
PLACEMENT OF MICROINSTRUCTIONS IN A TWO-DIMENSIONAL ADDRESS SPACE

John F. Wakerly, Clifford R. Hollander , and Daniel Davies
Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California

1..INTRODUCTION

The problem of addressing a large address space
with a limited number of address bits is an old one
[Bell and Newell, 1971]. The problem occurs in mini-
computers which, with their short instruction word
lengths of 12 to 16 bits, allocate only 8 to 12 bits of
each instruction for specifying operand addresses.
Hence each instruction can directly access only 28 to
2 r2 words of memory. In order to access the remainder
of a large (say 216 word) memory, mechanisms such as
bank switching, page registers, base registers, zero/
current page addressing, and indirection have been used.
Each of these mechanisms allows a subset of the entire
address space to be accessed easily while requiring
some additional overhead to access the remainder.

A similar problem has arisen in the development
of integrated circuit microprogram sequencers. A micro-
program sequencer is a circuit which, along with micro-
program memory, comprises a microprogram control unit.
As a minimum, a sequencer must contain a microprogram
address register and logic to update it. The output of
a sequencer is a microprogram address which is used as
the input of a microprogram memory. Each microinstruc-
tion (contained in the memory) contains various fields
used by the controlled machine (e.g., computer proces-
sor) and also a specification for how the address of
the next mieroinstruction is to be computed. This
specification, along with status information from the
controlled machine, is used by the sequencer to compute
the next microprogram address.

A typical microprogram control unit has between 28
and 2 I° microinstructions, requiring a microprogram ad-
dress of 8 to i0 bits. Most microprogram control units
have an 8 to i0 bit microprogram counter that is nor-
mally incremented to get the next address. Conditional
action can be implemented with "skip" instructions that
add either one or two to the counter depending on a
machine status bit. Thus a microprogram sequencer
would require only 4 bits to specify whether the micro-
program address was to be incremented or whether one of
15 different conditional skips was to take place. How-
ever, when unconditional jumps such as the jump back to
the beginning of a loop are to be executed, the entire
next address must be loaded into the microprogram ad-
dress register from a field in the microprogram. Hence
at least 9 to ii bits are normally used to specify the
next address: i bit specifies an unconditional jump or
not, and 8 to i0 bits give the target address of the
unconditional jump or further specify an increment or
conditional skip.

This work was sponsored by the Joint Services Electronics
Program under contract N00014-75-Cr0601.

The author is now with the IBM Scientific Center,
Pale Alto, Calif. 94304.

It is desirable to minimize the number of next-
address bits for two reasons. First, this reduces the
total number of microprogram bits since a next address
must be specified in every microinstruction. Second,
it reduces the number of inputs that must be provided
for an integrated circuit microprogram sequencer; this
is very important because of the rapid growth ~f cost and
unreliability with the number of input/output pins of
integrated circuits.

To reduce the number of next-address bits a two-
dimensional addressing scheme is used in the Intel 3001
microprogram sequencer [Rattner et. al., 1975]. This
scheme, described in the next section, allows the next
address and the conditional or unconditional jump type
in a 29-word address space to be specified using only 7
bits. Extensions of this scheme to higher dimensions
could allow the next address in a 2IS-word space to be
specified with as few as 5 bits. However, the reduc-
tion in the number of next-address bits is paid for by
a corresponding decrease in addressing flexibility.
The reduction in the number of next-address bits is ob-
tained by limiting the number of addresses that can be
reached in one step from any particular address. It
thus becomes possible for a programmer to write sym-
bolic (assembly language) programs for which there is
no valid assignment in the two-dimensional address
space. Although there usually is a valid assignment
for a "well-behaved" program, it takes many hours for
a programmer to make the assignment by hand.

The work described in this paper is an investi-
gation of procedures for the automatic placement of

symbolic programs in a two-dimensional address space
such as that of the Intel 3001 microprogram sequencer.
By obtaining results for the specific case of the Intel
3001 we are able to make recommendations for the use of
multidimensional address sPaces in future designs.

2. A TWO-DIMENSIONAL ADDRESSING SCHEME

The address space of the Intel 3001 microprogram
sequencer is organized as a two-dimenslonal array with
32 rows and 16 columns. Hence there are a total of
512 = 29 cells, which are accessed by a 9-bit address.
The high-order 5 bits of the address give the row num-
ber and the low-order 4 bits give the column. There
is no microprogram counter; each microinstruction spec-
ifies a conditional or unconditional jump. At the end
of each microinstrnction execution cycle the address
register is updated as a function of a 7-bit jump code
<d6dsd4d3dedld0> in the microinstruction, the current
address register contents <m6m7m6msm4m3m2mlm0> in the
sequencer, and certain condition bits (xT,x6,xs,x4,p3,
P2,pl,p0,f,c,z). The high-order bits of the jump code
specify a jump type and the low-order bits specify new
values for a subset of the address register bits, as
detailed in Table i.

The first four entries in Table I are uncondition-
al jumps. They allow the next instruction to be lo-
cated anywhere in the same row or column as the current
instruction, or in the zero row. (Note that JCE is

46

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800148.804861&domain=pdf&date_stamp=1975-09-21

MNEMONIC DESCRIPTION

Table 1

JCC Jump in current column

JZR Jump to zero row

JCR Jump in current row

JCE Jump in column/enable

JFL Jump/test F-latch

JCF Jump/test C-flag

JZF Jump/test Z-flag

JPR Jump/test PR-latches

JLL Jump/test left PR bits

JRL Jump/test right PR bits

JPX Jump/test PX bus

Jump types of Intel 3001.

JUMP CODE NEXT ROW NEXT COLUMN

d 6 d 5 d4 d 3 d 2 d I d O M 8 M 7 M 6 M 5 M 4 M 3 M 2 M 1

0 0 - - - d 4 d 3 d 2 d I d o m 3 m 2 m I m 0

0 i 0 - - 0 0 0 0 0 d 3 d 2 d I d O

0 1 1 - - - m 8 m 7 m 6 m 5 m 4 d 3 d 2 d I d 0

1 I 1 0 - - m 8 m 7 d 2 d I d o m 3 m 2 m I m 0

1 0 0 - - - m 8 d 3 d 2 d I d o m 3 0 i f

i 0 1 0 - - m 8 m 7 d 2 d I d o m 3 0 1 c

1 0 1 i - - m 8 m 7 d 2 d I d 0 m 3 0 i z

1 1 0 0 m8 m7 d2 dl d0 P3 P2 Pl P0

1 i 0 1 m 8 m 7 d 2 d I d o 0 1 P3 P2

I 1 1 1 1 - - m 8 m 7 1 d I d o I 1 Pl P0

1 1 1 I 0 - m 8 m 7 m 6 d I d 0 x 7 x 6 x 5 x 4

similar to JCC except for a side effect that is of no
interest here.) Since these are the only unconditional
jumps, the successor of any instruction must be located
in the same row, the same column, or row zero, unless
the instruction is a conditional jump.

The last seven entries in Table i are conditional
jumps. JFL, JCF, and JZF are two-way jumps based on a
single status bit, f, c, or z. JLL and JRL are four-
way jumps based on two status bits, and JPR and JPX are
16-way jumps based on four status bits.

A JFL instruction placed in a particular row group
of the memory as defined by bit 8 of the current ad-
dress will jump to targets in the same row group; that
is, bit 8 of the next address will be the same as bit 8
of the current address. The row within the group is
determined by <d3d2dld0 >. The target column will be in
the same column group as the Jump instruction, as de-
fined by <m~>. The column within the group is deter-
mined by the status bit f. If the current instruction
is in column group O, the jump goes to column 2 if f=0
and to column 3 if f=l; if the current instruction is
in column group I, the target is in column i0 if f=0
and in column ii if f=l. These constraints are illus-
trated in Fig. I.

The word descriptions of the other conditional
jump types are equally verbose, but each jump type is
succinctly described by its entry in Table i. Further
explainations of the jump types of the Intel 3001 may
be found in [Intel, 1974]. For our purposes, it is
sufficient to observe that (i) the targets of uncondi-
tional jumps must be in the same row or column as the
jump, or in row zero, and (2) the targets of condition-
al jumps are constrained to lie within the same row and
column groups as the jumps themselves, and the target
columns within the column groups are fixed. These con-
straints influenced the basic approach of the placement
procedure.

3. THE PLACEMENT PROBLEM

An assembly language programmer writes symbolic
programs, assigning labels to instructions that are
referenced by other instructions, without regard to the
addresses in memory to which the instructions will ul-
timately be assigned. The assignment of memory ad-
dresses to instructions of the symbolic program is a
straightforward process for most computers (for example,
see ~tone, 1972]). For microprograms written for the
Intel 3001 sequencer, however, the restrictions imposed
on the jump structure by the two-dimensional addressing
scheme make the assignment process non-trivial.

row g r o u p 0

(m 8 = O)

row g r o u p 1

(m 8 = i)

c o l u m n g r o u p 0

(m 3 = O) (m 3 = 1)

0 2 3 7 8 i0 ii

o ~ \ ' ~ , " ~ \ \ ~

¢¢~X\ ,. ,2

l O ~ \ .~',~ \ "

1 6 " I

I

i

i
3 1 . , I ~

f=O~ f=O~
f=l f=l

c o l u m n g r o u p 1

15

-- Possible locations for JFL in row group O,
column group O.

-- Possible locations of targets of JFL in row
group O, column group O.

I -- Locations of targets of JFL in row group O,
column group 0 if <d3d2dldo> = <i010>.

F i g . 1 P l a c e m e n t o f J F L and t a r g e t s .

47

The symbolic code written by the programmer may be
in a conventional assembly language, as illustrated by
the program fragment of Fig. 2. From the viewpoint of
placement, a program can be completely characterized by
its jump structure. Hence, in the figure (and in our
procedures) we suppress all operator/operand details
not relevant to explicit jumps. As is the usual prac-
tice, program control is assumed to flow sequentially
through the list of instructions, except when an ex-
Plicit jump is indicated. The programmer indicates ex-
Plicit unconditional Jumps by "JMP <LABEL>" and condi-
tional jumps by "<JUMP TYPE> <LABEL LIST>". Since all
Intel 3001 instructions must specify a jump (there is
no program counter), the placement procedure must spec-
ify jumps wherever the programmer has left the program
flow implicit. Also, the procedure must determine the
type of unconditional jump (in current column, current
row, or zero row) to be used when the programmer has
specified "JMP," and it must assign memory addresses to
all instructions such that the desired program flow can
take place within the constraints of the two-dimension-
al addressing scheme.

4. OVERVIEW OF THE PLACEMENT PROCEDURE

Algorithmic approaches that guarantee to find a
valid program placement if one exists tend to be com-
binatorial in either their cell selection or backtrack-
ing mechanisms. Therefore we have devised a heuristic
placement procedure that operates in two phases, each
with several distinct stages. The procedure works on a
"best effort" basis and is capable of taking advice in
the form of an initial partial placement. Both phases
must terminate successfully in order to achieve a place-
ment; certain types of stage failures, however, can be
tolerated. A limited amount of backtracking is per-
formed. The procedure attempts to maintain maximum
flexibility by making the most difficult placements
first and by leaving uncommitted the coordinates for
as many non-jump/non-target instructions as possible.

The two phases of the placement procedured are:
Phase I) Place explicit jump instructions and

their targets.
Phase II) Place instructions not involved in

explicit jumps.
The instructions to be placed in each phase are deter-
mined by an analysis of the jump structure of the pro-
gram which partitions the program into basic blocks.
Each basic block is a maximal length instruction se-
quence with a single entry point and a single exit
point [Allen, 1970]. For example, Fig. 2 indicates the
basic blocks of the example program. With respect to
control flow each basic block can be treated as a sin-
gle atomic unit, and therefore the control flow of the
example program can be completely described by the flow
graph of Fig. 3. After analysis of the block structure
of the program, the placement procedure can be de-
scribed as:

Phase I) Place the first and last instruction
of each basic block.

Phase II) Place the internal instructions of
each basic block.

5. PHASE I

Phase I places the first and last instructions of
each basic block. Since the run time of a program that
tried every possible placement for every instruction
before giving up could best be measured in years, we
instead have a procedure with many heuristics that will
take care of almost all cases, %caving the micropro-
grammer to help in the really difficult spots. He does
this by placing selected instructions by hand, enabling
the procedure to make the remaining placements correct-
ly.

48

LOOP: - - -

: 1

JFL Ci, C2

Ci: ---
: 2

JPX Li~L2~...,LI6

Li: ---
: 3

J~gP JOIN

L2: ---
: 4

JMP JOIN

L3: ---

5
o

17

F i g . 2 A p r o g r a m f r a g m e n t .

F i g . 3 C o n t r o l £1ow g r a p h .

JMP J O I N

L16: - - -

: 18

JOIN: ---
: 19

JMP TEST

C2: ---
: 20

JCF C2 p TEST

TEST: JZF LOOP j NEXT 21

NEXT: ---
: 22

JMP LOOP

Definitions:
Target set (t-set) -- The set of all the tar-

gets of a jump. An unconditional jump has one
target, a conditional jump has more. The targets
of a conditional jump must all be placed in a sin-
gle row, the columns being set by the type of con-
ditional jump and the conditions.

Reference -- A jump "references" its targets.

The operation of phase I is divided into several

stages.

Stage i
The microprogram is scanned and its jump structure

is extracted. The locations of any instructions that
have been hand-placed are noted.

Stage 2
"Families" of instructions are found; two instruc-

tions are in the same family if they are connected in
the control flow graph by a set of basic blocks each
containing only a conditional jump instruction. The
targets of conditional jumps in the Intel 3001 are re-
stricted to the same four- or eight-row group as the
jump itself. Since in a family no unconditional jumps
intervene to allow spanning the groups, all instruc-
tions of a family must be in the same group. Once
found, the families are assigned to row groups as fol-
lows:

a) First, families containing hand-placed instruc-
tions are assigned to the proper row-group.

b) Second, families containing instructions ex-
plicitly referenced by JZR's are assigned to the zero
row group.

c) Third, the remaining families are ordered ac-
cording to the number of instructions contained in each.
Beginning with the largest, each family is then as-
signed to the row group which is least occupied.

Stage 3
The t-sets are ordered according to the number of

targets in each, and beginning with the largest they
are placed as follows:

a) If the jump to the t-set has already been
placed, the area in which the t-set may be placed is
restricted appropriately.

b) If any element of the t-set is referenced by a
JZR, the t-set bounds are restricted to row zero.

c) If any element of the t-set has been placed,
either the t-set is placed over the placed element(s),
or an error condition is signaled. No instructions are
duplicated.

d) If still necessary, the t-set will be placed at
the first available place within its bounds; if no
place is found an error condition is signaled.

e) If the t-set was placed and its jump was not,
the bounds for the jump are set.

No attempt is ever made to "un-place" a target set
on an error. Again, the complexity of a procedure to
determine which t-set to remove, how to remove it and
all the instructions that depend upon it, and what in-
telligent action to take at that point, is prohibitive.

Stage 4
A check is now made to verify that all uncondi-

tional jumps between placed instructions may be satis-
fied.

Stage 5
Finally, all of the remaining instructions that

start or end a block are placed. These may be condi-
tional and unconditional jumps and unconditional jump
targets. The order in which these are placed is deter-
mined by the number of references for each, with the
most heavily constrained placed first.

6. PHASE 2

Phase 2 places the internal cells of each basic
block. Phase 1 passes to phase 2 a list of basic
blocks which specifies for each block the starting and
the ending instructions (which have already been placed)
and the number of internal instructions which must be
placed. The task of phase 2 is to link up the starting
and ending cells of all the basic blocks with the ap-
propriate number of unconditional jumps to the current
column, current row, or zero row.

When phase 2 takes over, the memory array is par-
tially filled, and at the end of phase 2 the memory ar-
ray will be completely filled if the microprogram is
large. Therefore placements become increasingly diffi-
cult as the execution of this phase progresses. Our
initial solution of the phase 2 placement was as fol-
lows:

a) If there are n internal instructions to be
placed in a block, place the first n-2 of them one-at-
a-time using the following heuristic: At each step
choose a reachable target cell that best balances the
current filling of the array according to a scoring
function.

b) Place the last 2 internal instructions of the
block by choosing the best (according to the scoring
function) of all possible placements from the last cell
placed in step (a) to the end cell of the block.

Although this technique was successful in balanc-
ing the assignment of instructions to the memory array,
it still left insufficient flexibility for placing the
last blocks in a program and many internal cells could
not be placed in programs that used most of the memory
space. So we elected a different approach that was
much more successful. This approach relies on the no-
tion of pivot cells, illustrated in Fig. 4. In Fig. 4,
it is desired to link instruction a with instruction b
using n steps. A pivot cell is an instruction whose
predecessor and successor are in neither the same row
nor the same column. Fig. 4 shows four different ways
of linking up cells a and b using either one or two
pivot cells (Pl and P2). The important thing to no-
tice here is that once the pivot cells have been fixed,
the remaining instructions may be placed anywhere in a
particular column or columns. For example, in Fig. 4
(a) and (b), n-i instructions must be placed in addi-
tion to the instruction placed at the pivot cell Pl,
but these instructions may be placed anywhere in p1's
column and reference each other using JCC's. Hence
once the pivot instruction has been placed, placement
of the remaining instructions can be deferred until la-
ter, as long as the free cells of the pivot column are
not overcommitted.

Hence the operation of Phase 2 can be described as
follows:

Stage 1
Order the blocks according to length and place the

longest blocks first. For each block examine each of
the possible pivoting schemes of Fig. 4 in the order
shown, Choose the first pivoting scheme that does not
overcormnit the number of free cells remaining in the
pivot column(s). Update the number of committed (but
yet unplaced) free cells remaining in the pivot col-
umn(s). If there is no pivoting scheme that will not

overcommit the free cells, take another pass without re-
gard to the number of free cells available. Update the
number of cormnitted free cells to show the overcommit-
ment - we will make room later. If no pivots can be
found mark the block not placed for stage 2.

49

n-I instructions

i

[] ?
n-i instructions •

e

(a) (b)

• m instructions

en- 2

~ :instructions

n-m-2 instructions :

(c) (d)

Fig. 4 Placement of n instructions between ~ and ~.

Stage 2
At this point there may be some blocks for which no

pivot cells were found. For each such block find a
block placed in stage 1 that can be unplaced to make
placement of the problem block possible. Place the
problem block and mark it so that it will not be un-
placed later. Now look for different placements of the

blocks that were just unplaced. If any blocks cannot
be replaced, iterate stage 2 a few more times and sig-
nal an error if unplaceable blocks still remain.

Stage 3
Now pivot cells for all blocks have been found, but

the free cells of some columns may have been overcommit-
ted. If the number of instructions in the program does
not exceed the size of the memory array, there will be
an undercommitment of free cells in other columns to
balance the overcommitment. Try to balance the free
cell committment by changing the values of m in blocks
that were placed according to Fig. 4(c). An optimum
balance can be found in a short time using a simple re-

cursive algorithm.

Stage 4
There may still be overcommitted columns. Find all

of the pivot cells in each overconmnitted column. Each
pivot cell references or is referenced by one cell in
its column and one cell in its row. If there are any
uncommitted free cells in the pivot row, try to "slide"
overcommitted cells from the pivot column into the piv-

ot row.

Stage 5
Assign instructions to the committed free cells in

each column. If stage 4 was successful, there will be
sufficient free cells to meet the commitments in each

column.

7. PERFORMANCE

Phase 2 was programmed and tested first, using a
program that generated random blocks to be placed.
The inputs to the test program were a list of block
lengths and the number of blocks of each length to be
generated. The blocks were generated with starting and
ending cells at random locations in the memory array,
and the phase 2 program attempted to make a complete
placement of the internal cells of the blocks. Eigh-
teen different placements were tested, with varying
block sizes and numbers of blocks which filled almost
the entire 512-word memory array. The results of these

tests are given in Table 2. The table gives for each
test the number of blocks of each length used, where the
length is the number of internal instructions of the
block to be placed. It also gives the number of blocks
for which no pivots had been found after stage 2, and
the free cell overcommitment remaining after stage 4.
It can be seen that the procedure worked best when the
block sizes were large. This is an expected result
since large blocks leave many cells uncommitted in stage
i for greatest flexibility. In the cases where unplaced
blocks and cell overcomsnitments occurred, it was pos-

sible to adjust the placement by hand in about 5 to i0
minutes. The procedures for doing this could be auto-
mated as a set of special-purpose routines to follow
stages 2 and 4 if desired.

Phase I was programmed and tested second, mainly be-
cause it was the most difficult part of the procedure.
This phase was tested using an example program given by
Intel [Intel, 1975]. The example is a microprogram for
a 16-bit minicomputer instruction set. The program re-
quires 254 words of memory, and is composed mainly of
jumps and jump targets since a lot of decoding and
testing takes place; there are 176 jumps and jump tar-
gets and only 78 instructions internal to basic blocks.
Two tests were run with this program, the first placing
it in a 512-word array, and the second placing it in a
256-word array (16 rows by 16 columns, an Intel 3001
option). In both cases the programmer running the
phase i placement routine required a number of itera-
tions, hand-placing difficult instruction sequences af-
ter each try, and introducing both errors and new
placement difficulties at each iteration until the last.
Placement of the program in a 512-word array required
two iterations and about i0 instructions to be placed

Table 2 Phase 2 performance.

TEST~ BLOCK LENGTH TOTAL # OF UNPLACED
- NUMBER INSTRUCTIONS BLOCKS

1 2-30,3-36,4-35 510 0
- " 0

2
,, '1 0

3

4 2-30,5-30,20-7 510 0
,, " 0 5
,, " 0 6

7 5-30,7-20,8-12 510 0
8 " " 0

9 " " 0

I0 3-102 510 0
- " 0 II
t, " 0

12

13 2 -128 512 1

14 " " 0

15 " " 3
1 6 " " 3

17 " " 2
18 " " 0

CELL OVER-
COMMITMENT

0
0
2

0

3
0

0

0
0

0
0
0

1
0
0
0
0

2

50

by hand, and placement in a 256-word array required
five iterations and about 16 instructions to be placed
by hand. It was apparent that an on-line iteractive
program would be the best solution for phase i, al-
though phase i could be expected to perform much better
for microprograms with a less complex jump structure.

Both phases were programmed in ALGOLW and executed
on an IBM 360/67. Phase I typically required 7 seconds
of execution time and phase 2 required i second. At
the time of this writing, the Intel program was the
only real source program we had access to for testing -
we would welcome receiving programs from others to com-
plete the testing of the procedures.

8. CONCLUSION

We have developed a procedure for the placement of
microprograms in a two-dimensional address space. The
procedure has two phases -- placement of the starting
and ending instructions of basic blocks and placement
of instructions internal to basic blocks. The perfor-
mance of both phases is sensitive to the number and
size of the basic blocks of the program. A large num-
ber of basic blocks indicates a complex jump structure,
which hampers phase I. Small basic blocks have few in-
ternal cells that can be left uncommitted to improve
flexibility in phase 2, and hence degrade its perfor-
mance.

Thus we conclude that the placement of microprograms,
such as instruction set emulators, that have a complex
jump structure are difficult to perform either by hand
or by automatic procedure. On the other hand, our pro-
cedures work quite well for programs having a ratio of
jump/target to other instructions of i to 2 or better.
For such programs automatic placement in a two-dimen-
sional address space is not difficult, and in fact one
can propose higher-dimension spaces for saving even
more address bits. For example, a 64K (2 Is) word ad-
dress space could be addressed as an 8-dimensional ar-
ray with length 4 in each dimension. Jumps could be
specified with five bits -- three to give the coordi-
nate to change and two to give the new value of the co-
ordinate.

REFERENCES

Allen, F. E., 1970, "Control flow analysis," Proc.
Symp. Compiler Optim., ACM SIGPLAN (1970), pp. 1-19.

Intel, 1974, "3001 microprogram control unit," data
sheets, Intel Corp., Santa Clara, Calif.

Intel, 1975, "Central processor design using the
Intel series 3000 computing elements," Application
Note AP-16, Intel Corp., Santa Clara, Calif.

Rattner, J., J.-C. Cornet, and M. E. Hoff, 1974,
"Bipolar LSI computing elements usher in new era
of digital design," Electronics, vol. 47, no. 18,
Sept. 5, 1974.

Stone, H. S., 1972, Introduction to Computer Organiza-
tion and Data Structures, New York: McGraw-Hill.

51
!

