CATEGORLES

= Number
B= Number
C= Number
= Number

FIGURE 1.

27 22
3.7/GROUP 2.9/GROUP
7.0 7.5
10 53
21 30

4 10

7 11

6 7

4 2
52% 70%

of group projects with all features implemented.
of group projects with most features implemented.
of group projects which partially worked.

of group projects which did not work.

A COMPARIS@N OF THE FIRST THREE YEARS OF

THE HANDS-ON APPROACH TO TEACHING SYSTEMS
PROGRAMMING TC THE LAST TWO YEARS

only slight (if any) modificetions.
is a group project, as is the MPX.

This project

The course improvements indicated in Figure 1 can
be attributed to several things. The major im~
provement was due to the redesign of the assign-
ments discussed above., Students more thoroughly
understand schedulers before undertaking the MPX.
Also, a thoroughly tested IOCS can be used in the
MPX and thus IOCS should (theoretically) not cre-
ate major debugging problems when interfaced to
MPX.

Another factor was the reduction in the number of
students assigned to a group. In the particular
course being discussed, it has been observed that
students working in groups of two or three seem to
produce better projects than those working in
groups of four, Thus, recent groups have been lim-
ited to a maximum of three students, and students
are encouraged to work in groupa of twao.

Finally, more stringent standards have been adopt-
ed for design specifications, flowcharts, and do-
cumentation produced by the students. This has
dramatically improved the quality of written do-
cumentation of the student Multiprogramming Exec-—
utives while at the same time forcing students to
put more thought into the design of the MPX, TFig-
ure 1 illustrates that more detailed documentation
is now being provided by the students.

116

STRUCTURED PROGRAMMING IN ASSEMBLER LANGUAGE

The use of macros to facilitate structured pro-
gramming in assembler language has been undertaken
in various ways in the past few years [1,2,4],
Because of the particular need to aveld many of
the common errors (discussed later) that students
In the Systems Programming course make in assem-
bler language and in order to facilitate the com-
pPletion of the Multiprogramming Executive project,
structured programming macros for the IBM 1130
were developed.[3] The development of the macros
was undertaken with the basic assumption that they
were for use in the Systems Programming course,
The system configuration of the IEM 1130 used in
the course and for macro development is shown in
Figure 2.

Many of the macros developed are peculiar to the
gystems programming environment for the IBM 1130,
Others are peneral macros typically implemented to
accomplish structured programming.[1,2,4]

It should be pointed out that the extreme slowneas
of the IBM 1130 macro assembler in reseclving a
macro {primarily due to the slowness of the disk
drive) could detract from the use of such macros,
However, it is felt that the resulting improvement
in coding, debugging and maintenance of assembler
proprams can offget the increased assembly time,

TO THE IBM 360/75

MODEM

S|

IBM 1130
8K WORDS
4 | FR
2336 2501
CARD
READER

FIGURE 2.

CONFIGURATION OF THE IBM 1130

FIRST IMPLEMENTATION OF MACROS

The earliest macros written for use by the Systems
Programming class were called DSAB, ENAB, SAVE,
and RSTO, These macros were designed to alleviate
very specific problems encountered by students who
were writing a Multiprogramming Executive (MPX)
for the IBM 1130.[5] These macros were very suc-—
cessful in their restricted uses, However, they
did not provide any assistance to the students

who were trying to develep thelr first large

_ assenbler languape programming assignment,

During the Fall semester of 1975, a new group of
macros was added for experimental use., These
macros were for defining lcops and subroutines.,
An example of the looping control would be the
DO...ENDDO block, The DO macro recognized cne
operand, which was the number of times that the
loop was to be executed. The ENDDC closed the
loop and performed the incrementing and testing.
The loop count always was incremented by one.

The blocks DOl...END 1 and DO2,..END 2 were very
afmilar to the DO,..ENDDO block. However, the
DO1 and DO2 loops also allowed for the automatic
increment, by one, of the specified index regis-
ter (1 or 2). The macro used to define the be-
ginning of a subroutine was called PROC, The
PROC macro saved registers upon entry to the -sub-
routine; the code that restored the registers was
also contalned in the PROC macro.

Although thege macros saw limited use, they proved
successful when used. One of the major reasons
for the lack of use of the early macros was that
they were introduced after the students had begun
programming. The students preferred te continue
coding the way they knew, rather than learn some-
thing new., Alsc, the maeros were not powerful
enough to compensate for the fact that they slowed
down assgembly time. Students could not see a suf-
ficient return for the extra assembly time.

117

In general, the early macroa suffered from the
following problems:

1) They were all post—-test loops. This fact
is not, in itself, bad; but the implementa-
tion was such that control information had
to be divided batween the beginning and the
end of the block. Consequently, blocks
could be difficult to understand.

2) The macros were inflexible, Users had very
few, 1f any, options that they could use.

3) The names used for macros followed no pat-
tern, and the formats for labeling and op-
erands specified were not standardized in
any way.

4) The bdblock structure could not be viewed at’
a glance. The labeling of locop termination
macros was unnecessary and at the discre-~
tien of the.user, This made visual check-
Ing of code very difficult where nesting or
large Blocks occurred.

PRESENT TMPLEMENTATION OF MACROS

The macros written for the Fall semester of 18975
were supplanted by a more comprehensive set of
nacros for the Spring semester of 1976, With the
exception of the PROC macre, the old macros were
quietly discarded with no regrets, The best thing
that could be said about the old macros is that
they provided the authors with experience.

The structured programming macros In the new im-
plementation are designed eround the concept of a
block. For the purposes of this discussion, =
block 1s a unit of code that starts with a macro,
contains one or more instructions that perform
aome easily definable function, and ends with an-
cther macro. Blocks can be combined to form larg-
er hlocks or modules. Blocks can alsc be nested
within other blocka., A program may be one or more
blocks, This approach lends itself both to Top-
Dovn and Bottom-Up programming.

In this section, a brief description of all the
macres will be given, Of the macros described,
the macros @WHLE, GUNTL, @AND, @OR. and QASRI have
the same conditilon specification formats as those
described for the @IF macre in a later section.

Labels are necessary on any macros that define a
block of code. These labels are used to pass in-
formation to following macros within a block. All
of the macros that define a block must start with
the same label,[1] The only macro that actually
generates that label is the first macro in the
block, All other macros in that block generate a
derivation of that label that starts with an "@"
(1f they generate a label at all).

Since the macros of a block are designated by a
common label, nesting of blocks can be done, The
user is responsible for closing blocks with the
proper macro, If a block iz not clesed, an unde~
fined label error generated by the assembler will
prevent execution of the program.

SELECTIVE BLOCK EXECUTION
@IF...GEND

The @IF macro defines the baginning of a block that
is executed if the condition specified in the oper-
and field of the macro is true. The block 1s ter-

minated by the @GEND macro.

@SLCT..,QCASE...@DFLT. . .@END

The @SLCT macro defines the beginning of a "se-
lect-one~of-many" block, The accumulator is test-
ed for a value between zero and the number of
cases defined. A branch 1s made to the corres-
ponding case, Each case ia defined by an @CASE
macro. If the accumulator containe a number out-
slde the range of case numbers, the code begin-
ning with the @DFLT macro is executed, The @END
macro always terminates the @SLCT block,

REPETITIVE BLOCK EXECUTIOM
@po. . .@END

The @0 macro defines the beginning of a pre-test
DO loop that is similar to the DD loop of PL/1.
The loop index must be specified by the user., It
is incremented and then teated, An exit from the
loop occurs when the index exceeds the limit-
ing bound. The €DC block 1is always terminated by
the @END macro.

@WHLE. . . @END

The @WHLE macro defines a pre-teat loop that is
executed while the condition specified is true.
The @QWHLE block is always terminated by the GEND
maecro.

@RPET. ..AUNTL

The @RPET macro deflnes the beginning of a block
that is repeated until the condition spacified
on the QUNTL macroc is true. The GUNTL macro al-
ways defines the termination of an @RPET loop.

EXTENDING CONDITION TESIS
@AND

The @AND macro defines another condition that
must be true before an QIF block will be executed,
The @IF block could then appear as:
@IF@AND...Q@END, There is no limit on the number
of @AND macros that may be associated with one
@IF macro. This macro may also be used in an
@WHLE block.

@OR.

The @OR macro defines an alternate condition that
may be true to allow the execution of an @IF
block., The present implementation allows only one
@OF. to be assoclated with an @IF block. TUsing the
@OF. macro, an @IF block would look socmething like:
@IF@OR,..@END; or perhaps: @IF@ANDGEOR,.,QEND,
This macro may also be used in an @WHLE block,

118

@ELSE

The G@ELSE macro defines an alternate path that is
executed when the conditions that allow execution
of the OIF block are falso. The @IF block could

then look something like: @IF@AND@OR,,@ELSE,.@END.

SUBROUTINE BLOCK EXECUTION
@PROC. . .EGRETN

The GPROC macro defines the beginning of a aub-
routine and provides standard linkage for all sub-
routines, The @PROC macro saves all registers on
entry to the subrocutine. A subroutine is always
terminated by the G@RETN macro. The @RETN macro
can speclfy that the contents of certain registers
be tranamitted to the calling routine. If no such
registers are specified, all registers are re-
atored before contrel is returned to the caller,

@EXEC

The @EXEC macro is used to call internal subrou-
tines. The @EXEC macre allows for the passing of
an argument list to a subroutine.

@CALL

The @CALL macro is identical to the @EXEC macro,
except that it 1s for the calling of extermal

subroutines., An external subroutine 1s one that
is assembled separately from the calling routine.

QARGH

The @ARG# maero.is used internal te a subroutine
te get the count of arguments in the.argument ..
list. This count is placed in the accumulator.

@GETA

The @GEIA macto is used internal to a subtoutine
to get the value of an argument that was passed to
the subroutine. The value of the argument is
placed in the accumulator.

@rUTA

The @PUTA macro is used internal to a subroutine
to change the value of an argument,

SYSTEM MACROS
PROGM, SETUP

The PROGM macro must be the first statement en-—
countered by the assembler in any user program.
This macro generates only global SET symbols that
are necessary for the proper assembly of all other
macros. TLhe SETUP macro must be the first state-~
ment executed in a user program. The SETUP macro
Initializes certaln necessary values that are used
during execution of user programs.

@DSAB, @ENAB

The GDSAB macro is used to disable interrupts so
that critical sections of code can be executed

without interruption. The @ENAB macro enables in-
terrupts so that normal procesging can continuse,
These macroa are slightly modified forms of the
DSAB and ENAB macros presented in Lane [5].

QINT4, QILSW

The @INT4 macro defines the beginning of the in-
terrupt handler. This macro saves the contents of
Bll registers on entry td the interrupt handler.
The save area apecified is identical to that de-
scribed for the @SAVE macro in a later section.
Thie macro is also necessary tc the proper func-
tioning of the @DSAB macro. The QILSW macro is
uged by the interrupt handler to determine which
device ceaused the interrupt and to branch to an
appropriate routine,

@SAVE, @RSTO

The @SAVE macro saves the contents of all regis-
ters in a atandardized save area. The GRSTO macre
accessea a standard save area and restorea the
contents of the registers to the saved values,
(These two macros are generalized varsions of the
SAVE and RSTO macros.[5])

@ASRT

The @ASRT macre is used to test the truth of a
apecified condition. If the agsertion is true,
execution continuea normally. Otherwise, the
macro causes execution to enter an infinite loop.
In this way, the programmer can catch errors be-
fore they cause other errors.

@BIT#

The @BITY{ macro returns the bit position of the
first bit on (counting from left) in the accumu~
lator. Since bit zero may be on, a value of 31
is returned if no bits are on. This macro was
designed to be used with @SLCT.

DESCRIPTION OF @LF AND @DO

In order te give the reader an understanding of
the specific macros being discussed, the formats
of the @IF and the @DO macros will be briefly
presented, The descriptions of macros include
example formats for macro calls. In these for-
mats, words that are capitalized are macro key-
words with special meanings. Words that are in
small type indicate that the user tay vary the
word that appears in that field.

Many instructions are built from SET symbols as
macros are expanded. Thie allows readability of
the example expensions, Readers will algo find
that the examples show aingle quote characters
where "@" aymbols should be, Also, equal signs
appear imstead of the "#" symbol. This cccurs be-
cause the 1130 system substitutes certain charac-
ters for some other characters that do not appear
on its print chain.

@IF...@END

The @IF macro defines the beginning of a block of
code that is executed if the condition test

119

specified in the operand field of the macrc is
true. The QIF macro has several simple formata.
They are as follows:

lab @IF wvarl,cond,var2,L
lab @IF wvarl,cond,var?
lab @IF var,8ZERO

lab @IF x

The word "lab" denotes & three character user la-

bel. The word "cond" denotes a comparison that
can be written in any of the fellewing ways:

cond meaning

@EQ varl equal to var2

@NE varl not equal to var2

@t varl greater than var2

€GE varl greater than or equal to var2

eLT varl less than wvar2

GLE varl less than or equal to varl

Wherever the expression '"varl" occurs in the for-
mats above, the word @ACC may appear to indicate
that the comparison is to be done using the IEM
1130 accumulator,

When the letter "L" occurs ms the fourth parameter
in the above format, the expression "var2" 1a uaed
as a literal value rather than an address. Other-
wige, the expressions "varl", "var2", and "var"
are regarded as addresses of the data tc be com-
pared. The word "@ZERO", when used &s shown sbove,
indicates that the block is to be executed if the
variable "var" is zero.

The letter "x" in the ghort format above represents
a gimple comparison against the condition of the
accumulator, The codea that can be used and their
meanings are as follows:

]

meaning

ACCUM positive
ACCUM negative
ACCUM zero
ACCUM not positive
ACCUM not negative
ACCUM not zero

D ACCUM odd
ACCUM even
Overflow bit on
Carry bit on

nobsgﬁ%%nzve

The GEND macro must always close an @IF block.

@po,..EEND .

The @DC macro creates a repetitive loop that is
much like the DO loop in PL/I. @DO sets up a loop
with a pre-test, so that the specified condition
i1z always tested before the loop is entered. The
forma of the @DO macro are as follows:

lab @DQ wvar,bndil,bnd2

lab @p0 var,bndl,bnd2,L

lab @DO var,bndl,bnd2,BY,incr
lab €DC var,bndl,bnd2,L,BY,incr

The operand "bndl" specifies the sterting value of
the loop. This 1is considered to be a literal

value, unless replaced by the word "@ACC". @aCC
indlcates. that the starting value for the loop is
in the accumulator,

The operand "bnd2" specifies the terminating value
of the loop. This operand is considered to be the
address of the bound unless the letter "L'" appears
as an operand. When "L" appears, "bnd2" is taken
as 4 literal value.

The operand "var" is the address of the loop in-
dex, Since the index registers of the IEM 1130

are located at memory locations 1, 2, and 3, the
index registers can alsc be used as the loop in-
dex in any @DO lcop., This feature allows flexibil-
ity for indexing through tables of data.

The loop index ia modified by +1, unlesas the wozd
"BY" appears as an operand, in which case the in-
crement "incr" specified by the user 1g used to
modify the loop Index., Increments may be positive
or negative. The block started by the @GD0O macro
must always be closed by the GEND macro.

DESIGN CONSIDERATIONS OF THE MACROS

The early macros were useful in testing out ideas,
The two biggast problems in writing good macros
were 1) making the macros both useful and easy to
use, and 2) the IBM 1130 Macro Assembler. The
method of labaling each macro in a block with the
game label was implemented only after much thought
as to its aspects from a user viewpoint., Due to
restrictions imposed by the Assembler{3], any
method of passing infermaticn to following macros
through labels is both necessary and at the merey
of ugera. Other methoda that did not depend on
users could not be implemented on the IBM 1130.[2]
The methed used in this implementatisn iz both
eagily remembered due te standardization, and
easily desk-checked. 1t has the added attraction
that asaembly errors occur when cexrtain critical
macros like QEND are omitted, This prevents

user programs with an invalid block structure
from executing.

The macro names have been thoroughly considered
for readability and standardizaticn where possi-
ble. Since the 1130 Macro Assembler allows only
five-character names, explanatory names used by
some authors [1,2,4] are immediately ruled out.
The names of macros used to end blocks are of
particular interest in themselves., The method
of reversing the spelling of the loop-starting
macro to produce the terminating macro has al-
ways been unacceptable to the authors, DNA makes
a fine molecule but a poor macro name, And, RO
is one way to make a boat move (and FI on you if
you think otherwilse). The combination of match-
ing labels and standardized end statementa [1]
has proved to be reascnably readable and easy to
use,

The looping and selective block execution macres
now generate pre-test loops (except for @RPET, of
course). By doing so, more overhead is generated,
However, the resulting code is easy to follow and
to use, There is no possibility that s programmer
will terminate a loop with the wrong macro, and
actually get into execution. In addition, the

120

macros now generate error messagea and informatory
nmessages where applicable. This facilitates
debugging,

THE IMPACT OF STRUCTURED PROGRAMMING CONCEPTS

Over the seven semesters aince the Fall of 1971
that the Systems Programming course has been
taught, there have been a great number of errcrs
by students which keep occurring again and again.
The errors generally deal with "clobbering" regis-
ters, save areas, control blocka, instructions,
and pointers with incorrect data. In most cases
the overall design of each student project is good.
However, the tedious process of maintaining bits
and bytes at the assembler language level and the
inability of the IBM 1130 assembler to detect such
things as mlasplaced operands {which result in ad-
dress flelds of zero and no errors) create errors
which have a negative impact on the learning ex-
perience which the course has as its basic goal,
This gozl iz to learn the principles of operating
system design, not how to write IBM 1130 assembler
language programs, The IBM 1130 and its assembler
language are merely tools to implement a system
that the students design themselves, {It should be
noted that the IBM 1130 is the only computer syatem
at the University avatlable to computer sclentists
for using the handa-on approach to teaching systems
programming [5].)

The addition of macroa for structured programming
ytelds a better and more powerful tool for the
students to accomplish the above-mentioned goal.
The structuring of the students' assembler language
programs exposes students to improved programming
techniques for the design ef opexating systems, It
also eliminates many of the bit and byte errors in.
eimple tasks such as programming loops within their
programs, In this case, a single €DO.,.@END pair
can accomplish what might require ten or so in-
structions without the macros. Thus, 1f one as-
sumes that the number of exrors made by the stu-~
dents 1is proportional to the number of 1ines of
code written, fewer errors should be made, and
hence, the MPX system should become operational
earlier in the semester. Finally, the structuring
techntques which the macros introduce should fur-
ther reduce errors made by students.

Figures 3 and 4 1llustrate the uge of several of
the macros in the implementation of the MPX pro-
Jects. Tt should be pointed out that the examples
are exactly as they appeared in the students' pro-
jects, {(The appearance of AGO assembler instruc-
tions after several of the macros are the results
of meaningless warning messages printed by a
rather archaic assembler,)

One MPX preoject
May 1976 used a
most all macros
were eliminated

which was fully implemented in
very modular approach. However,
(used earlier by the students)
from the MPX because of the extreme
slowness of the IBM 1130 Macro Assembler in pro-
cessing macros. The students implemented this MPX
using external subroutines to structure the system}
a data communication module was implemented as a
subroutine to provide access to common data areas.
Such sectlons as the first and second level inter-
rupt handlers for all devices, the command

w
- -4 [(8] = Q (=]
¥ Z x <Qqw o & b=t Lo [a) < 20 oY WU o
= O - Wz w w - - 4 (= I w Qo - <0 agy W 2
Z ey - vy %) = a. - W > o v M o of Fa b !
Qg Z L - - =2 [= - -l gz 0O 0O w - o X Z W o
W < Lanl o Z Zz ¥ W o I < W Z W T X ¥ a0 wuwy 0OZ o ZnZz Z <
xz <=l — G o= D W IXO 19 o. [) Q - £ X= Qu 2D D e 4
Z e Z =ZT TN oL O T o = W <L W =Xk o [cal+a) - z =2
o oW O = Q= o < OO O« LW oy WX ~ |l TSR TRITE} o el W U
[l ==] - 0 Z = ko o La o M=o =0OWR0 T - G Wo > > 0 o o Q Q
- Q - o2z DZIZYOOW & aow [- 4 A Z9d ¥ O9aXzZzo ==-ald a0 D20 EZ20 =0 QW w»a O -4
[R (% 7. B e 22 T b= U D - v [m) e Vi & a0 <xuwk~ O orZ -3 X0 VA0 O «
z O Z o Tt AD x M¥ZD = X X ZOU<T Z X aa Zw O 0O i x T O Z -t (&)
- WE = uaun WIZ e N V] = ZE U E Z v Laa =] [+ 4 OunE =z DOE X w
[TH 4 u. Of et e W D w wvo v IO wog - NDK VNN O el WFE Wy ZFTLZO & & -l
Z2 oow q XOCOD =Z W0 =Z =ZOk¥nN J HIVD K aOF = WL VHE =D =Z=o02 2 -l
w Ok TS o b of VI of] =t pr 0N e v CW XWVE = WWeID»Z [X = -t s—tbe L]
- WY e WWLOY QW= L O gl - 0 ULIdWNULUZ NdZWignnQoOmDIyr ZoW WO =llotk-0 =03 Warulo [4
41T} oQQ OqY IO —~ELoOI NODEmELE ETC-XWUID0 O O w 3 @O s =XWZ0Z-wodwoll Iul
o w v O S U EUILOVO = o O = Ok Z < o L= <L =QOL >0 QA = ND-OX WV V1 =
Q I=D O N ODEZOZKR Z- EdE Zwt rimil=d I ZT =JdOxX—2UW U DxZ ~ Xk QO = Z=D0XO0WVOD=3 =D
Ll & el] ZWe I OFE oW O XOZOWWISL) w EBQ OO <D0 AR) UVY W Q) =
o WO o e b Of b= O = LIZ vi DoZ4a QzZzz Wwo ALOxXO M=l =] wo =OWwOWwo o
|t 4 B s o 4 ZrUQZov O &N =0 0D ZAVUL U IoUOO0 ODVI WI- WYFOWAZD b Ok
= - - DO Saem D et WSEWm) W00 g T et < i QOKD = SO L o X O o (&)
0D A0z = ao O VDO~Z A FI=Z a =X o£Iq . ITTa0Z00 Okid Jd ~ W b o IOZXAYETWOZOZ a2
O w=O = safu) O d.Ow <O Ol CNIXILO T DAY UIm-Qrsswuovnul » Yo Wik =X O o
o b D ™ o (8) [+ of o P QO &P ON O W Z -2 @ Do OFY Qoo = D = ol D =2 03
[I S« B S —— = QOd OFOO0Q OFW = b Sepermpepb Q200 IaZ SO rmmbrm O b= =
W ZDW W Wk W ETLWLWGRD ADWARD VDILWLDIT CWISZIWUWEWOR & O Ok & ZOWUZWWDOWOW Oul
= pa = OV OO ORIV) =OPIN =A ODm A0 MUG A X SOOI~ D AL A OO0 O W
- - o -] -
- Z > D0 + MIPZ e AN E> W ZOZAE ¥ => z EX X = w Z® @ O _ZWZ Z
LU A0X & 9 XOOxX<d FIZXOdOd =i Z9q - FOZRZ NZWWOX T &ZF %W Zud WUW>#>Ogaoa o00owx o
2 - Z VDA LINZ DN AN U Z T O EQXnO-ZUW EQ G220 D20 At Ok
D YUl D OFIe=I<OJOUZT QOO T TOZ e —XZOTX~ ATl EQZ2Z EZ JOO @QATVNOLWNNEXMZWWWTL I
L INY . CRONSOODICZ2US-dOOn $LaI00m LnNZuoa™s O NEDRL 20— Q- JT-WCZRSSSGSZRTR —Ct
& # —t g [w]
ol s wd o i ed [T PO R O P L) LLLLIALLL - -t ot e it) e ah nd e b o] e e 0L...._LLLLLLLLLL)
L -l
Q [-t w W Lo g o - [a]
w00 Zuw.Q oo - O O a0 O Qo Xam~n OO0] OO0 OxXxZ Oogd O o o] <
D W D8] e I IO AOZOOROCX FODOAZ -QMNOND I J1Z Dm0 ORI OO Wk O —=D O kO Q WO
- g IT* » DL ud TN IQOOQL I D ST SSLASLAASLBLBLSSBLSXLELASLASS!ALSH-LS:EXLBLXLSSLBLB'LB
<L - L
o - 4 - - il - |
(= = < -« =2 | (%
-z —ar— « o bt z = @ z -
<0 XL - 4 wd - o - X
[STW} L)t * »* 0. © © k] (&) -
+ + +
o o o

Wil DO MOWONNNNNDO ~SNINOD @OWN-N o af e N LLIOO O LN W [TT[TRTI IR O UHODMOINOT WL O
QP et ~—O U, AP O R P PP L T e - et~ =] DD OD P A PP Pt - NN oy O P 00 O P COP= it Pt
—— et O GO o oo rd 7=t g =l] rod et Aol et et et D O o bt O e et e e et € el ot e bt et (oA #A D
[=lele) OOOM~ e lalalolalalulelatle] [=lelulele Bl alelwle olols] [elelaislalsolalalels e QOO OO [a]atelnlalelelololals ool
oQO OOONO-MNYTOOOMEONDORET QLQUOUON COOQMO-OTONOUDOOOQ0DOVOD QWO OO0 COOO0O0OLO0OOOo0L QO
(S 18] FFTOANrODE FF O OT OTE OFF QT FFFOF OO T 3 O WO OO0 b ONQE QT I OT0 U
[S 1F 4 LOONHOOOOLOTTOUTULDOL MOLOOU WL O Cmdmn VLOOUTUOOOO [Tan] RS s | OUFTLIOVTDOUF O U
[olale OOONOHMFAOMNOOOCOQAQOOOR OOGO0D COOOCOOOOCOOOCOCOOaCDO0 OOC OO OQQAQOOOOOOO0 QO
Vo ot] C3 e et (AT LD M D L OUIQONN D@ T W =M~ COOL ~MU N OO~ O ROWS GO <0 WIGNG DT AIUDONT DD
Lt o DA ICTIIACAT < IDONM MO OB ILIVUILOQ00OQ0OW Lo OO O end md el el e el ek = U SUEY NI
OO0 OOOIANQNOOOOOOQRAOMNADO SOOQ00 [el=tolrlrimlielolelwlulele ool (ol lolols la) OO i edrad il i ek] 2l £ pd gt i ittt

jalolal CO0OQA00OCOOS000000 OOCDO0 CO0CLOCCOOO0OO0O0000000 000 0O [=lelelelslalelolaleloleiNole]

AN EXAMPLE OF THE USE OF THE @IF AND @DO IN STUDENTS' MPX PROJECIS
121

FIGURE 3,

#* 3% # * L X T NI EREREREE X a
w * - * * e ¥ - * % = X
Z WZ ¥ W » * IgS # = &+ # H#HE (=
- ZO % Ve 3 =z *UWEET & =2 * = LA (&)
i * Q L -1 N R Q * # 0 * %
D =i NZ X e - * O e o ¥ W~ #*# W 2z
O DOZ# mx % z2 (L] #* W = * - * 3% - *+x > Q
o QZ—E D # - [t D= Lo #ZLLW » - = < #HO T R A ol
Db - # Z z (= ~Z *#O=U- < oz o * # 2D *# -
OZ UWIDRIT AU O =2 (& s) uex HO = # D [- 4 O LA -4~ X J <
Zaelw QepulLyr #LOO [[m=] =) +# <y # ul (L 3] Lap =0l HE O - 4
Od— Qs = *O0O WV [)4 Qo Wh= Pa HL T —d =i <z * Y efq g ZO [TF]
OO @ WXL e V) poe’ <o =IO -4 * I > * - IO oAl of ##ZONESE dd -9
EOVMCDRT D # W W . L] @D W =Y 2 *=0Z # - (TN - 429 Q=2 LR i W=l X J -t <
VNZZ VN a4 RULY & EID (7] - — #* e 3 [-4 << - 4 O UL z
ZWwoOw ¥+ e— FOW O WI 1. AWZ W NE «aldD # w 18 AaWZY OOZW VtHEEDaRsE v < SWO
DOYULU—XR «Qr # I O O -y ID) Y URZTo QW - - LIS] Ll - JENET R B G -4 R
|8} - O ZUWey #0x < Z W [} 0Oa © Q% Wm * -4 O O uwuw O #llk-4# # WO J -
(13} DUONXH ->a # bt T b Lal 2 e) i (D 3t = ~© W=D~ DOV # 20, # # AN [T]
AL Qb fxd O #OU & OO "o -4 4] YT ST o n o il vid ## DO ¥ Dol =l
o o« = WL * XD W Oemod why WY o ERWY OZ *® - [t ZoWE WIUCWIH 4 WEZH# #-adxva aav
ZeoID WOXOC #W o * u xo o OO0 = COFEOVD o3 W [a) QOO0 VAW ODE § T TH* W L
"~ < LSOO EW e W W g 00 o0 O EROZW Z# o W O OO WU D A W 3 * Wi WO
Zwa QRO #0H0 2 IOT = O e O M ULROAEQESF W T e O Ul XOEQULAE FORFXO0ZLII O X
QT o ol » HOAZ ol £ OO0 -l < * —-28 T 0. -l [aTal d WU Tl Ut X W
N - v WNZTH T 3 - I NeZLT X ZZ U ZHDU = N o Z sy ZZ DO QLZZTXXD—UEE = rZ
e P U= O U - R W b Wy Oowuids kAN Tt W O QWY Yy, wSJdIW orocdt 00X Y O
KO =2 nNee # W O DX - oD wATDD G DRUD-IXH O F W e D [- pas o LD FNAUNHF OO0 WZA
=0 bl WL #> O NAODtrd OO =RDO VD e LT el o T B e e R el A T
DWW VBRI E DT $ud = WOSOJIWE W W O WO W Wi = W W WL W=D S U= R IZ T X WX
QAN Dt it = e O #) D WV Ve & XD = e O R WLOOO# V) e =X - iy OONOEER N WERI =00 XDV
+ #WOw #* Le - *orwe Wl - - LR X=r4-2 % T
QI UWPO0M Mo« W3y X DOOOWD QU Z - Z# D> =LURWER Uk Z > k= Z4*0OW #¥>o- w V)
N I IR 0O #40 0O TAXX QW xoax o o gruudaxH<ar Z2oould) e o o O oA $dITUdedIaQ.0 O o
- DNUWREZOERQKd #NAUWO =N GaEr <$OW e O edt Ot N ooy <O = WD 3% ¥ TTHFN-ON OV

ECVNOXWLIOXX# LW HOLZCCDOIITITIY TOOW aDURmin <CRHOTOVOTTIINE LTOEOW OFULOWEHW it % =ZDTomm
RRIKAAKACTE““FR # AVODAA IOV XY Oe# d »OF UL LDOFL OXO=X SOOI # IO % # Q=g
ik

®* DDZ . * QU b I =]
ST N R N O i R R L] A ol wed o =l AR O Femd J e el A A AR READDR R -t ek
+* ®* O * WOl B

*ZOWw Q [# Z WL (=} [=] * % LN % #)
oS0 O O #*WZom O a9 Ouo ZULEOT Z0« #WxZLO# O<COuno ZLx0qa Z OOC #H¥# X #H42Z.) R
Ol ZMNENG L 03 D= o O e OO0 WD eded W g # TSSOV Qb db= (D0 W—Omiad WD Freild # # WK 3 e DN 0
AN ITDID IR E WO JNINNNSNe » Lille = EXND= XKOOF TW WV JVIVTHN = & e = TxNDe SV R % Vit ¥ = » IR
* —ZW¥ *+ I L oL A

*
*
*»
D *
#
*

* ZOO%RO * LVZZ #ad *RHODIRRT O
* O wvisxD +* ROV L X 1% RO -
* QU% > . 4.4 ofwt < * VUOLZRZ ~N ~ b * AR D
o * Ot ud xor [4. 4 o * OO O - 4.4 . 4-4 o A W et WD
x LE XX X X 3V xer [- 44 o RN RO e e o X XL XX BTN

QPO = O 3100 N0 P 00 TN £ st N 00 <3 U D 1 00 0 O rmd OV o350 CF O red 123 (8O s O (4930 P 00 TN CO et NN 3 UND P= 00 08 QO OULDA0 P v UV OP= 00 RO T {0 O P O Ot M T N O 00 O D1t 0V
QWETFROPCT O POOOQOOOIO L) smdrdrdrmt e of P00 00 I OO NN (O F T F NN NN LN L N LOLN O O OO oI P P P e VNN OV O VO O QO O OO0 O~
DN Y W LN U) U D WD SO0 00 W~ N D D ND N S WO N AD S S =P 1 o o e P P o P P e e P [P P e e e e G000) 00 €0 040 €0 G000 O 60 £0 I D MNP (OO NV OV O
[elalalelalelelels olaldlalilalalslalelslalililelalalalnlulolalelololele wlololelololelole lo o le ol e el b e et b odd
[olelelalElelalelelelalal STaTa SIS IS SIS SIS IS Ta ToTE STala T ol v lalelala lo] ol el ale lole (e ol =T ol il =T wls e lalv el v lwl=lola oo Talo IoTate tolalm e Dot o I oo fa Lo Ln e L o)

QN QMmN O m cur=INM DMK r~o OC Ww O w N O ~a QO W oNANmO W Oouw onN
W@ OO0 OM M~ P00 e ™~ NP - 0 - ~M & r~on M = ~~-me ™o MQ
WO D= NN =L Nt e Pla) W O 0N O i 1N —in nn © At O neh
00 0QOO00Q00 QOO0 000 QO Q0 O QO O o0 © (=1 QL O QoL O o0 OO0
[~/alalalslel 1ol]ala] OOV ODOL (5 4] =-_OLO OV LOoVo (&5] HOOUO Q0UWOO ORI
[olelaleinielolelolels] COQO-ONC Qo QOO QMmO DO o0 0O—C LOOOo~O OO D
AIOTETOTOUI0 S O U SO0 QO O) FTOUOW ITITO0o0 TOOTTO
(S Talota KITECY IO IS LONO~NODWE O POy Oy vo~o (81X POt OO~ (B0 o el ol
e el ot ped et bl ot e ol et el bl g —t ot ot e e L] ———t el e edrdrdrd e el -0
[al=lotelel=lv ta Lo [w o] QOOOQ0O0C [lor) QOQC OO [»l=lele] oQ o000 O0QLO0 [slelele lele)
QW r-NFORCULO (S EC LY. Xo{. [l D WWO= AInD NLLO 0 LOOUN =AU Nl N
el NN OO AN N) Dalalalalalahalys oo MR Qo 00 0 0 o LOVL CQAROOD ORQOO0
NN NN N NN NI ~Ney OV N DN o NN NN NN mMfimnrnm

j=falelelototeToleToTo] [elalwlelalelola) oo oOO0C OO0 (= wlw]e] f=l=] o0 OOaDOO CoOO000

THE USE OF QIF, @OR, @INT4, AND Q@ILSW IN A STUDENT MPX PROJECT

FIGURE 4.

122

interpreter, etc., were all implemented as external
subroutines. This ils not an unusual approach 1f
one has a reasonably good assembler (with auch
facilites as GLOBAL symbols), but using the IEM
1130 system, the students had to carefully select
techniques for using external subroutines which
would work under the constraints of the assembler.
The point here is that the structuring of this
project greatly decreased debugging time. The
fact that the preject was a class A implementation
(see Figure 1) attests to the fact that this par-
ticular structured approach was successful.

Students who completed the courge in May 1976

were instructed in class on the use of the macros
described in this paper. The use of these macros
was highly recommended to the students and all
students in that class used the macros in some or
all of thelr assignments. The results of the
recent introduction of the macros is perhaps best
conveyed to the reader by comments of the students:

"The macros were very helpful in the imple=-
mentation of our MPX project, By using the
macros we saved time which normally would

be spent keypunching, coding, and debugging,
Fewer wild branches were taken since the use
of the @IF macro needs no branching."

"The macros were extremely good for the mod-
ular approach to programming, their best
points being looping control, case testing,
conditional testing, and the ability to
change core memory compared to the previous
case of only being able to work off the
accumulator, Conditicnal testing proved to
be quite powerful, especially in the use of
IF-THEN-ELSE tests and the IF-AND-OR~-THEN
tests.

"We initially used the macros extensively
in our first project (IOCS). They proved
to provide quick, easy, error-free coding.
But, because of the slow disk on the 1130,
the assembly times for IOCS were unreal-
istic "

"In writing the MPX, we have found that the
macros can be a very effective and time
saving approach, -Several of the macros
provided a means of writing code without
getting bogged down with the details of
every step of the program."

"Use of macros made program implementation
easier because of the followlng:

l. Programs were easler to write since a
macro is a form of a higher level in-
struction. Many operations could be
done with only one statement.
Programs were easier to organize and
debug because blocks of code are nat-
urally divided and isolated by the
macro and its GEND statement.
Problems were easier to isolate be~-
cause the macros could be assumed
correct, pointing to programmed code
as the source of trouble.

Fewer statements had to be written
and therefore fewer cards had to be
keypunched, eliminating another
source of error.

123

"Given a faster machine which was designed to
incorporate macros efficiently, a2 programmer
would be foolish not to use them to his ad-
vantage, However, their use on the IBM 1130
ia not attractive because of the great a-

mount of tlime required to resolve a’ program
incorporating macros due to the slow disk."

The conclusions given by the students were unant-
mous: 1) the macros are a valuable tool and
proved to be very useful in eliminating program-
mer errors; 2) as projects got larger, the ex-
treme slowness of macro resolution on the IBM 1130
forced many students to abandon the use of many of
the macros. Hence, the machine being used for the
course does not have sufficient power to make the
use of macros attractive for larger projects.

It 1s hoped that a new system, more sultable to
the structured approach described in this paper,
can goon be acquired for use In the systems pro-
gramming course. In the meantime, methods for im-
proving the IBM 1130 macro assembler are beéing
investigated,

SUMMARY

The hands-on approach to teaching systems program-
ming has been successful in the past and 1s im-
proving every semester, More stringent standards
for specifications, flowcharts, and documentation
have greatly Improved the course. The use of
structured programning concepts {e.g., via the use
of macros) in writing student MPX projects will
likely produce even more dramatic improvements
when a more sultable computer system is acquired
for use In the course.

Five years' experience in the hands-on approach to
teaching systems programming has proved that stu-
dents who finish the course discussed in this pa~-
per possess a therough knowledge of the basic prin-
ciples of cperating system design., (Many have been
guccessful as. systems programmers iIn industry with-
out further experience in systems programming.)

The hands-on approach indeed gives students enthu-
siasm and motivation which produce remarkable re-
sults, The addition of structured programming
techniques to the studenta' hands-on experience
will make them far more accomplished in the design
of operating systems.

ACKNOWLEDGEMENT

The macro block labeling method described in this
paper and other ideas were contributed by

James F, Williams of the West Virginia Unilversity
Computer Center,

REFERENCES
1. Harris Corporation (Ddta Communications Divi-
sion), Remote Communications Processor Agsem—
bler Language User's Manual, Dallas, 1975.

2.

Herman—Giddens, et al., "An Approach to
Structured Programming for Users of Small
Computera", ACM Southeastern Regional Meeting,
April 14-16, 1975,

International Business Machines Corporation,
IBM 1130/1800 Assembler Language, Boca Raton,
Florida, 1971.

Kimura, Takayukl, "Structured Programming in
PDP-11 Agsembly Language", Unpublished Manu-
script, University of Delaware, Newark,
Delaware, 1974.

Lane, Malcolm G., "A Hands-On Approach to.
Teaching Systems Programming, SIGCSE Bulletin,
Volume 7, Number 1, February, 1975.

124

