
COMPUTER AIDED LOGIC DESIGN
Dr. Frank W. Bliss

Bendix Computer Graphics
Farmington, Michigan

This paper describes an interactive computer-
aided design system which converts a state table
description of a small scale synchronous digital
system into a logic diagram. The input to the
design programs is a State Table and a Unit Control
Table that is generated by another design automa-
tion program. The State Table sequences the
operations of the system. The Unit Control Table
describes the operations that are to be performed
on the defined units of the digital system and
the conditions under which the operations are to
be performed. The output of the design system is
a detailed logical design of the control logic of
the digital system. The output is in the form of
an interconnection diagram that can be read by a
digital hardware simulation program.

The Computer-Aided Logic Design (CALD)
System is interactive to allow the designer to
change various parameters and generate many dif-
ferent logic designs for any particular State
Table. The user may specify the state assignment,
the type of memory element, and the maximum
allowed gate fan-in. CALD assists the designer
in performing State Table reduction and generates
the state assignment at the users option. The
tabular description of the digital machine is
translated into a Boolean description resulting
in a set of cannonical form Boolean equations in
sum of product form. Memory element application
equations are generated. Boolean equation
minimization is performed followed by a factoring
routine to enforce the fan-in constraint. The
equations are then translated into a logic dia-
gram.

The CALD system is implemented in FORTRAN
and running on a minl-computer with 8K of core.

Introduction

The digital system design process has been
partially formalized as a first step toward
automation. The process has been partitioned
into several phases of activity. Partitioning
was performed so that the output of each design
phase is a description of the system which serves
as the input to the next phase of design. The
design process consists of: Conceptual design,
Functional design, Logic Design, Hardware Simu-
lation, Implementation Design, and Construction.

used in describing the logical system. Simulation
of the digital system is performed on a "gate by
gate" analysis in which signal levels propagate
through the simulation much the way they would
through its hardware equivalent. The program
provides the user with information about possible
timing hazards encountered during the operation
of the system as well as verifying the logical
correctness of ~he design.

The CALD programs generate a logic diagram
that is encoded in the HALSIM language and con-
sists of a collection of HALSIM specification
statements. These statements form a wiring list
which determines a unique interconnection between
the elements. The statements are expressed in
terms of signal names and logic elements. A
signal name is assigned to each signal in the
system. Each element in the logic diagram has a
specification statement associated with it. The
specification statement consists of an input list,
an operator, and an output list. The input list
consists of the names of all the signals that are
inputs to the logic element. The operator is a
logic element name from the element library and
the output list contains the names of all signals
that are outputs of the element. Figure i shows
the assignment of names to a simple digital
system and the specification statements for the
system. There is a one-to-one correspondence
between the logic diagram and the HALSIM language
description of the logic diagram

FST

FST (Functional Simulation and Translation)
is a set of computer programs that perform the
functional design of a small scale synchronous
digital system (4), (5). Upon completion of the
conceptual design phase, the description of the
digital system consists of a process flow chart
specifying the operations to be performed by the
system and implying the necessary functions of
the control logic. The functional design phase
translates this process flow chart description
into a block diagram description. The block
diagram consists of a llst of the defined units
of the system showing conditions necessary for
an operation to occur in a given unit, and a
state table describing the control logic of the
system.

The CALD (Computer-Aided Logic Design)
System performs the Logic Design phase of the
design process (i). CALD is part of a larger
Design Automation System and interfaces with
a Functional Design System and a Hardware
Simulator. It is necessary to briefly describe
these other two systems in order to understand
the CALD System.

HALSIM

HALSIM (Hardware Logic Simulator) is a
programming system used to describe and simulate
digital logic designs on the hardware level (2),
(3). The input to HALSIM is a detailed logic
diagram that has been encoded into the HALSIM
input language. The language defines the inter-
connections between the various logic elements
in the system. The simulator possesses a library
of standard integrated circuit elements which are

The FST system is composed of four major

A language to describe the process flow
chart of the digital system.
A compiler to convert the flow chart
description into a list structured des-
cription of the system.

3. A simulator to verify that the described
system will perform as expected.

4. A translator to generate the unminimized
State Table and the Unit Control Table
which constitute the block diagram des-
cription of the system.

The FST Language
The FST language consists of two main parts:

Unit declarations and statements that describe the
operations of the defined units. The units allow-

259 ed are memory elements, registers, binary counters,

parts :

I.

2.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800153.804954&domain=pdf&date_stamp=1972-06-26

~ecade counters, and binary adders.

The statements describing the operations of
the units consist of a list of operations and the
conditions when the operations are to be performed.
Statements may be of two basic types:

i. WHEN (Condition List) THEN (Operation List)
The operations listed are to be performed
only when the condition llst is true.

2. THEN (Operation List)
The operation list is always performed.

The Condition List is a well-formed Boolean
expression of defined units of the system, Boolean
literals, and the following operators: Equality,
Negation, Logical And, and Logical Or.

are:
The operations allowed on units of the system

i. (Unit Name) Set the Unit
2. - (Unit Name) Reset
3. Shift (Register Name) Right N
4. Shift (Register Name) Left N
5. Circulate (Register Name) Right N
6. Circulate (Register Name) Left N
7. Increment (Counter Name)
8. Decrement (Counter Name)
9. Transfer (Name i) to (Name 2)

i0. Transfer (Binary Literal) to (Name)
ll. Add (Name) to (Binary Adder Name)
12. Goto (Label)

The sequence of statement executation is
determined by the block structure of the program.
Any group of statements may be placed in a block
and the order of execution of statements within a
block may be specified as concurrent or sequenced.

State Table & Unit Control Table
Upon completion of a satisfactory simulation,

the FST translator generates an unminimized State
Table and a Unit Control Table. The State Table
describes the control logic portion of the digital
system. The entries in the State Table consist of
the present state, next state, and the condition
necessary for control to be transferred from
present to next state. The condition is a Boolean
expression taken from the Condition List of the
FST Language statements.

The Unit Control Table describes the operations
that are to be performed on the defined units of the
system and the conditions under which these opera-
tions are to be performed. The defined units are
the memory elements, registers, counters and
adders specified by the designer under unit de-
clarations in the FST language. The entries in
the Unit Control Table consist of a unit name,
an operation, and a Boolean expression specifying
the conditions necessary for the execution of the
operation. The State Table and Unit Control Table
completely describe the operation of a digital
system.

Examples
An example of a FST input language statement

is given below.

WHEN B(4)*(A=CB) THEN Increment Actr, -A,
Shift Areg Left i, Transfer i001 to B(i-4),
Goto Li $

The above statement indicates that when bit four
of register B is one and when flip-flop A is in
the same state as flip-flop CB then increment a
counter called Actr, reset flip-flop A, shift Areg
one bit left, transfer i001 to bits one through
four of register B, and go to the statement labeled
Li.

If the above statement is assigned state Si
by the FST compiler and the statement labeled LI
is assigned state SJ then the State Table entries
for this statement would be:

Present Next Boolean
State State Condition

Si SJ B (4)* (A=CB)
Si+l -[B(4)*(A=CB)]

The Unit Control Table would contain an entry
specifying that counter Actr is to be increment if
the following Boolean Condition is true:

Si * [B(4) * (A=CB)]

The Unit Control Table would contain an entry for
each operation in the Operation List of the FST
input statement.

The CALD System

The State Table and the Unit Control Table
generated by the FST System is read as input to
the CALD System. The logic design is performed
from these two tables.

The structure of the logic diagram that is
generated by CALD is shown in Figure 2, The basic
system configuration reflects the fact that the
logic design is performed from a state table. The
structure contains a bank of memory elements to
represent the states of the State Table. The
particular memory element configuration generated
by CALD associates N memory elements for 2 N states.
A decoder is used to decode the memory element
states and control logic sequences the operations
of the defined units. Specifically, the control
logic examines the decoder outputs and the inputs
from the defined units, it then generates the
memory element input equations and the outputs
specified by the Unit Control Table. The inputs
from the defined units represent specific conditions
or states of the defined units, eg. counter B=0000,
flip-flop C is reset. The outputs generated by
the control logic specify the operations to be
performed on the defined units, eg. shift registerA
4 bits to the right, increment counter B. The
CALD Programs perform the detailed logical design
of the state memory elements, the decoders, and
the control logic, This is shown as the enclosed
part of Figure 2. The defined units, along with
any transfer or decoding circuitry associated
with them, are not designed by the programs.

The description of the Computer-Aided Logic
Design system is divided into the following
sections:

i. Compiler
2. State Table Reduction
3. Library of Hardware Elements
4. State Assignment

260

5. Specification of memory element type
6. Memory Element Input Equation
7. Fan-in
8. Reduction of Logic Equations
9. Factoring of Logic Equations

i0. Fan-Out calculation
ii. Translator (to generate the logic

diagram)

Compiler
The purpose of the compiler is to translate

the State Table and the Unit Control Table into
logic equations that can be eventually implemented
in hardware. The Boolean Conditions from the
tables are converted to parenthesis-free notation
and placed in an output list. Each unit name is
placed in the NAME table and assigned a compiler
generated name consisting of an alphanumeric
code. The Polish output list is scanned for
subexpressions. A subexpression is a group of
adjacent terms (coded unit names) connected by the
same operator. The subexpression is arranged in a
canonical form based on the coded names, assigned
a name, and stored in either the AND table or the
OR table depending on the type of the connecting
operator. No duplicates are allowed. The sub-
expression is then removed from the output list
and replaced by its name, This process continues
until both tables have been processed.

An example is given below to indicate how
the compiler operates. Suppose the following
expression is the first Boolean Condition in the
State Table.

(A'B) + C + D*E*F

The compiler scans the expression and assigns
compiler names Ii through 16 to the names. The
following Polish output list is generated:

Ii 12 * 13+ 14 15 16 ** +

The output list is scanned and the equations
are generated in the following order.

E1 = Ii * 12
E2 = 13 + E1
E3 = 14 * 15 * 16
BI = E2 + E3

Each equation is placed in either the AND or
OR table. The "I" represents an input, "E"
represents a subexpression, and "B" repre-
sents a complete Boolean Condition. The
equations are in a standard form based on the
priority of the letter and the number in each
name.

State Table Reduction
When compilation is complete the system

examines the State Table and generates the nec-
essary information to merge states in order to
reduce the size of the Table. State Table reduct-
ion tends to reduce the number of logic elements
required in the logic design. Compiler and State
Table Reduction routines constitute the pre-
processing phase of the logical design process.

Library of Elements
The CALD programs contain a limited library

of digital integrated circuit logic elements

based on the HALSIM Library. The library includes
a clock element, a NAND gate, an INVERTER, a JK
memory element, a Delay memory element, and a
Binary to Octal Decoder. Since only the control
logic is designed by CALD, this library is ade-
quate for most design problems. The library is
small due to the limited amount of storage
available on the DDPIi6 computer (8K). However,
provision has been made for increasing the number
of elements in the library.

State Assignment
CALD requires N memory elements to represent

2 N states in the State Table. This configuration
tends to generate an economical and compact
design. It is necessary to assign an N bit binary
code to each of the 2 N states of the State Table.
The complexity and cost of the combinational
logic are in part determined by the code assigned
to the states. The problem of state assignment,
so as at completely minimize the cost of the
combinational logic, is unsolved. One state
assignment procedure that generally reduces cost
involves minimizing the total number of flip-flop
transitions that occur as the control logic
sequences through the entire State Table. This is
the approach taken in the CALD programs. In
addition, the State Assignment routine optionally
allows the user to assign the states and input the
assignment on punched cards.

The program prints out the number of flip-
flop transitions for a particular state assignment
to allow the user to generate and evaluate many
different state assignments.

The designer may specify either JK memory
elements or Delay memory elements to be used in
the logic design. The type of memory element is
entered in response to a question printed on the
teletype.

Memory Element Input Equations
The memory element input equations (app-

lication equations) determine which memory elem-
ents must change state at each clock pulse. These
equations are calculated for either JK or Delay
elements depending on which type was specified by
the User. This routine examines each row of the
State Table to determine whether a term should be
added to any of the memory element input
equations. The determination is based on the
binary code assigned to the present state and the
next state and the type of memory element. The
input equations are treated like the Boolean
Conditions in the two input tables. Th~ equations
are scanned for subexpressions. The subexpress-
ions are given names, arranged in canonical form
and stored in either the AND or OR table. One
type of Boolean reduction is performed while
calculating the input equations. The expression,
composed of two terms, Si*lj + Si*lj is replaced
by its logical equivalent, Si.

The user specifies the maximum allowed gate
fan-in as any integer greater than one. This
assignment is made in response to a question on
the teletype.

Boolean Equation Reduction and Factoring
The Boolean Equation Reduction subroutine

261

searches both the AND and OR tables for equations
that are subexpressions of larger equations. The
subexpression in the larger equation is then
removed and replaced by the name of the smaller
equation. The search is facilitated by the fact
that the equations are stored in canonical form.

The Boolean Equation Factoring subroutine
factors the equations in both the AND and OR
tables to ensure that the length of each equation
is less than or equal to the maximum allowed
fan-in. The factoring procedure involves
choosing a factor, assigning a name to the factor,
inserting the factor and its name into the AND
or OR table, and then replacing the factor by
its name in the equation under consideration. In
order to minimize the number of gates in the
final design it is desirable to choose factors
that are common to more than one equation if at
all possible.

Consider the equation below:

Ki = $2 + $4 + C8 + C9 + E3

If the maximum fan-in is three, CALD will
generate the following factor for K1 assuming
there are no other equations in the table.

Ki = C9 + E3 + -Fi
Fi = $2 + $4 + C8

F1 appears in equation Ki with a "-" sign to
indicate that Fi must be inverted. Before
chosing a factor for Ki, the Factoring routine
would normally check Ki against every equation
in the OR table in search of other equations
that have at least three terms in common with
Ki. Fi would then be chosen from terms that
are common to other equations.

The CALD programs calculate the fan-out
of each gate in the logic design and prints
it. Due to the small amount of memory the
programs perform no operations to reduce a
large fan-out.

Translator
The Translator translates the logic

equations in the AND and OR tables into
HALSIM specification statements. Every
input and output name in the specification
statements includes a "+" or "-" sign at the
end of the name to indicate signal polarity.
The fan-out for each gate is printed next to the
specification statement for the gate. Each
gate is checked to see if its output is re-
quired in inverted form. In addition, the
program generates specification statements for
the state memory elements and for Binary to
Octal Converters used to decode the states.

The list of specification statements
generated by CALD constitute the detailed logic
diagram for the control logic of the digital
system. A simple example of a CALD generated
logic design is shown in Figure 3.

Conclusion

The CALD system employs heuristic methods to

provide a practical design environment capable of
generating a reasonable economical design, in a
short period of time on a small computer. The
system is easy and convenient to use. All the
information that is needed by the designer is
printed as messages on the teletype. The messages
request information, indicate options that are
available, and provide operating instructions. In
addition, the CALD system simplifies the evaluat-
ion of a logic design by printing the number of
memory element transitions resulting from a
particular state assignment and the number of gate
legs required in the design.

The combination of FST, CALD and HALSIM
provides a powerful, integrated design automation
tool that can relieve the designer of many tedious
and error prone tasks. A primary advantage of the
design system is an increase in the speed of
design. Better and more economical designs may
also result due to the fact that many designs can
be examined and evaluated.

REFERENCES

i. Bliss, F.W., "Computer-Aided Logic Design,"
Ph.D. Thesis, Case Western Reserve University,
1971.

2.

3.

4.

5.

Vlack, D., "Computer Simulation of Digital
Systems on the Hardware Level" Ph.D. Thesis,
Case Institute of Technology, 1967.

Mickelson, C.T., "A Revised Hardware Logic
Simulator," M.S. Thesis, Case Western Reserve
University, 1969.

Franke, E.A., "Automated Functional Design of
Digital Systems," Ph.D. Thesis, Case Western
Reserve University, 1967.

Franke, E.A. and H.W. Mergler, "Computer
Aided Functional Design of Digital Systems,"
SEIEEE Record, pp. 13Ci-13C4, April, 1968.

262

A +

B-t- I X- OUT ~ FF +

I , I C K-,

() FRMV (CLK+ CLK-)
(A+ B+) NAND (X-)
(X- C-) NAND (OUT)

(C-) NAND (C+)
(OUT CLK C+) JKFF (FF+ FF-)

Figure i

HALSIM Example

Input Fan Out Input Fan Out

I01+ I I01- 1

*** LOGIC DIAGRAM IN HALSIN ***

() FRMV (CLK+ CLK-)
(K01+ CLK+ J01+) JKFF (FFi+ FFi-)
(FFi+ .0 .0 .0) BOCT (S01- S02- $ $ $ $ $ $)

3 1 000000

(SO2-) NAND (S02+)
(S02+ I01+) NAND (CO1-)
(S02+ I01+) NAND (C03-)

2 INVERTER
2
2

(SO1-) NAND (JOl+) l
(CO1-) NAND (K01+) 1

END1

Gate legs 7

CLOCK STATE
FLIP -FLOPS

DECODER

I , ,11

FLIP- FLOP
INPUT

EQUATIONS

P
U
T
S

i

CONTROL
LOGIC

E 7

DEFINED
UNITS

FIGURE 2

Block Diagram of Logic Design Generated by CALD

FIGURE 3

Input Fan Out Table and Logic Diagram in HALSIM

263

