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ABSTRACT 

Various memory allocation problems can be 
modeled by the following abstract problem. Given 
a list A = (c5,~2,...,~)___ of real numbers in the 

range (0, i], place these in a minimum nnmber of 
"bins" so that no bin holds numbers summing to 
more than i. We let A* be the smallest number of 
bins into which the numbers of list A may be 
placed. Since a general placement algorithm for 
attaining A* appears to be impractical, it is 
important to determine good heuristic methods for 
assigning numbers of bins. We consider four such 
simple methods and analyze the worst-case perform- 
ance of each, closely bounding the maximum of the 
ratio of the number of bins used by each method 
applied to list A to the optimal quantity A*. 

I. INTRODUCTION 

Given a list A = (~i,~2,...,c~).. of real 

numbers in the range (0, i], find the minimum 
number N of "bins" for which there is a mapping 
f: [l,...,n] ~ [i,...,N] such that for all i, the 
sum of those ~j for which f(~j) = i does not 

exceed i. This least N is termed A*. 

This problem, which is a special case of the 
one-dimensional "cutting stock' problem [i] and 
the "assembly-line balancing" problem [2], models 
several practical problems in Computer Science. 
Some examples are: 

(i) Table Formating. Let the "bins" be com- 
puter words of fixed size k. Suppose there are 
items of data (e.g., bit string of length 6, 
character string of 3 bytes, half word integer) 
requiring kC~l,...,kc~ n bits, respectively. It is 

desirable to place the data in as few words as 
possible. The minimum number of words is A*, 
where A is the list (o~,...,~n). 

(2) Prepaging. Here, the bins are pages and 
the numbers in the list A represent segments of 
the program which should appear on a single page, 
e.g., inner loops, arrays. 

(3) File Allocation. It is desired to place 
files of varying sizes on as few tracks of a disc 
as is possible. 

The calculation of an optimal solution to the 
assignment problem mentioned is in general too 
time consuming to be considered a realistic goal. 

~Work of this author supported by NSF Grant 
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In practice one must find heuristics that are 
likely to yield a good assignment. Several simple 
algorithms have been suggested in [3,4]. In par- 
tieular, we will consider the following four place- 
ment algorithms. 

(i) First Fit. Initially, all bins are 
"filled to level" O. Consider ~l,...,~n in that 

order. To consider ~i' find the least j such that 

Bj is filled to a level ~ ~ i - ~i" Place ~i in Bj. 

Bj is now filled to level ~ + ~i" 

(2) Best Fit. Initially, all bins are filled 
to level O. Consider ~l,...,~n in that order. To 

consider ~i' find that bin Bj such that Bj is 

filled to level ~ < i - ~i and ~ + ~i is as large 

as possible. Place ~i in Bj. Bj is now filled to 

level ~ + ~i" 

(3) First Fit Decreasing. Order (~l,...,~n) 

largest first~ then apply (i). 

(4) Best Fit Decreasing. Order (~l,...,~n) 

largest first, then apply (2). 

Let A FF, A BF, A FFD, and A BFD be the number of 
bins filled to level greater than zero by the four 
algorithms above, respectively. 

Our approach to evaluating the performance of 
these simple algorithms is to determine bounds upon 

the ratios AFF/A*, ABF/A *, AFFD/A*, and ABFD/A *. 
To this end, let RFF(k), RBF(k), RFFD(k), and 

RBFD(k) be the maxim% over all lists A such that 

: k, of AFF/A , ABF/A , AFFD/A  
The following is a summary of our main results. 

(i) lim RFF(k) = 17/10. 
k~ 

(2) lim RBF(k) > 17/10. 
k~ 

(3) 11/9 Slim RFFD(k) < 5/4. 
k~ 

(4) 11/9 < lim RBFD(k) S 5/4. 
k~ 

One might question the validity of evaluating 
an algorithm by its worst-case performances rather 
than, say, its average performance. However, since 
the algorithm may be used in a variety of applica- 
tions, and since the probability distribution for 
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the lists A is not usually well known, such statis- 
tical evaluations have only limited usefulness. 
Intuitively, a "mechanisM' which causes an algo- 
rithmto have a high worst-case ratio might well 
be expected to manifest itself at least partially 
in real applications. Some experiments with the 
case in which the elements of the lists are chosen 
with uniform distribution on (O,i] have tended to 
confirm the hypothesis that worst-case analysis is 
a valid performance measure for the type of algo- 
rithms considered here [5]. In particular, FFD 
and BFD appeared equally good in the experiments 
and substantially better than FF and BF~ as might 
be conjectured from our worst-case results. 

II. FIRST FIT AND BEST FIT 

Theorem i: For any £ > O, if k is suffi- 

ciently large, then RFF(k) > 17/10 - ~ and 

RBF(k) > 17/iO - S. 

Proof: A will consist of numbers in three 
regions. The elements in the regions will have 
sizes close to 1/6, 1/3 and 1/2, respectively. 
The number of elements in the three regions will 
be the same, and those of the first region precede 
those of the second which precede those of the 
third in the list A. 

Let N be a number divisible by 17; and let 

be chosen so that 0 < 5 << 18 -N/17. The first 
region will consist of N/17 blocks of ten numbers 

each. Let the numbers of the i th block of region I 

be ali, a2i,...,alO i. These numbers are given by 

the following formulas Let 61 be 8 18 (N/17 - i) 

for i < i < N/17. Then: 

all = 

a2i = 

a3i = 

a5i = 

a6i = 

avi: 

i 
T + 338i 

i 
~ +  35 i 

i 
a4i = ~ - 78 i 

i 
- 136 i 

i 
~+ 96 i 

i 
asi = a9i = al0 i = ~ - 26 i 

Let the first i0 N/17 numbers in the list A 

be all ,...,alO,l,al2,...,alO,2 , .... We notice 

that ali + ... + a5i = 5/6 + 38i, and a6i + ... + 

alO i = 5/6 + 8 i. Thus, for all i, the first five 

numbers of block i will fill up bin 2i - i, and the 
last five numbers of block i will fill up bin 2i 
when either the first fit algorithm or the best fit 
algorithm is used to fill bins. To make this 
observation, we need only note that a5i , the 

smallest number in block i will not fit in any of 
the previous bins, since the least filled of these, 
bin 2i - 2, has contents totaling 5/6 + 6i_ I = 

5/6 + 188 i. Also, the smallest of a6i , ...,alOi, 

which is 1/6 - 28 i will not fit in bin 2i - i, 

which has contents totaling 5/6 + 38 i. 

Thus, the N/17 blocks in region i fill up 
2N/17 cells. We now turn to region 2. Here, the 
numbers are all about 1/3, and they are again 

divided into N/17 blocks. Let the i th block of 

region 2 be bli , ...,blo i. The numbers bll , ..., 

blo, l'bl2 ' " " "'blo, 2' "" " follow those of region i 

in the list A. The values of the numbers in block 
i are given by: 

i 
bli = ~ + 468 i 

i 
b2i : ~ - 34~ i 

1 66 i b3i = b4i = ~ + 

i 
b5i = ~ + 126 i 

i 
b6i = 3 - iO6i 

i 
b7i = b8i = b9i = bloi = ~ + ~i 

The numbers of block i fill bins 2N/17 + 
5i - 4 through 2N/17 + 5i. These are filled with 

bli and b2i , b3i and b4i , etc. To make this con- 

clusion, we observe that the contents of the five 
bins filled by block i sum respectively to: 

2 2 2 
+ 128 i 3 + 12D i 3 + 26 i 

2+ 28. 2 • ~ + 25 i 

Thus, b6i = i/3 - i08 i cannot fall into either 

of the first two bins, and b2i = 1/3 - 346 i cannot 

fall into any of the bins for previous blocks, 
since these are all filled to at least level 

2/3 + 28i_ I = 2/3 + 36B i. 

The third region consists of lON/17 numbers, 
each i/2 + 8. These complete the list A and 
clearly fill one bin each. The total number of 
bins filled by the first fit algorithm is thus 
2N/17 from region i, 5N/17 from region 2 and lON/17 
from region 3, a total of N bins. 

However, we may use the list A to fill 
iON/17 + i bins as follows. All but two of these 
bins have one of the elements 1/2 + 8. These bins 
are then filled with one of the following combina- 
tions : 

N 
(i) aji + bji for some 3 < J < iO and 1 < i < i-~ " 

N 
(2) aij + b2i for some i < i < 1-7 " 

N 
(3) a2i + bl(i+l) for some i <_ i <_ 1--7 " 

This leaves bll , a2(N/17 ) and one number 

1/2 + 6 which may fill the remaining two bins in 
several ways. We have thus shown that 
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A* ! 10N/17 + i, so AFF/A* > 17N/(10N÷i7) and 

ABF/A * > 17N/(iON+i7). By selecting sufficiently 
large N, we can make this ratio be bounded below 
by 17/10 - s for any positive ~. 

We will now show that 17/10 is the asymptotic 

least upper bound of the ratio RFF(k). The general 
strategy will be to consider the two packings of 
bins governed by (i) the optimal algorithm and 
(ii) the first fit algorithm. We will arrange a 
system of "payments/' where each bin in the optimal 
assignment "pays" a certain amount for each number 
it contains, in such a way that no bin pays more 
than 17/10 units. Each bin in the first fit 
assignment is "paid' for each number it contains~ 
and it will be shown that with exceptions totaling 
at most 3 units, each bin is paid at least one 
unit. 

A "conservation of payments" argument allows 

us to conclude that 17/10 A* > A FF - 3~ and thus 

that AFF/A * ~ 17/10 + O(i/A*). 

Lemma i: If numbers are assigned to bins by 
the first fit algorithm, there is at most one non- 
empty bin that is not more than half full. 

Proof: If riot, then the one to the right was 
filled illegally. 

7/10 

c~ 

Fig. i The Function f(c~) 

Formally: 

f(~) = 6 1 y~, for 0!sit 

i for < c~ < f ( c O  = ~ l ~ ,  - - 

6 ~0 1 1 f(~)=~+ , for ~!~S~ 

i 
f ( ~ ) = l ,  for ~<~<_l 

Lemma 2: Let some bin be filled with 
n 

(C~1, C~2, . . . , ~ n  ) .  Then ~ f(c~i) < 17/i0. 

i=l 

Proof: If c~ <_ 1/2, then f(c~)/c~ < 3/2] the 
extreme ratio is reached only when c~ = 1/3 and is 
less otherwise. Thus~ the lemma is immediate 
unless one ~i is greater than 1/2. We may take 

this one to b@ C~l, and must now show that if 
n n 

~i < 1/2, then ~ f(~i) < 7/i0. 

i=2 i=2 

It should be noted that since the slope of 
f(c~) is the same in the region [0,1/6] and [1/3, 
1/2], any ~i which is in the second regions can be 

replaced without loss of generality by two numbers 
of 1/3 and c~ i - 1/3, respectively. We therefore 

assume that cc i <_ 1/3 for 2 < i < n. Moreover, if 

c~j and ~k are both equal to ory_less than 1/6, they 

be combined into one, and~ f(czi) will not can 

i 
decrease; in fact it may increase. Thus, we 
assume that all but at most one of the ~i's are in 

the range (1/6,1/3]. 

We have thus reduced the proof to the consid- 
eration of two cases: 

(1) n=2; !~2!~, and 

(2) n = 3; ~l ~ ~ ~2 ~ ~3 ~ 3 " 

In case  (1),  f ( ~ l )  + f (~2)  = 9/5 (~1+~2) 

- 1 /5 .  Since  ~1 + ~2 ~ 1/2,  we have f ( ~ l )  + f (~2)  

~ 7/1% as desired. In case (2), f(~l ) + f(~2 ) 

+ f(~3) S6/~ % + 9/~ (%+~3) - 1/5 : 

9/5 (~i+~2+~3) - 3/5 ~i - 1/5. Since ~i + ~2 + 

~3 ~ 1/2 and a I > O, we have f(~l) + f(a2) + f(~3) 

S 7/10. 

Let us define the coarseness of a bin to be 
the largest ~ such that some bin to its left is 
filled to level 1 - ~. The coarseness of the left- 
most bin is O. 

Lemma 3: If bins are filled by first fit, 
and some bin has coarseness ~, then every number 
in it exceeds ~. 

Proof: If not, a violation of the first fit 
algorithm is immediate. 

Lemma 4 : Let a bin of coarseness ~ < 1/2 be 
n 

filled with numbers c~i,c~2, ...,c~ n. If ~ <z i 

n i=l 

>_ i - c~, then ~ f(cci) >_ i. 

i=l 

Proof: If c¢ i > 1/2 f o r  any i ,  then  the  

result is irmnediate," since f(c~i) = i. We there- 

fore assume that ~i  <- 1/2  fo r  a l l  i .  We c o n s i d e r  

several cases, depending on the range of oz. 
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n 

e <_ 1/6. Then L ~i >-- i - e >_ 5/6. Case i: 

i=l 
Since f(~)/~ >_ 6/5 in the range 0 <_ ~ <_ 1/2, we 

n 

immediately have L f(ei) >- i. 

i=l 

Case 2: 1/6 < c~ <_ 1/3. We consider sub- 
cases, depending on the value of n. 

n = i: Then since c~ I <_ 1/2, we must have 

C6 >_ 1/2. But we assume C~ <_ 1/3. 

n = 2: If both c~ 1 and c~ 2 are equal to or 

greater than 1/3, then f(c~l) + f(c62) >_ 1/2 + 1/2 

> i. If both are less than 1/3, then c~ 1 + c62 

< 2/3 <_ 1 - c~, which is impossible. Therefore, we 
may assume that ~ < e I < 1/3 < % <_ 1/2. Then 

f(e I) + f(fz 2) = 9/5 e I + 6/5 c~ 2 = 3/5 c~ 1 + 

6/5 (el+C~2). We know that e I + e 2 > 1 - c~, and 

% >_ ~, so f(%) + f(%) >_ 3/5 ~ + 6/5 (l-m) 
= 6/5 - 3/5 C6. Since we assume C~ < 1/3, we have 
f(%) + f(%) >_ 1. 

n = 3: As in the previous case, if two of 
C~l, (z 2 and (z 3 exceed 1/3 , the result is immediate. 

If exactly one, say C~3, does so, then f(el) + 

f(%) + f(%) = 9/5 (%+%) + 6/5 (~) - 1/lO = 

6/5 (%+%+%) + 3/5 (%+%) - 1/10. We have 

C~ I + C~ 2 + C~ 3 >_ i - C~ and e I + c~ 2 >_ 2cc. Therefore, 

f(%) + f(%) + f(e 3) >_ ll/lO. 

If, on the other hand, none exceed 1/3, then 
f(%) + f(%) + f(%) -9/5- (%+%+%) - 3/10 >_ 

3/2  - 9 /5  C6. If C~ < 5 /18 ,  then 3 / 2  - 9/5  C~ > 1, 
so we have our desired result. If 5/18 < c~ ~ 1/3, 

then c~ 1 + e 2 + c~ 3 > 5/6, so f(c~l) + f(c~2) + f(c~ 3) 

> 9/5 (5/6) - 3 / l O  : 6 / 5 .  

n = 4: We may again restrict ourselves to 
the cases where none of ~i' "'"c~4 are greater than 

1/3 or one of these, say c~4, is. In the latter 
4 

ease, L f(~i) = 9/5 (%+%+%) + 6/5 % 1/5 

i=l 
> l  - 6 / 5 c ~ +  3/5 

all are less than 

(C61+C~2+C~3) > i + 3/5 e > 1. 

1/3, then ~ f(ei)= 

i=l 

I f  

9/5 (c~i+c~2+c~3+c~ 4) - 2/5 >_ 7/5 - 9/5 e. If 

c~ < 2/9, we have our desired result. If 2/9 < c6 
< 1/3, then c~ I + C62 + c~ 3 + c~ 4 > 8/9, so 
--4 

~ f(%) >_ 9/5 - 2/5 (8/9) 6/5. 

i=l n > 5: This case is immediate, as f(ei) 

>_ 1/5 for % >_ 1 / 6 .  

Case 3: 1/3 < cc < 1/2. Then n <_ 2. If n = 2, 
then since c~ I and e 2 are each greater than i/3, the 

result is immediate. If n = i, we have c~ I >_ i - c~ 

> 1/2, so f(%) = 1. 

Corollary: If a bin of coarseness c~ < 1/2 is 
n 

filled with C~l, ...,C~n, and L f(C6i) = 1 - ~, where 

i=l 
> O, then either: 

1 
(i) n = 1 andC~l <_~ , or 

n 

i=l 

Proof: If n = 1 and c~ 1 > 1/2, it is impossi- 

ble that ~ > O. Therefore, if (I) does not hold, 
n 

we may assume that n > 2. Let >. c~ i = 1 - c~ - 7" 

i=l 
Then we may construct a bin filled with c63,cc4, ..., 

a n and two other numbers 51 and 82, selected so 

that 81 + 52 = ccI + c~ 2 + 7, 61>_ c61, 82 > c~2, and 

neither 51-nor 82 exceeds 1/2. By Lemma 4, 
n 

~ f(c~i) + + I. But since the slope f(8 I) f(62) >_ 

i=3 
of f in the range [0,1/2] does not exceed 9/5, it 
follows that f(61) + f(82) <_ f(c¢ I) + f(c~ 2) + 9/5 7" 

Therefore, 7 >_ 5/9 ~, and (2) holds. 

Theorem 2: For all e > 0 there exists N such 

that if k >_ N, then RFF(k) < 17/10 + E. 

Proof: Let A = (C~l, ...,C~r) , and let 
r 

W = L f(ei)" By Lersna 2, A* >_ 10/17 W. Suppose 

i=l 
that in the first fit algorithm, bins Bi, B2, ...,B m 

are all the bins that receive at least one number, 

but for which L f(c6i)' where i ranges over all (z i 

i 
in the bins sums to 1 - ~i ~ for ~i > O. Let 7i be 

the coarseness of B.i. If 7i >_ 1/2, then by Lemma i, 

Bi+l, ...,B m are each more than half full, and must 

hold one number greater than 1/2. 

If i < m and 7i > 1/2, then B m > 0 is impossi- 

ble, since B k must hold one number c~, for which 

f(e) = i. Thus, i = m. We may conclude that 
)'i < 1/2 for 1 < i < m. By Lelmna 3 and the 

corollary to Lemma 4, we haven_2 7i >_ 7i_i + 5/9 ~i-1 

for all 1 < i < m. Thus ~ ~i <- 9/5 (7m_i-71)<I. 
f~ 
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Since ~m-i and ~m cannot exceed i (an argument 
m 

can be improved greatly), we have ~ ~i <- 3. which 

i=l 

We therefore find that by Lemma 4, A FF < W+ 3. 

Hence AFF/A * < 17/10 + 51/lOW. Since W > A ~'F - 3, 
it must be that W >_ A* - 3. Given e > O, choose 

N >_ 51/lOs + 3. Then AFF/A* <_ 17/10 + £. 

As a consequence of Theorems 1 and 2, we know 

that lim RFF(k) = 17/10. 
k--Too 

It is interesting to note that for several 
values of k the ratio 17/10 can actually be 
attained. In particular, there is a list A with 

A* = i0 and A FF = 17. The packing of bins, with 
all quantities in units of i/i01 is shown in 
Fig. 2. There is also a list A with A* = 20 and 

A FF = 34. Perhaps RFF(k) < 17/10 for k > 30. 

(x 3) (x 7) 

A FF- t7: t0•• 
9 

50 
48 34 

t0(X2) 120 

(X 5) (X t0) 

Fig. 2. An example with A FF = 17 
and A* = I0. 

In order for the ratios RFF(k) and RBF(k) to 
achieve relatively large values, it is necessary 
for some of the ~i to be relatively large. In 

fact, when all c~ i ~ c~ ~_ 1/2, we have the following 

result, stated without proof. 

Theorem 3: For any c~ < 1/2 and any g > O, 
there exists N such that fo~ any list A = ((Zl, C~2, 

...,~n) with max c6 i <_ c6 and A* > N, we have 

AFF/A* - a <_ I + t~-lJ -I 
and 

ABF/A* - e <_ i + L~-iJ -I. ? 

?Where LxJ denotes the greatest integer ~ x. Note 

that Lc~-lj -1 is piecewise continuous and flat in 
the ranges 1/i < c~ ~l/(i-1), for integers i ~ 3. 

Furthermore, this bound cannot be replaced by any 
smaller function of c6. 

III. FIRST FIT DECREASING AND 

BEST FIT DECREASING 

The exact asymptotic values of RFFD(k) and 

RBFD(k) are not yet known. However, they each can 
be bounded below by 11/9 and above by 5/4. We 
begin with an extremely useful lemma. 

Lemma I: Given any list A, let ~ be the last 
number placed in a previously empty bin when 
applying the FFD method to A. Then 

AFFD/A * < i/(1-c~) + l/A*. 

The same result holds with FFD replaced by BFD. 

Proof: Since (z could not be placed in any of 

the first A FFD - 1 bins, each of them must be 
filled to a level greater than 1 - c6. But since 
each of the A* bins in the optimal placement is 
filled to level at most i, 

(AFro-i) • (i-Q) + ~ < A*, 

or, rewriting, 

A F~ < (A~+l-~)/(1-~). 

We then have 

AFFD/A* < i/(i-~) + (i-2~)/(A*(i-~)) 

< i/(i-c~) + i/A*. 

We now use Lemma i to obtain an upper bound 

for RBFD(k). 

Theorem 4: For  any s > O, t h e r e  e x i s t s  an N 
such  t h a t ,  f o r  a l l  k > N, 

RBFD(k) < 5 /4  + £. 

P r o o f :  We m e r e l y  s k e t c h  t h e  l e n g t h y  p r o o f .  
Choose N = 2/£, s u p p o s e  we have  a l i s t  A which  
exceeds  t h e  bound .  By Lemma 1, we can assume t h a t  
e v e r y  number on A i s  l a r g e r  t h a n  1/5~ s i n c e  a l l  
numbers  s m a l l e r  t h a n  t h e  c~ o f  Lemma 1 can be 

eliminated without reducing ----A~FD/A*. 

Consider any optimal placement for A. We 
apply the BFD method to successively relocate the 
numbers, eventually transforming the optimal place- 
ment into the BFD placement, in such a way that the 
number of extra bins required can be hounded. 

The BFD relocation proceeds in n stages, 
corresponding to the BFD placement of ccI > c~ 2 > 

• .. >_ c~ n. Initially, all the c~ i are "unfixed', 

meaning that each can still be moved to a differ- 
ent bin. During stage k, the number ~k is "fixe~' 

by placing it permanently into the bin B. into 
• 

which it fits best, ignoring all unfixed weights• 
If ~k was not in Bj at the beginning of stage k, 

then the largest unfixed c~ i from Bj is placed in 
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the location just vacated by c~ k (~i must fit in 

that space since the fact that ~i has not yet been 

fixed implies ~i ~k )" At this point, the total 

amount contained in B. may exceed i, since it may 
0 

still contain some unfixed numbers. If this occurs, 
some of the unfixed ~i are relocated so that no bin 

contains a total more than i. The detailed des- 
cription of this relocation process (entailing 
some 20 cases) will not be included here. During 
this relocation, it may be necessary to remove one 
unfixed ~i to a special list of displaced numbers, 

rather than simply moving it from one bin to 
another. However, whenever a number is displaced 
in this way, certain rather complicated properties 
must be satisfied by both the displaced number and 
the bin from which it is displaced. These pro- 
perties are designed to guarantee that no displaced 
numbers will be larger than 1/3 and that the list 
of displaced numbers never contains more than 
A* - £ numbers, where £ of the displaced numbers 
are larger than 1/4. Furthermore, these properties 
ensure than once bin A* + i is started, no more ~i 

will be displaced. Since the number of additional 
bins required by the BFD method is essentially 
determined by the number and sizes of the ~i on 

the displaced list during the stage that bin 
A* + i is started, and since both have been 
suitably restricted by the relocation technique, 
one can show that the list A could not have 
exceeded the bound of the theorem, a contradication. 

The same upper bound holds for R FFD. 

Theorem 5: For any g > O, there exists an N 
such that, for all k > N, 

RFFD(k). < 5/4 + S. 

Proof: The proof follows from Lemma i, 
Theorem~ and the following, somewhat surprising, 
result which shows that FFD and BFD require the 
same number of bins whenever the list A contains 
no element smaller than 1/5. 

Theorem 6: For any list A = (~l,~2,...,~n), 

if min ~i ~ 1/5, then A FFD = A BFD. 

Proof: Let A = (~l~2,...,~n) be a list with 

~l ~ ~2 ~ "'" ~n ~ 1/5. We are going to imagine 

assigning two copies of A. One copy will be 
assigned to the bins B i using the first fit 

decreasing (FFD) algorithm. The other copy will 
t 

be assigned to the bins B. using the best fit de- 
i 

creasing (BFD) algorithm. We shall make these two 
assignments simultaneously~ maintaining certain 
relationships between the contents of various B. 

r i 

and B. as we proceed. 
i 

More precisely, at each stage of the assign- 

ment~ the k th stage starting with the assignment 
of c~, we shall associate to each B i a unique bin 

B' ' • which will be denoted by Bi(k ). Although B (k) 
J 

may vary as k increases, this will cause no diffi- 
culties since the ordering of the bins is irrele- 
vant when applying the BFD algorithm. For 
notational convenience we shall let Bi(k) = B i for 

all k. Also, IBi(k)l will denote the sum of the 

~j which have been assigned to B i after the ele- 

ments ~l,~2,...,~k have all been assigned, with 
p 

IBi(k)l defined similarly. Finally, let the cur- 

rent unused capacity i - IBi(k)l in Bi(k) be 

denoted by gi(k), with g[(k) defined similarly. 

If gi(k) < 1/5, we shall say that Bi(k ) is closed, 

since no further ~j can be assigned to Bi(k ). If 

gi(k) < 2/5, we shall say that Bi(k) is nearly 

closed. Of course, the same terminology applies 
P 

to gi(k). 
Initially, before ~. is assigned, to each B i 

t l t 

is assigned the box Bi(O) = B i. Since at this 

stage, all the bins are empty, this assignment is 
arbitrary. For k = O,l,...,n, consider the 
following statement (which applies for all i > i). 

t 

S(k): (i) If gi(k) > gi(k) then gi(k) < 1/5. 
P l 

(ii) If gi(k) < gi(k) then gi(k) < 2/5. 
t l 

(iii) If gi(k) < gi(k) and gi(k) > 1/5 

then ~k+l ~ gi (k)" 
P 

(iv) gi(k) = 1 if and only if gi(k) = i. 
i 

S(O) is certainly true since gi(O) = gi(O) : 1 

for all i. For a fixed k < r, assume S(k) has been 
established. We shall show that S(k+l) also holds. 
Once this is done then by induction, condition (iv) 
of S(n) implies the desired result. 

Thus, we begin the (k+l) st stage by assigning 
~k+l to one of the Bi[k) , as well as to one of the 

t 

Bj(k). Suppose in the FFD algorithm, (zk+ 1 is 

assigned to Bi(k ! while in the BFD algorithm, CZk+ 1 

is assigned to Bj(k). There are several 

possibilities. 

(1) i = j: In this case conditions (i), (ii) 
and (iv) are immediate for S(k+l). To see that 
(iii) holds for S(k+l), it is sufficient to note 

t 
that if gi(k+l) < gi(k+l) then we must have 

t f 

gi(k) < gi(k). By (ii) for S(k), gi(k) < 2/5. 

Since ~k+l ~ 1/5 then g~(k+l) = g~(k) - ~k+l < 1/5 

so that (iii) in S(k+l) holds vacuously for index 
i and by induction for the other indices. 

P 

(II) i > j: Since ~k+l is assigned to Bj(k) 
t 

then 1/5 ! ~k+l ! gj(k). Thus, by (i) we have 
f t t 

gj(k) ~ gj(k). If gj(k) = gj(k) then ~k+l ~ gj(k) 

= gj(k) and~k+ I could have been assigned to Bj(k) 
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by the FFD algorithm which is a contradiction. 

Hence, we may assume gj(k) < g~(k). By (iii), 

Gk+ I ~ gj(k) which again implies the same contra- 

diction above. 

(III) i < j: Define B~(k+l) = Bj(k), Bj(k+l) 

= Bi(k) and Bm(k+l) = Bm(k ) for m / i, j. Thus, 

P I 

gi(k+l) = gi(k) - C~+l, gi(k+l) = gj(k) - C~+l, 

gj(k+l) : gj(k), 

We must verify the 
are, for all i, 

(i') 

(ii') 

(iii) 

(iv) 

P 

gj(k+l) = gi(k). 

c o n d i t i o n s  f o r  S ( k + l ) .  These 

r 

If gi(k+l) > gi(k+l) then gi(k+l) < 1 / 5 .  

I t 

If gi(k+l) < gi(k+l) then gi(k) < 2/5. 
P t 

If gi(k+l) < gi(k+l) and gi(k) > 1/5 then 

~k+2 ~ gi (k)" 
! 

gi(k) < 1 if and only if gi(k) < i. 
t f 

Since only the bins Bi(k), Bi(k), Bj(k), Bj(k) 

have been affect4d by the transformations of the 

(k+l) st stage then it suffices to verify the 
following conditions: 

(a) gi(k) - Gk+ I < 1/5; g](k) - ~k+l < 1 / 5 .  

I t 

(h) I f  g j ( ~ )  < gi(k) then gi(k) < 2 /5 .  
I r 

(c) I f  g j (k)  < gi(k) and gi(k) ~ 1/5 then 

% + 1  ~ g j ( k ) .  

(d) g~(k)  < 1 i f  and only i f  g j (k)  < 1. 

Since ~k+l ~ gi (k) then by (i) we have 

P 

c~+ 1 ~ gi (k) ~ gi(k) • 

Thus, <~k+l ~ g~(k) so that by the definition of 
t t 

the BFD algorithm, gj(k) ~ gi(k). But if 

gj<k) = g~(k) then we could just as well have 
! 

assigned c~+ 1 to Bi(k ) with no change in the set 

of values of the gi(k+l). Hence we may assume 

r i 

gj(k) < gi(k). 

(a) If gi(k) / g~(k) then by (i) and (ii), 

g~(k) < 215. Thus, g~(k) ~+l < 115 and by 
above 

gi (k) - %+1 < 1/5, g~(k) - %+1 < i/5. 
t l 

If gi(k) = gi(k) then gi(k) > gj(k). But 
f 

gj(k) > gj(k) by (i) so that gi(k) > gj(k). Thus, 

by the definition of the FFD algorithm, at least 

two ~'s must be assigned to Bj(k). But by (iii), 

C~k+ I ! gj(k) so that gj(k) > 1/5. Hence, at least 

one ~t assigned to Bj(k) must satisfy ~ t 

1/2 (l-gj(k)) ! 2/5. Thus, by the definition of 

the FFD algorithm, gi(k) < c~ t ! 2/5. This implies 

t 

gi (k) " ~k+l < 1/5 and thus, gj(k) - ~k+l < 1/5. 

f f 

(b) Suppose gj(k) < gi(k). If gi(k) ~ 2/5 
f 

then by (ii), gi(k) = gi(k). But in this case the 

argument in (a) applies to show that gi(k) < 2/5 

which is a contradiction. Hence, we must have 
P 

gi(k) < 2/5. 
I 

(C) If gj(k) = gj(k) then certainly Gk+ 1 
p t 

gj(k) since Gk+ I ~ gj(k). If gj(k) / gj(k) then 

by (i), gj(k) < gj(k). By (iii), Gk+ I ! gj(k). 

(d) If gj(k) = 1 then gj(k) = 1 by (iv). If 

g~(k) < 1 then by the rules for the BFD algorithm 
t 

c~+ 1 should have been assigned to Bi(k ) before 

being put into Bj(k). Since it was not then 
f 

gi(k) : i. If g[(k) : 1 then gi(k) = 1 by (iv). 

Thus, by the rules for the FFD algorithm, gj(k)= i. 

These conditions establish S(k+l). By induc- 
tion, S(n) holds. Condition (iv) of S(n) implies 
the desired result. 

It is interesting to note [5] that extensive 
experimentation with randomly generated lists in- 
cluding elements of all sizes has failed to uncover 

a single instance in which AFFD/ABFD. However, 
such examples do exist. For example, Fig. 3 shows 
how to construct arbitrarily large examples with 

AFFD/A BFD = ii/i0. Note that the smallest pieces 
in that example are of size 1/5 - E, so the 
constant 1/5 in Theorem 6 cannot he improved upon. 

A BFD= 1On: 

(X 5n) (X 5n) 

AFFO=|tn: 

(X 5n) (X 5n) (X n} 

Fig. 3 An example with AFFD/ABFD = ii/]0 
and A* = iOn. 
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It is also possible that A BFD can be substan- 

tially greater than A FFD. Figure 4 shows that 

ABFD/AFFD can be as large as 10/9. 

A FFD= 9 n: 

(X3n) (x6n) 

A e~°= 10 n: 

(x3n) 

! -E 

(X6n) (xn) 

Fig. 4 An example with ABFD/AFFD = 10/9 
and A* = 9n. 

We now turn to lower bounds on R FFD and R BFD. 

Theorem 7: 

lim RFFD(k) ~ i1/9, lim R BFD ~ 11/9. 
k~ k~ 

Proof: Figure 5 exhibits the method for 
obtaining arbitrarily large examples having 

AFFD/A * = ABFD/A * : 11/9. 

A *= 9n: 

(X 6n) "(X 5n) 

A FFFD =ABFD:IIn : 

Fig. 5 

(X 6n) (X 2n) (X 3n) 

An example  w i t h  RFFD(k) = RBFD(k) 
= 1 1 / 9  f o r  k = 9n.  

IV. CONCLUSIONS AND OPEN PROBLEMS 

We have considered four heuristic algorithms 
for the problem of bin packing. Of these, only for 
first fit do we know the asymptotic worst-case 
behavior exactly (17/10). For best fit, we know 
the ratio to be at least 17/lO, and for first fit 
decreasing and best fit decreasing the ratio is 
bounded between 11/9 and 5/4. Some additional re- 
sults on these and other algorithms can be found in 
[6,7]. 

The following open prmblems suggest themselvea 

(i) Find the asymptotic values of R BF, R BFD, 

and R FFD. It is conjectured that 

l i m  RFFD(k) = l i m  RBFD(k) = 11/9. 
k~ k~ 

(2) Is it true that 9/10 < AFFD/ABFD ! ii/i0, 
for all lists A? If not, find~he correct bounds 

on AFFD/A BFD . Also, it is natural to ask for the 

bounds on AFF/A BF. 

(3) Lemma i provides some information on the 
performance of FFD and BFD when element sizes are 
restricted to being no greater than~, however, 
not nearly as much information as is given for FF 
and BF in Theorem 3. What more can be said about 
FFD and BFD applied to such restricted lists? 

Additional open problems are described in [6]. 
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