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This paper describes an interactive computer- 
aided design system which converts a state table 
description of a small scale synchronous digital 
system into a logic diagram. The input to the 
design programs is a State Table and a Unit Control 
Table that is generated by another design automa- 
tion program. The State Table sequences the 
operations of the system. The Unit Control Table 
describes the operations that are to be performed 
on the defined units of the digital system and 
the conditions under which the operations are to 
be performed. The output of the design system is 
a detailed logical design of the control logic of 
the digital system. The output is in the form of 
an interconnection diagram that can be read by a 
digital hardware simulation program. 

The Computer-Aided Logic Design (CALD) 
System is interactive to allow the designer to 
change various parameters and generate many dif- 
ferent logic designs for any particular State 
Table. The user may specify the state assignment, 
the type of memory element, and the maximum 
allowed gate fan-in. CALD assists the designer 
in performing State Table reduction and generates 
the state assignment at the users option. The 
tabular description of the digital machine is 
translated into a Boolean description resulting 
in a set of cannonical form Boolean equations in 
sum of product form. Memory element application 
equations are generated. Boolean equation 
minimization is performed followed by a factoring 
routine to enforce the fan-in constraint. The 
equations are then translated into a logic dia- 
gram. 

The CALD system is implemented in FORTRAN 
and running on a minl-computer with 8K of core. 

Introduction 

The digital system design process has been 
partially formalized as a first step toward 
automation. The process has been partitioned 
into several phases of activity. Partitioning 
was performed so that the output of each design 
phase is a description of the system which serves 
as the input to the next phase of design. The 
design process consists of: Conceptual design, 
Functional design, Logic Design, Hardware Simu- 
lation, Implementation Design, and Construction. 

used in describing the logical system. Simulation 
of the digital system is performed on a "gate by 
gate" analysis in which signal levels propagate 
through the simulation much the way they would 
through its hardware equivalent. The program 
provides the user with information about possible 
timing hazards encountered during the operation 
of the system as well as verifying the logical 
correctness of ~he design. 

The CALD programs generate a logic diagram 
that is encoded in the HALSIM language and con- 
sists of a collection of HALSIM specification 
statements. These statements form a wiring list 
which determines a unique interconnection between 
the elements. The statements are expressed in 
terms of signal names and logic elements. A 
signal name is assigned to each signal in the 
system. Each element in the logic diagram has a 
specification statement associated with it. The 
specification statement consists of an input list, 
an operator, and an output list. The input list 
consists of the names of all the signals that are 
inputs to the logic element. The operator is a 
logic element name from the element library and 
the output list contains the names of all signals 
that are outputs of the element. Figure i shows 
the assignment of names to a simple digital 
system and the specification statements for the 
system. There is a one-to-one correspondence 
between the logic diagram and the HALSIM language 
description of the logic diagram 

FST 

FST (Functional Simulation and Translation) 
is a set of computer programs that perform the 
functional design of a small scale synchronous 
digital system (4), (5). Upon completion of the 
conceptual design phase, the description of the 
digital system consists of a process flow chart 
specifying the operations to be performed by the 
system and implying the necessary functions of 
the control logic. The functional design phase 
translates this process flow chart description 
into a block diagram description. The block 
diagram consists of a llst of the defined units 
of the system showing conditions necessary for 
an operation to occur in a given unit, and a 
state table describing the control logic of the 
system. 

The CALD (Computer-Aided Logic Design) 
System performs the Logic Design phase of the 
design process (i). CALD is part of a larger 
Design Automation System and interfaces with 
a Functional Design System and a Hardware 
Simulator. It is necessary to briefly describe 
these other two systems in order to understand 
the CALD System. 

HALSIM 

HALSIM (Hardware Logic Simulator) is a 
programming system used to describe and simulate 
digital logic designs on the hardware level (2), 
(3). The input to HALSIM is a detailed logic 
diagram that has been encoded into the HALSIM 
input language. The language defines the inter- 
connections between the various logic elements 
in the system. The simulator possesses a library 
of standard integrated circuit elements which are 

The FST system is composed of four major 

A language to describe the process flow 
chart of the digital system. 
A compiler to convert the flow chart 
description into a list structured des- 
cription of the system. 

3. A simulator to verify that the described 
system will perform as expected. 

4. A translator to generate the unminimized 
State Table and the Unit Control Table 
which constitute the block diagram des- 
cription of the system. 

The FST Language 
The FST language consists of two main parts: 

Unit declarations and statements that describe the 
operations of the defined units. The units allow- 
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~ecade counters, and binary adders. 

The statements describing the operations of 
the units consist of a list of operations and the 
conditions when the operations are to be performed. 
Statements may be of two basic types: 

i. WHEN (Condition List) THEN (Operation List) 
The operations listed are to be performed 
only when the condition llst is true. 

2. THEN (Operation List) 
The operation list is always performed. 

The Condition List is a well-formed Boolean 
expression of defined units of the system, Boolean 
literals, and the following operators: Equality, 
Negation, Logical And, and Logical Or. 

are: 
The operations allowed on units of the system 

i. (Unit Name) Set the Unit 
2. - (Unit Name) Reset 
3. Shift (Register Name) Right N 
4. Shift (Register Name) Left N 
5. Circulate (Register Name) Right N 
6. Circulate (Register Name) Left N 
7. Increment (Counter Name) 
8. Decrement (Counter Name) 
9. Transfer (Name i) to (Name 2) 

i0. Transfer (Binary Literal) to (Name) 
ll. Add (Name) to (Binary Adder Name) 
12. Goto (Label) 

The sequence of statement executation is 
determined by the block structure of the program. 
Any group of statements may be placed in a block 
and the order of execution of statements within a 
block may be specified as concurrent or sequenced. 

State Table & Unit Control Table 
Upon completion of a satisfactory simulation, 

the FST translator generates an unminimized State 
Table and a Unit Control Table. The State Table 
describes the control logic portion of the digital 
system. The entries in the State Table consist of 
the present state, next state, and the condition 
necessary for control to be transferred from 
present to next state. The condition is a Boolean 
expression taken from the Condition List of the 
FST Language statements. 

The Unit Control Table describes the operations 
that are to be performed on the defined units of the 
system and the conditions under which these opera- 
tions are to be performed. The defined units are 
the memory elements, registers, counters and 
adders specified by the designer under unit de- 
clarations in the FST language. The entries in 
the Unit Control Table consist of a unit name, 
an operation, and a Boolean expression specifying 
the conditions necessary for the execution of the 
operation. The State Table and Unit Control Table 
completely describe the operation of a digital 
system. 

Examples 
An example of a FST input language statement 

is given below. 

WHEN B(4)*(A=CB) THEN Increment Actr, -A, 
Shift Areg Left i, Transfer i001 to B(i-4), 
Goto Li $ 

The above statement indicates that when bit four 
of register B is one and when flip-flop A is in 
the same state as flip-flop CB then increment a 
counter called Actr, reset flip-flop A, shift Areg 
one bit left, transfer i001 to bits one through 
four of register B, and go to the statement labeled 
Li. 

If the above statement is assigned state Si 
by the FST compiler and the statement labeled LI 
is assigned state SJ then the State Table entries 
for this statement would be: 

Present Next Boolean 
State State Condition 

Si SJ B (4)* (A=CB) 
Si+l -[B(4)*(A=CB)] 

The Unit Control Table would contain an entry 
specifying that counter Actr is to be increment if 
the following Boolean Condition is true: 

Si * [ B(4) * (A=CB) ] 

The Unit Control Table would contain an entry for 
each operation in the Operation List of the FST 
input statement. 

The CALD System 

The State Table and the Unit Control Table 
generated by the FST System is read as input to 
the CALD System. The logic design is performed 
from these two tables. 

The structure of the logic diagram that is 
generated by CALD is shown in Figure 2, The basic 
system configuration reflects the fact that the 
logic design is performed from a state table. The 
structure contains a bank of memory elements to 
represent the states of the State Table. The 
particular memory element configuration generated 
by CALD associates N memory elements for 2 N states. 
A decoder is used to decode the memory element 
states and control logic sequences the operations 
of the defined units. Specifically, the control 
logic examines the decoder outputs and the inputs 
from the defined units, it then generates the 
memory element input equations and the outputs 
specified by the Unit Control Table. The inputs 
from the defined units represent specific conditions 
or states of the defined units, eg. counter B=0000, 
flip-flop C is reset. The outputs generated by 
the control logic specify the operations to be 
performed on the defined units, eg. shift registerA 
4 bits to the right, increment counter B. The 
CALD Programs perform the detailed logical design 
of the state memory elements, the decoders, and 
the control logic, This is shown as the enclosed 
part of Figure 2. The defined units, along with 
any transfer or decoding circuitry associated 
with them, are not designed by the programs. 

The description of the Computer-Aided Logic 
Design system is divided into the following 
sections: 

i. Compiler 
2. State Table Reduction 
3. Library of Hardware Elements 
4. State Assignment 
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5. Specification of memory element type 
6. Memory Element Input Equation 
7. Fan-in 
8. Reduction of Logic Equations 
9. Factoring of Logic Equations 

i0. Fan-Out calculation 
ii. Translator (to generate the logic 

diagram) 

Compiler 
The purpose of the compiler is to translate 

the State Table and the Unit Control Table into 
logic equations that can be eventually implemented 
in hardware. The Boolean Conditions from the 
tables are converted to parenthesis-free notation 
and placed in an output list. Each unit name is 
placed in the NAME table and assigned a compiler 
generated name consisting of an alphanumeric 
code. The Polish output list is scanned for 
subexpressions. A subexpression is a group of 
adjacent terms (coded unit names) connected by the 
same operator. The subexpression is arranged in a 
canonical form based on the coded names, assigned 
a name, and stored in either the AND table or the 
OR table depending on the type of the connecting 
operator. No duplicates are allowed. The sub- 
expression is then removed from the output list 
and replaced by its name, This process continues 
until both tables have been processed. 

An example is given below to indicate how 
the compiler operates. Suppose the following 
expression is the first Boolean Condition in the 
State Table. 

(A'B) + C + D*E*F 

The compiler scans the expression and assigns 
compiler names Ii through 16 to the names. The 
following Polish output list is generated: 

Ii 12 * 13+ 14 15 16 ** + 

The output list is scanned and the equations 
are generated in the following order. 

E1 = Ii * 12 
E2 = 13 + E1 
E3 = 14 * 15 * 16 
BI = E2 + E3 

Each equation is placed in either the AND or 
OR table. The "I" represents an input, "E" 
represents a subexpression, and "B" repre- 
sents a complete Boolean Condition. The 
equations are in a standard form based on the 
priority of the letter and the number in each 
name. 

State Table Reduction 
When compilation is complete the system 

examines the State Table and generates the nec- 
essary information to merge states in order to 
reduce the size of the Table. State Table reduct- 
ion tends to reduce the number of logic elements 
required in the logic design. Compiler and State 
Table Reduction routines constitute the pre- 
processing phase of the logical design process. 

Library of Elements 
The CALD programs contain a limited library 

of digital integrated circuit logic elements 

based on the HALSIM Library. The library includes 
a clock element, a NAND gate, an INVERTER, a JK 
memory element, a Delay memory element, and a 
Binary to Octal Decoder. Since only the control 
logic is designed by CALD, this library is ade- 
quate for most design problems. The library is 
small due to the limited amount of storage 
available on the DDPIi6 computer (8K). However, 
provision has been made for increasing the number 
of elements in the library. 

State Assignment 
CALD requires N memory elements to represent 

2 N states in the State Table. This configuration 
tends to generate an economical and compact 
design. It is necessary to assign an N bit binary 
code to each of the 2 N states of the State Table. 
The complexity and cost of the combinational 
logic are in part determined by the code assigned 
to the states. The problem of state assignment, 
so as at completely minimize the cost of the 
combinational logic, is unsolved. One state 
assignment procedure that generally reduces cost 
involves minimizing the total number of flip-flop 
transitions that occur as the control logic 
sequences through the entire State Table. This is 
the approach taken in the CALD programs. In 
addition, the State Assignment routine optionally 
allows the user to assign the states and input the 
assignment on punched cards. 

The program prints out the number of flip- 
flop transitions for a particular state assignment 
to allow the user to generate and evaluate many 
different state assignments. 

The designer may specify either JK memory 
elements or Delay memory elements to be used in 
the logic design. The type of memory element is 
entered in response to a question printed on the 
teletype. 

Memory Element Input Equations 
The memory element input equations (app- 

lication equations) determine which memory elem- 
ents must change state at each clock pulse. These 
equations are calculated for either JK or Delay 
elements depending on which type was specified by 
the User. This routine examines each row of the 
State Table to determine whether a term should be 
added to any of the memory element input 
equations. The determination is based on the 
binary code assigned to the present state and the 
next state and the type of memory element. The 
input equations are treated like the Boolean 
Conditions in the two input tables. Th~ equations 
are scanned for subexpressions. The subexpress- 
ions are given names, arranged in canonical form 
and stored in either the AND or OR table. One 
type of Boolean reduction is performed while 
calculating the input equations. The expression, 
composed of two terms, Si*lj + Si*lj is replaced 
by its logical equivalent, Si. 

The user specifies the maximum allowed gate 
fan-in as any integer greater than one. This 
assignment is made in response to a question on 
the teletype. 

Boolean Equation Reduction and Factoring 
The Boolean Equation Reduction subroutine 
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searches both the AND and OR tables for equations 
that are subexpressions of larger equations. The 
subexpression in the larger equation is then 
removed and replaced by the name of the smaller 
equation. The search is facilitated by the fact 
that the equations are stored in canonical form. 

The Boolean Equation Factoring subroutine 
factors the equations in both the AND and OR 
tables to ensure that the length of each equation 
is less than or equal to the maximum allowed 
fan-in. The factoring procedure involves 
choosing a factor, assigning a name to the factor, 
inserting the factor and its name into the AND 
or OR table, and then replacing the factor by 
its name in the equation under consideration. In 
order to minimize the number of gates in the 
final design it is desirable to choose factors 
that are common to more than one equation if at 
all possible. 

Consider the equation below: 

Ki = $2 + $4 + C8 + C9 + E3 

If the maximum fan-in is three, CALD will 
generate the following factor for K1 assuming 
there are no other equations in the table. 

Ki = C9 + E3 + -Fi 
Fi = $2 + $4 + C8 

F1 appears in equation Ki with a "-" sign to 
indicate that Fi must be inverted. Before 
chosing a factor for Ki, the Factoring routine 
would normally check Ki against every equation 
in the OR table in search of other equations 
that have at least three terms in common with 
Ki. Fi would then be chosen from terms that 
are common to other equations. 

The CALD programs calculate the fan-out 
of each gate in the logic design and prints 
it. Due to the small amount of memory the 
programs perform no operations to reduce a 
large fan-out. 

Translator 
The Translator translates the logic 

equations in the AND and OR tables into 
HALSIM specification statements. Every 
input and output name in the specification 
statements includes a "+" or "-" sign at the 
end of the name to indicate signal polarity. 
The fan-out for each gate is printed next to the 
specification statement for the gate. Each 
gate is checked to see if its output is re- 
quired in inverted form. In addition, the 
program generates specification statements for 
the state memory elements and for Binary to 
Octal Converters used to decode the states. 

The list of specification statements 
generated by CALD constitute the detailed logic 
diagram for the control logic of the digital 
system. A simple example of a CALD generated 
logic design is shown in Figure 3. 

Conclusion 

The CALD system employs heuristic methods to 

provide a practical design environment capable of 
generating a reasonable economical design, in a 
short period of time on a small computer. The 
system is easy and convenient to use. All the 
information that is needed by the designer is 
printed as messages on the teletype. The messages 
request information, indicate options that are 
available, and provide operating instructions. In 
addition, the CALD system simplifies the evaluat- 
ion of a logic design by printing the number of 
memory element transitions resulting from a 
particular state assignment and the number of gate 
legs required in the design. 

The combination of FST, CALD and HALSIM 
provides a powerful, integrated design automation 
tool that can relieve the designer of many tedious 
and error prone tasks. A primary advantage of the 
design system is an increase in the speed of 
design. Better and more economical designs may 
also result due to the fact that many designs can 
be examined and evaluated. 
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Block Diagram of Logic Design Generated by CALD 

FIGURE 3 

Input Fan Out Table and Logic Diagram in HALSIM 
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