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1..INTRODUCTION 

The problem of addressing a large address space 
with a limited number of address bits is an old one 
[Bell and Newell, 1971]. The problem occurs in mini- 
computers which, with their short instruction word 
lengths of 12 to 16 bits, allocate only 8 to 12 bits of 
each instruction for specifying operand addresses. 
Hence each instruction can directly access only 28 to 
2 r2 words of memory. In order to access the remainder 
of a large (say 216 word) memory, mechanisms such as 
bank switching, page registers, base registers, zero/ 
current page addressing, and indirection have been used. 
Each of these mechanisms allows a subset of the entire 
address space to be accessed easily while requiring 
some additional overhead to access the remainder. 

A similar problem has arisen in the development 
of integrated circuit microprogram sequencers. A micro- 
program sequencer is a circuit which, along with micro- 
program memory, comprises a microprogram control unit. 
As a minimum, a sequencer must contain a microprogram 
address register and logic to update it. The output of 
a sequencer is a microprogram address which is used as 
the input of a microprogram memory. Each microinstruc- 
tion (contained in the memory) contains various fields 
used by the controlled machine (e.g., computer proces- 
sor) and also a specification for how the address of 
the next mieroinstruction is to be computed. This 
specification, along with status information from the 
controlled machine, is used by the sequencer to compute 
the next microprogram address. 

A typical microprogram control unit has between 28 
and 2 I° microinstructions, requiring a microprogram ad- 
dress of 8 to i0 bits. Most microprogram control units 
have an 8 to i0 bit microprogram counter that is nor- 
mally incremented to get the next address. Conditional 
action can be implemented with "skip" instructions that 
add either one or two to the counter depending on a 
machine status bit. Thus a microprogram sequencer 
would require only 4 bits to specify whether the micro- 
program address was to be incremented or whether one of 
15 different conditional skips was to take place. How- 
ever, when unconditional jumps such as the jump back to 
the beginning of a loop are to be executed, the entire 
next address must be loaded into the microprogram ad- 
dress register from a field in the microprogram. Hence 
at least 9 to ii bits are normally used to specify the 
next address: i bit specifies an unconditional jump or 
not, and 8 to i0 bits give the target address of the 
unconditional jump or further specify an increment or 
conditional skip. 
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It is desirable to minimize the number of next- 
address bits for two reasons. First, this reduces the 
total number of microprogram bits since a next address 
must be specified in every microinstruction. Second, 
it reduces the number of inputs that must be provided 
for an integrated circuit microprogram sequencer; this 
is very important because of the rapid growth ~f cost and 
unreliability with the number of input/output pins of 
integrated circuits. 

To reduce the number of next-address bits a two- 
dimensional addressing scheme is used in the Intel 3001 
microprogram sequencer [Rattner et. al., 1975]. This 
scheme, described in the next section, allows the next 
address and the conditional or unconditional jump type 
in a 29-word address space to be specified using only 7 
bits. Extensions of this scheme to higher dimensions 
could allow the next address in a 2IS-word space to be 
specified with as few as 5 bits. However, the reduc- 
tion in the number of next-address bits is paid for by 
a corresponding decrease in addressing flexibility. 
The reduction in the number of next-address bits is ob- 
tained by limiting the number of addresses that can be 
reached in one step from any particular address. It 
thus becomes possible for a programmer to write sym- 
bolic (assembly language) programs for which there is 
no valid assignment in the two-dimensional address 
space. Although there usually is a valid assignment 
for a "well-behaved" program, it takes many hours for 
a programmer to make the assignment by hand. 

The work described in this paper is an investi- 
gation of procedures for the automatic placement of 

symbolic programs in a two-dimensional address space 
such as that of the Intel 3001 microprogram sequencer. 
By obtaining results for the specific case of the Intel 
3001 we are able to make recommendations for the use of 
multidimensional address sPaces in future designs. 

2. A TWO-DIMENSIONAL ADDRESSING SCHEME 

The address space of the Intel 3001 microprogram 
sequencer is organized as a two-dimenslonal array with 
32 rows and 16 columns. Hence there are a total of 
512 = 29 cells, which are accessed by a 9-bit address. 
The high-order 5 bits of the address give the row num- 
ber and the low-order 4 bits give the column. There 
is no microprogram counter; each microinstruction spec- 
ifies a conditional or unconditional jump. At the end 
of each microinstrnction execution cycle the address 
register is updated as a function of a 7-bit jump code 
<d6dsd4d3dedld0> in the microinstruction, the current 
address register contents <m6m7m6msm4m3m2mlm0> in the 
sequencer, and certain condition bits (xT,x6,xs,x4,p3, 
P2,pl,p0,f,c,z). The high-order bits of the jump code 
specify a jump type and the low-order bits specify new 
values for a subset of the address register bits, as 
detailed in Table i. 

The first four entries in Table I are uncondition- 
al jumps. They allow the next instruction to be lo- 
cated anywhere in the same row or column as the current 
instruction, or in the zero row. (Note that JCE is 
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MNEMONIC DESCRIPTION 

Table 1 

JCC Jump in current column 

JZR Jump to zero row 

JCR Jump in current row 

JCE Jump in column/enable 

JFL Jump/test F-latch 

JCF Jump/test C-flag 

JZF Jump/test Z-flag 

JPR Jump/test PR-latches 

JLL Jump/test left PR bits 

JRL Jump/test right PR bits 

JPX Jump/test PX bus 

Jump types of Intel 3001. 

JUMP CODE NEXT ROW NEXT COLUMN 

d 6 d 5 d4 d 3 d 2 d I d O M 8 M 7 M 6 M 5 M 4 M 3 M 2 M 1 

0 0 - - - d 4 d 3 d 2 d I d o m 3 m 2 m I m 0 

0 i 0 - - 0 0 0 0 0 d 3 d 2 d I d O 

0 1 1 - - - m 8 m 7 m 6 m 5 m 4 d 3 d 2 d I d 0 

1 I 1 0 - - m 8 m 7 d 2 d I d o m 3 m 2 m I m 0 

1 0 0 - - - m 8 d 3 d 2 d I d o m 3 0 i f 

i 0 1 0 - - m 8 m 7 d 2 d I d o m 3 0 1 c 

1 0 1 i - - m 8 m 7 d 2 d I d 0 m 3 0 i z 

1 1 0 0 m8 m7 d2 dl d0 P3 P2 Pl P0 

1 i 0 1 m 8 m 7 d 2 d I d o 0 1 P3 P2 

I 1 1 1 1 - - m 8 m 7 1 d I d o I 1 Pl P0 

1 1 1 I 0 - m 8 m 7 m 6 d I d 0 x 7 x 6 x 5 x 4 

similar to JCC except for a side effect that is of no 
interest here.) Since these are the only unconditional 
jumps, the successor of any instruction must be located 
in the same row, the same column, or row zero, unless 
the instruction is a conditional jump. 

The last seven entries in Table i are conditional 
jumps. JFL, JCF, and JZF are two-way jumps based on a 
single status bit, f, c, or z. JLL and JRL are four- 
way jumps based on two status bits, and JPR and JPX are 
16-way jumps based on four status bits. 

A JFL instruction placed in a particular row group 
of the memory as defined by bit 8 of the current ad- 
dress will jump to targets in the same row group; that 
is, bit 8 of the next address will be the same as bit 8 
of the current address. The row within the group is 
determined by <d3d2dld0 >. The target column will be in 
the same column group as the Jump instruction, as de- 
fined by <m~>. The column within the group is deter- 
mined by the status bit f. If the current instruction 
is in column group O, the jump goes to column 2 if f=0 
and to column 3 if f=l; if the current instruction is 
in column group I, the target is in column i0 if f=0 
and in column ii if f=l. These constraints are illus- 
trated in Fig. I. 

The word descriptions of the other conditional 
jump types are equally verbose, but each jump type is 
succinctly described by its entry in Table i. Further 
explainations of the jump types of the Intel 3001 may 
be found in [Intel, 1974]. For our purposes, it is 
sufficient to observe that (i) the targets of uncondi- 
tional jumps must be in the same row or column as the 
jump, or in row zero, and (2) the targets of condition- 
al jumps are constrained to lie within the same row and 
column groups as the jumps themselves, and the target 
columns within the column groups are fixed. These con- 
straints influenced the basic approach of the placement 
procedure. 

3. THE PLACEMENT PROBLEM 

An assembly language programmer writes symbolic 
programs, assigning labels to instructions that are 
referenced by other instructions, without regard to the 
addresses in memory to which the instructions will ul- 
timately be assigned. The assignment of memory ad- 
dresses to instructions of the symbolic program is a 
straightforward process for most computers (for example, 
see ~tone, 1972]). For microprograms written for the 
Intel 3001 sequencer, however, the restrictions imposed 
on the jump structure by the two-dimensional addressing 
scheme make the assignment process non-trivial. 

row g r o u p  0 

(m 8 = O) 

row g r o u p  1 

(m 8 = i) 
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-- Possible locations for JFL in row group O, 
column group O. 

-- Possible locations of targets of JFL in row 
group O, column group O. 

I -- Locations of targets of JFL in row group O, 
column group 0 if <d3d2dldo> = <i010>. 

F i g .  1 P l a c e m e n t  o f  J F L  and  t a r g e t s .  
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The symbolic code written by the programmer may be 
in a conventional assembly language, as illustrated by 
the program fragment of Fig. 2. From the viewpoint of 
placement, a program can be completely characterized by 
its jump structure. Hence, in the figure (and in our 
procedures) we suppress all operator/operand details 
not relevant to explicit jumps. As is the usual prac- 
tice, program control is assumed to flow sequentially 
through the list of instructions, except when an ex- 
Plicit jump is indicated. The programmer indicates ex- 
Plicit unconditional Jumps by "JMP <LABEL>" and condi- 
tional jumps by "<JUMP TYPE> <LABEL LIST>". Since all 
Intel 3001 instructions must specify a jump (there is 
no program counter), the placement procedure must spec- 
ify jumps wherever the programmer has left the program 
flow implicit. Also, the procedure must determine the 
type of unconditional jump (in current column, current 
row, or zero row) to be used when the programmer has 
specified "JMP," and it must assign memory addresses to 
all instructions such that the desired program flow can 
take place within the constraints of the two-dimension- 
al addressing scheme. 

4. OVERVIEW OF THE PLACEMENT PROCEDURE 

Algorithmic approaches that guarantee to find a 
valid program placement if one exists tend to be com- 
binatorial in either their cell selection or backtrack- 
ing mechanisms. Therefore we have devised a heuristic 
placement procedure that operates in two phases, each 
with several distinct stages. The procedure works on a 
"best effort" basis and is capable of taking advice in 
the form of an initial partial placement. Both phases 
must terminate successfully in order to achieve a place- 
ment; certain types of stage failures, however, can be 
tolerated. A limited amount of backtracking is per- 
formed. The procedure attempts to maintain maximum 
flexibility by making the most difficult placements 
first and by leaving uncommitted the coordinates for 
as many non-jump/non-target instructions as possible. 

The two phases of the placement procedured are: 
Phase I) Place explicit jump instructions and 

their targets. 
Phase II) Place instructions not involved in 

explicit jumps. 
The instructions to be placed in each phase are deter- 
mined by an analysis of the jump structure of the pro- 
gram which partitions the program into basic blocks. 
Each basic block is a maximal length instruction se- 
quence with a single entry point and a single exit 
point [Allen, 1970]. For example, Fig. 2 indicates the 
basic blocks of the example program. With respect to 
control flow each basic block can be treated as a sin- 
gle atomic unit, and therefore the control flow of the 
example program can be completely described by the flow 
graph of Fig. 3. After analysis of the block structure 
of the program, the placement procedure can be de- 
scribed as: 

Phase I) Place the first and last instruction 
of each basic block. 

Phase II) Place the internal instructions of 
each basic block. 

5. PHASE I 

Phase I places the first and last instructions of 
each basic block. Since the run time of a program that 
tried every possible placement for every instruction 
before giving up could best be measured in years, we 
instead have a procedure with many heuristics that will 
take care of almost all cases, %caving the micropro- 
grammer to help in the really difficult spots. He does 
this by placing selected instructions by hand, enabling 
the procedure to make the remaining placements correct- 
ly. 
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LOOP: - - -  

: 1 

JFL Ci, C2 

Ci: --- 
: 2 

JPX Li~L2~...,LI6 

Li: --- 
: 3 

J~gP JOIN 

L2: --- 
: 4 

JMP JOIN 

L3: --- 

5 
o 

17 

F i g .  2 A p r o g r a m  f r a g m e n t .  

F i g .  3 C o n t r o l  £1ow g r a p h .  

JMP J O I N  

L16:  - - -  

: 18 

JOIN: --- 
: 19 

JMP TEST 

C2: --- 
: 20 

JCF C2 p TEST 

TEST: JZF LOOP j NEXT 21 

NEXT: --- 
: 22 

JMP LOOP 



Definitions: 
Target set (t-set) -- The set of all the tar- 

gets of a jump. An unconditional jump has one 
target, a conditional jump has more. The targets 
of a conditional jump must all be placed in a sin- 
gle row, the columns being set by the type of con- 
ditional jump and the conditions. 

Reference -- A jump "references" its targets. 

The operation of phase I is divided into several 

stages. 

Stage i 
The microprogram is scanned and its jump structure 

is extracted. The locations of any instructions that 
have been hand-placed are noted. 

Stage 2 
"Families" of instructions are found; two instruc- 

tions are in the same family if they are connected in 
the control flow graph by a set of basic blocks each 
containing only a conditional jump instruction. The 
targets of conditional jumps in the Intel 3001 are re- 
stricted to the same four- or eight-row group as the 
jump itself. Since in a family no unconditional jumps 
intervene to allow spanning the groups, all instruc- 
tions of a family must be in the same group. Once 
found, the families are assigned to row groups as fol- 
lows: 

a) First, families containing hand-placed instruc- 
tions are assigned to the proper row-group. 

b) Second, families containing instructions ex- 
plicitly referenced by JZR's are assigned to the zero 
row group. 

c) Third, the remaining families are ordered ac- 
cording to the number of instructions contained in each. 
Beginning with the largest, each family is then as- 
signed to the row group which is least occupied. 

Stage 3 
The t-sets are ordered according to the number of 

targets in each, and beginning with the largest they 
are placed as follows: 

a) If the jump to the t-set has already been 
placed, the area in which the t-set may be placed is 
restricted appropriately. 

b) If any element of the t-set is referenced by a 
JZR, the t-set bounds are restricted to row zero. 

c) If any element of the t-set has been placed, 
either the t-set is placed over the placed element(s), 
or an error condition is signaled. No instructions are 
duplicated. 

d) If still necessary, the t-set will be placed at 
the first available place within its bounds; if no 
place is found an error condition is signaled. 

e) If the t-set was placed and its jump was not, 
the bounds for the jump are set. 

No attempt is ever made to "un-place" a target set 
on an error. Again, the complexity of a procedure to 
determine which t-set to remove, how to remove it and 
all the instructions that depend upon it, and what in- 
telligent action to take at that point, is prohibitive. 

Stage 4 
A check is now made to verify that all uncondi- 

tional jumps between placed instructions may be satis- 
fied. 

Stage 5 
Finally, all of the remaining instructions that 

start or end a block are placed. These may be condi- 
tional and unconditional jumps and unconditional jump 
targets. The order in which these are placed is deter- 
mined by the number of references for each, with the 
most heavily constrained placed first. 

6. PHASE 2 

Phase 2 places the internal cells of each basic 
block. Phase 1 passes to phase 2 a list of basic 
blocks which specifies for each block the starting and 
the ending instructions (which have already been placed) 
and the number of internal instructions which must be 
placed. The task of phase 2 is to link up the starting 
and ending cells of all the basic blocks with the ap- 
propriate number of unconditional jumps to the current 
column, current row, or zero row. 

When phase 2 takes over, the memory array is par- 
tially filled, and at the end of phase 2 the memory ar- 
ray will be completely filled if the microprogram is 
large. Therefore placements become increasingly diffi- 
cult as the execution of this phase progresses. Our 
initial solution of the phase 2 placement was as fol- 
lows: 

a) If there are n internal instructions to be 
placed in a block, place the first n-2 of them one-at- 
a-time using the following heuristic: At each step 
choose a reachable target cell that best balances the 
current filling of the array according to a scoring 
function. 

b) Place the last 2 internal instructions of the 
block by choosing the best (according to the scoring 
function) of all possible placements from the last cell 
placed in step (a) to the end cell of the block. 

Although this technique was successful in balanc- 
ing the assignment of instructions to the memory array, 
it still left insufficient flexibility for placing the 
last blocks in a program and many internal cells could 
not be placed in programs that used most of the memory 
space. So we elected a different approach that was 
much more successful. This approach relies on the no- 
tion of pivot cells, illustrated in Fig. 4. In Fig. 4, 
it is desired to link instruction a with instruction b 
using n steps. A pivot cell is an instruction whose 
predecessor and successor are in neither the same row 
nor the same column. Fig. 4 shows four different ways 
of linking up cells a and b using either one or two 
pivot cells (Pl and P2). The important thing to no- 
tice here is that once the pivot cells have been fixed, 
the remaining instructions may be placed anywhere in a 
particular column or columns. For example, in Fig. 4 
(a) and (b), n-i instructions must be placed in addi- 
tion to the instruction placed at the pivot cell Pl, 
but these instructions may be placed anywhere in p1's 
column and reference each other using JCC's. Hence 
once the pivot instruction has been placed, placement 
of the remaining instructions can be deferred until la- 
ter, as long as the free cells of the pivot column are 
not overcommitted. 

Hence the operation of Phase 2 can be described as 
follows: 

Stage 1 
Order the blocks according to length and place the 

longest blocks first. For each block examine each of 
the possible pivoting schemes of Fig. 4 in the order 
shown, Choose the first pivoting scheme that does not 
overcormnit the number of free cells remaining in the 
pivot column(s). Update the number of committed (but 
yet unplaced) free cells remaining in the pivot col- 
umn(s). If there is no pivoting scheme that will not 

overcommit the free cells, take another pass without re- 
gard to the number of free cells available. Update the 
number of cormnitted free cells to show the overcommit- 
ment - we will make room later. If no pivots can be 
found mark the block not placed for stage 2. 
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n-i instructions • 
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• m instructions 

en- 2 

~ :instructions 

n-m-2 instructions : 

(c) (d) 

Fig. 4 Placement of n instructions between ~ and ~. 

Stage 2 
At this point there may be some blocks for which no 

pivot cells were found. For each such block find a 
block placed in stage 1 that can be unplaced to make 
placement of the problem block possible. Place the 
problem block and mark it so that it will not be un- 
placed later. Now look for different placements of the 

blocks that were just unplaced. If any blocks cannot 
be replaced, iterate stage 2 a few more times and sig- 
nal an error if unplaceable blocks still remain. 

Stage 3 
Now pivot cells for all blocks have been found, but 

the free cells of some columns may have been overcommit- 
ted. If the number of instructions in the program does 
not exceed the size of the memory array, there will be 
an undercommitment of free cells in other columns to 
balance the overcommitment. Try to balance the free 
cell committment by changing the values of m in blocks 
that were placed according to Fig. 4(c). An optimum 
balance can be found in a short time using a simple re- 

cursive algorithm. 

Stage 4 
There may still be overcommitted columns. Find all 

of the pivot cells in each overconmnitted column. Each 
pivot cell references or is referenced by one cell in 
its column and one cell in its row. If there are any 
uncommitted free cells in the pivot row, try to "slide" 
overcommitted cells from the pivot column into the piv- 

ot row. 

Stage 5 
Assign instructions to the committed free cells in 

each column. If stage 4 was successful, there will be 
sufficient free cells to meet the commitments in each 

column. 

7. PERFORMANCE 

Phase 2 was programmed and tested first, using a 
program that generated random blocks to be placed. 
The inputs to the test program were a list of block 
lengths and the number of blocks of each length to be 
generated. The blocks were generated with starting and 
ending cells at random locations in the memory array, 
and the phase 2 program attempted to make a complete 
placement of the internal cells of the blocks. Eigh- 
teen different placements were tested, with varying 
block sizes and numbers of blocks which filled almost 
the entire 512-word memory array. The results of these 

tests are given in Table 2. The table gives for each 
test the number of blocks of each length used, where the 
length is the number of internal instructions of the 
block to be placed. It also gives the number of blocks 
for which no pivots had been found after stage 2, and 
the free cell overcommitment remaining after stage 4. 
It can be seen that the procedure worked best when the 
block sizes were large. This is an expected result 
since large blocks leave many cells uncommitted in stage 
i for greatest flexibility. In the cases where unplaced 
blocks and cell overcomsnitments occurred, it was pos- 

sible to adjust the placement by hand in about 5 to i0 
minutes. The procedures for doing this could be auto- 
mated as a set of special-purpose routines to follow 
stages 2 and 4 if desired. 

Phase I was programmed and tested second, mainly be- 
cause it was the most difficult part of the procedure. 
This phase was tested using an example program given by 
Intel [Intel, 1975]. The example is a microprogram for 
a 16-bit minicomputer instruction set. The program re- 
quires 254 words of memory, and is composed mainly of 
jumps and jump targets since a lot of decoding and 
testing takes place; there are 176 jumps and jump tar- 
gets and only 78 instructions internal to basic blocks. 
Two tests were run with this program, the first placing 
it in a 512-word array, and the second placing it in a 
256-word array (16 rows by 16 columns, an Intel 3001 
option). In both cases the programmer running the 
phase i placement routine required a number of itera- 
tions, hand-placing difficult instruction sequences af- 
ter each try, and introducing both errors and new 
placement difficulties at each iteration until the last. 
Placement of the program in a 512-word array required 
two iterations and about i0 instructions to be placed 

Table 2 Phase 2 performance. 

TEST~ BLOCK LENGTH TOTAL # OF UNPLACED 
- NUMBER INSTRUCTIONS BLOCKS 

1 2-30,3-36,4-35 510 0 
- " 0 

2 
,, '1 0 

3 

4 2-30,5-30,20-7 510 0 
,, " 0 5 
,, " 0 6 

7 5-30,7-20,8-12 510 0 
8 " " 0 

9 " " 0 

I0 3-102 510 0 
- " 0 II 
t, " 0 

12 

13 2 -128 512 1 

14 " " 0 

15 " " 3 
1 6  " " 3 

17 " " 2 
18 " " 0 

CELL OVER- 
COMMITMENT 

0 
0 
2 

0 

3 
0 

0 

0 
0 

0 
0 
0 

1 
0 
0 
0 
0 

2 
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by hand, and placement in a 256-word array required 
five iterations and about 16 instructions to be placed 
by hand. It was apparent that an on-line iteractive 
program would be the best solution for phase i, al- 
though phase i could be expected to perform much better 
for microprograms with a less complex jump structure. 

Both phases were programmed in ALGOLW and executed 
on an IBM 360/67. Phase I typically required 7 seconds 
of execution time and phase 2 required i second. At 
the time of this writing, the Intel program was the 
only real source program we had access to for testing - 
we would welcome receiving programs from others to com- 
plete the testing of the procedures. 

8. CONCLUSION 

We have developed a procedure for the placement of 
microprograms in a two-dimensional address space. The 
procedure has two phases -- placement of the starting 
and ending instructions of basic blocks and placement 
of instructions internal to basic blocks. The perfor- 
mance of both phases is sensitive to the number and 
size of the basic blocks of the program. A large num- 
ber of basic blocks indicates a complex jump structure, 
which hampers phase I. Small basic blocks have few in- 
ternal cells that can be left uncommitted to improve 
flexibility in phase 2, and hence degrade its perfor- 
mance. 

Thus we conclude that the placement of microprograms, 
such as instruction set emulators, that have a complex 
jump structure are difficult to perform either by hand 
or by automatic procedure. On the other hand, our pro- 
cedures work quite well for programs having a ratio of 
jump/target to other instructions of i to 2 or better. 
For such programs automatic placement in a two-dimen- 
sional address space is not difficult, and in fact one 
can propose higher-dimension spaces for saving even 
more address bits. For example, a 64K (2 Is) word ad- 
dress space could be addressed as an 8-dimensional ar- 
ray with length 4 in each dimension. Jumps could be 
specified with five bits -- three to give the coordi- 
nate to change and two to give the new value of the co- 
ordinate. 
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