Chook for A Course in Advanced Programming
e for Undergraduate Computer Science Majors

by

David B. Loveman

The University of Dayton, located in Dayton, Ohio, is a ''medium-sized, private, coeducational
school located in the heart of the Midwest,' with a full-time student body of sixty-five hundred. The
University, which is also the fifth largest Catholic college in the country, 'includes three schools and
the college, offering a large selection of study ranging from art and philosophy to geology and computer
science."

The Department of Computer Science, supported by the University's time shared RCA Spectra 70/46
and the department's own IBM 360/25, offers an interesting and challenging undergraduate program.,
Computer Science students are offered a wide selection of courses, both technical and non-technical, for
a four year program and B.S. degree through a very flexible curriculum. Most students stress mathe-
matics and the sciences, although a good number are interested in business management, industrial engi-
neering, and related fields. The department offers students the opportunity for both breadth and depth
equally. In addition to the formal course work, the department feels that practical, hands-on experience
with real problems in the computer field is highly desirable. Students are encouraged to seek part time
or summer jobs as programmers. Some jobs are available at the University computer center and other
students are given the opportunity to participate in departmental research projects. Current projects in-
clude a high speed compile and go PL/I compiler for the Spectra 70/46, microprogramming extensions
to the 360/25, use of an interactive vector graphic crt, and the implementation of LISP on the 70/46.

At the present time nine faculty members instruct 200 students in a total of twenty courses. The
courses currently offered are detailed in Figure 1. Attention should be drawn to the use of CPS 498 to
allow students to perform independent student and research under the guidance of a faculty member, and
CPS 499, which is used extensively for one shot courses or to try out proposed new courses. The depart-
ment actively encourages faculty and students to propose new courses to be tried as CPS 499 courses.
This term's CPS 499 offerings are listed in Figure 2. Since Computer Science is a new and evolving field,
the department believes that its curriculum should evolve along with the field.

Three years ago the author, a Visiting Assistant Professor of Computer Science, took over the
course CPS 441-442 "Advanced Programming,' known as "AP.!" There was little guidance as to what
this two term course for junior Computer Science majors should contain. The course catalogue read
""Analysis of compilers and their construction; programming techniques discussed in the current litera-
ture; advanced computer applications in both mathematical and non-numeric areas.'" The required pre-
requisite courses were a two credit course in PL/I and a three credit course in Assembly Language Pro-
gramming. Some students, however, delay taking AP until their senior year. Thus the author had the
problem of developing a course which would be meaningful to students who had just completed an assem-~
bly language programming course and which also would not bore those students with considerably more
practical or academic experience.

Figure 1. Computer Science Courses
CPS 107 Computing-General Survey
CPS 133 FORTRAN Programming
CPS 141 ALGOL Programming
CPS 147 PL/I Programming
CPS 203 Data Processing Systems
CPS 232 COBOL Programming
CPS 245 Assembler Programming
CPS 346 Operating System
CPS 353-354 Numerical Methods
CPS 383 Logic and Set Theory
CPS 387 Logical Design
CPS 405 Computer Techniques for Business Applications
CPS 415 Introduction to Analog Computation and Simulation
CPS 416 Parallel Hybrid Computation
CPS 441-442 Advanced Programming
CPS 455-456 Numerical Analysis
CPS 481 Mathematical Logic
CPS 482 Automata Theory
CPS 498 Problems in (Named Area)
CPS 499 (Special Topics)

27

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800155.804997&domain=pdf&date_stamp=1972-03-01

Figure 2. CPS 499 offerings, Spring 1972
CPS 499 Advanced Time Sharing Topics
CPS 499 Microprogramming
CPS 499 Computer Center Management
CPS 499 Interactive Graphics
CPS 499 Minicomputers

The objectives of AP are quite varied. The course strives to cover a variety of topics, looking at
many superficially and a few in depth. An attempt is made to discuss practical applications and to use
them as motivation for the more theoretical parts of the course. Topics such as macro processors and
their implementation, searching and sorting techniques, machine architecture and microprogramming,
and programming languages and their design are motivated by and discussed in a context provided by a
hypothetical computer called the DAYAC.

The DAYAC, which is described in detail in the Appendix, is a machine simple enough to be easily
understood yet different enough from the 360 architecture to be interesting. It is a 32 bit, word oriented
machine with three general purpose registers, indexing, indirecting, and several unusual characteristics.
There are three main reasons for including the DAYAC in the course: it is a simple enough machine that
a student can easily understand it in detail in a short period of time, unlike most real computers; it ties
the various topics of AP together and allows them to be considered as integrated in a single problem
area, the DAYAC, rather than as separate, isolated topics; it allows an introduction to machine charac-
teristics which are different than those of the 360.

Since the course content is so broad, and since student abilities and preparation vary so widely, it
is necessary to provide some form of "individualized study'' within the context of the course. Since the
department stresses hands on programming experience, the vehicle of a large scale programming pro-
ject is used. At the beginning of a term, a project is assigned and the expected level of individual per-
formance is given. Project assignments which have been given in the past include a simulator for the
DAYAC, a cross assembler for the DAYAC Assembly Language, a version of Strachey's General Pur-
pose Macroprocessor for use as a preprocessor for the DAYAC Assembler, and a BASIC cross compiler
for the DAYAC. On completion of the projects, the best projects are incorporated into the "DAYAC
system' for the use of future classes. Students are encouraged to work in teams if they so desire; they
are then expected to produce correspondingly higher quality projects. Students are also encouraged to
propose alternatives to the assigned project. This mechanism allows the more advanced and more ambi-
tious to work on more interesting and challenging projects. One student became interested in the fact
that the department had developed the ability to microprogram the 360/25. Available for the course, as
a result of previous year's projects, are an assembler and simulator for the DAYAC, a version in PL/I
to study and a version in 360 assembly language to run efficiently. This student, for his project last
term, prepared an emulator, written in 360/25 microcode, for the DAYAC. Use of this emulator in
future courses will make possible much more efficient use of the 360/25. Last spring the AP project
was to implement a simple BASIC compiler. Three of the best students had experience implementing
the department's PL/I compiler and wanted to try something more interesting. As their project they
implemented a simple but operational compiler generator system. They then used this compiler genera-
tor to produce their BASIC compiler for the project.

The course content has varied from year to year in order to stress those particular topics which
were especially necessary for that year's projects. In terms of the ACM's Curriculum 68, the first
term is an advanced version of the course B2, Computers and Programming, with a few of the topics of
I1, Data Structures. The second term is a mixture of 12, Programming Languages, and I5, Compiler
Construction, Gear's book, Computer Organization and Programming, has been used quite successfully
as a text for the first term, supplemented by class handouts describing the DAYAC. As yet, unfortu-
nately, no very successful text has been found for the second term. This year we are trying Gries Com-
piler Construction for Digital Computers; it may prove to be too advanced for this course.

Curriculum 68 assumes that the course B2 will be both an introduction to various topics in computer
science and an introduction to assembly language programming. As a result of the structure of the
Computer Science Department's curriculum, students reaching AP will have completed a course in 360
assembly language programming. As a result it is possible to discuss many of the topics of B2 ata
higher level than that recommended in Curriculum 68. The use of the DAYAC allows serious discussion
of machine architectures that are considerably, different from the 360. The DAYAC has characteristics
which make the underlying microprogrammed structure of the machine fairly clear, and its word orient-
ed nature exposes students to new concepts precluded by sole study of the 360 architecture.

The final test of a course is how well it prepares students either for future study or for the 'real
world." Conversations with past students who have gone on to graduate school or who have gotten pro-
gramming jobs indicates that AP has done a satisfactory job in preparing them for their future in the
computer science field.

28

DAYAC REFERENCE MANUAL - USER'S GUIDE
The DAYAC (DAYton Automatic Computer) is a 32 bit word oriented machine. It does arithmetic in sign-

magnitude form. The DAYAC has three general purpose registers which are usable as accumulators,
index registers, or memory locations. The format of a DAYAC instruction is given below:

op [cm]'V.l[i-, "o [xR [% [N |REG] 2ddr
as

o 5o 19 : q4e @ la 13 s 3
field #
name bits title function
oP 3 operation code if OP(0)=1, the operation is logical; if OP(0)=0, the operation
is arithmetic
MODE 1 mode if 0, use c(effective address) as source word;
if 1, use effective address as source word (immediate addressing)
CcM 3 condition mask masks condition code to decide whether to execute instruction
DIR 1 direction if 0, source is memory and target is register;
if 1, source is register and target is memory
NS 1 negate source if 1, negate source word before use;
if arithmetic operation, change sign
if logical operation, invert each bit
IND 1 indirect if 1, indirect addressing is being used
TYPE 2 type use is peculiar to each operation
XR 2 index register 0 value means no indexing
REG 2 operand register 0 value means use constant zero as register contents
addr 16 address 16 bit address, thus maximum memory is 64k words

The DAYAC has a "LOAD'' key on the console. Pushing the LOAD key begins execution by forcing the
contents of certain DAYAC registers into an initial condition to force the loading of a program. The CC
or condition code is set to all ones, guaranteeing instruction execution, the IC or instruction counter is
set to one, pointing at the first instruction in memory. The first three memory locations are set as
follows (in hex):

1) FC800002
2) 00000004
3) 0000000A

The first instruction is on input-output instruction, using the i-o control word pair in locations 2 and 3.
This i-o control word pair specifies that 10 DAYAC instructions written in hex on one card are to be read
into memory starting at location 4. These 10 instructions ordinarily will be a bootstrap loader. When
the two words of the i-o control word pair are executed, they are interpreted as no-op instructions. Thus
the next instruction executed is the first one read in on the card.

DAL Dayac Assembly Language
instruction format: LABEL MNEMONIC OPERAND
where LABEL is a symbol (optional), if present it must start in column 1
MNEMONIC is a DAYAC instruction (MR, JRI4, etc.) a DAL pseudo-op

or a LABEL appearing on a preceding OPDF; it must be preceded by
at least one blank
OPERAND 1 field for pseudo-op

1, 2, or 3 fields for real instruction; it must be preceded by at least one

blank
a field is one of:
symbol begins with letter ABC
decimal const begins with digit 12389
hex const begins with = =FF10
bit const. begins with % %110111101

second ''field" of a real instruction is a field followed by an optional modifier of the form (%), (field),
or (field*)

29

DAL pseudo-opc are as follows:

END X X is the start address of the program

CONS X X is the value to be put into the word

BSS X X is the number of words to be reserved
L EQV X X is the value L is to be given

ORG X X is the new value of the location counter
L OPDF X X is the value I, is to be given

SKIP X Skip X lines in listing

PAGE X Skip X pages in listing

REM X Remark; ignore this card

Summary of 512 DAYAC Instructions

Move
Shift
Add
aNd [Reg is target .
Test > Mem is targe Negate sourc Immediat
Jump
Call subr
Input-output
-
i,
- 0 or Logical Short or -
(*) 1 or Logical Long or Target negated
Register , A ((Rx*) s 2 or Rotate Short or Result negated
(R) 3 or Rotate Long or Result and Target
examples: MR 2,A c(2)=c(A)
AMNI 1,A(2) c(A+c(2))=c(A+c(2))-1
JRI4 ;A jump to A if previous

The eight major classes of DAYAC Instructions are as follows:

name move a full word

mnemonic M

class arith

op 0

summary move source word to target location

type modifiers none

condition codes CC(0) set to 1 if source word is zero, set to 0 otherwise

condition
mask

INlor o jwin=|o

or -(nothing)

-

or skip if Zero
or skip if Not zero
or Always skip

result was zero

CC(1) set to 1 if source word is positive, set to 0 otherwise
CC(2) set to 1 if source word is negative, set to 0 otherwise

examples MR 2,A c(2)=c(A)
MRI 3,247 c(3)=247
MM 2,A c(A)=c(2)
MMI 0,A c(A)=0
MRNI 3,247 c(3)=-247
MRN 2,A c(2)=-c(A)

30

DAYAC Instructions (cont.)

name
mnemonic
class

op
summary

type modifiers

condition codes

example

name
mnemonic
class

op

summary

type modifiers

condition codes

examples

name
mnemonic
class

op

summary

type modifiers

condition codes

examples

shift or rotate
S

arith

1

source word contains count of number of bits to be shifted or rotated in target

word. A positive count implies a left shift or rotation;

a right shift or rotation

0 or LS logical shift, short
1l or LL logical shift, long
2 or LS rotate, short

3 or RL rotate, long

note: long implies operating on a double word

CC(0) set to 1 if target word after shift is zero,
set to 0 otherwise

CC(l) set to 1 if target word after shift is positive,
set to 0 otherwise

CC(2) set to 1 if target word after shift is negative,
set to 0 otherwise

extract leftmost char from word in loc A

a negative count implies

registers 1 and 2 contain two word operand
effective address (8) is the shift count

CC(0) set to 1 if result is zero, 0 otherwise
CC(l) set to 1 if result is positive, 0 otherwise
CC(2) set to 1 if result is negative, 0 otherwise

MMI 0,1 set reg 1 to 0

‘MR] 2,A c(2)=c(A)

SRI 1,8,LL shift logical long left
add

A

arith

2

source word and c(target) are added together. Result is placed in target location
0or - do nothing

lor T negate target word before adding
2orR negate result after adding

3 or RT

negate target word before adding and result afterwards

AR 2,A c(2)=c(2)+c(A)
ARI 2,3 c(2)=c(2)+3

AM 2,A c(A)=c(2)+c(A)
AMI 1,A c(A)=c(A)+1

AM 0,A, T c(A)=-A

and

N

logic

6

source word and c(target)are added together. resultis placed in target location
0 or - do nothing

lor T negate target word before adding
2 orR negate result after adding

3 or RT

CC(0) set to 1 if result is zero, 0 otherwise
CC(1) set to 1 if result is positive, 0 otherwise
CC(2) set to 1 if result is negative, 0 otherwise

NR 2,A c(2)=c(2) .and. c(A)
NMI 0, A c(A)=0

MNM 0,A, T c(A)= .not. A

NRN 2,A,RT c(2)=c(2) .or. c(A)

31

negate target word before adding and result afterwards

name
mnemonic
class

op
summary

type modifiers

condition codes

name
mnemonic
class

op

summary

type modifiers
condition codes
examples

name
mnemonic
class

op
summary

type modifiers
condition codes
examples

name
mnemonic
class

op
summary

test under mask and skip
T

logic

4

source word is mask, mask is used to select bits from target word. selected bits

are or'ed together and the negative of the result sets zero indicator (CC(0)).
optionally skip next instruction

0 or - never skip

lor Z skip if all selected bits are 0
2orN skip if not all selected bits are 0
3orA always skip

CC(0) set to 1 if all selected bits are 0, 0 otherwise TR2, *+1, A test reg 2 for O,

use next word as mask CONS=FFFFFFFF this word is a constant of all ones

jump

J

arith

3

jump to location specified in source word

none

unchanged

JRI , A unconditional transfer to loc A

JM4 2 transfer to loc contained in reg 2 if
previous computation resulted in zero

AMI 0,A add O to c(A), set condition codes

JR2 , B transfer to location contained in location B

if A is positive

Call subroutine

C

logic

5

jump to subroutine whose location (A) is specified in source word. store IC
in A, jump to A +1

none

unchanged

CRI ,A store IC in A, jump to A + 1

TMI 1,A, 2 if bit 31 of loc A is zero, skip next instruction
CRI , B call subr B

CM4 2 if previous computation resulted in zero,

call subr. whose address is in reg 2

input-output

1

logic

7

source word is first word of an i-o control word pair word with the following
format (S register contains its address for use by channel program):

l Tac [>XZI'No | xR | DEV } addr lcount J
) 78 9 16 M 15 /% [N] 3

addr, XR, and IND are used to locate a buffer
count is number of words in buffer
DEYV indicates i-o device

0 is card reader

1 is printer
tag (7) indicates direction

0 is read

1 is write
tag (6) indicates nature of data

0 is hex

1 is character

32

DAYAC REFERENCE MANUAL - HARDWARE

The DAYAC is a microprogrammed, stored program computer, using a subset of PL/I as its micro-
machine language. A listing of the DAYAC micro program is available as a separate document. The
DAYAC performs an instruction fetch and interpretation, as described below, and then executes the sec-
tion of code appropriate to the particular instruction. Micro code subroutines are used to calculate the
effective address, set the condition code, convert binary to hex and hex to binary, perform the sign mag-
nitude add function, and to execute the I/O control function.

DAYAC Instruction Fetch and Interpretation

1. next instruction, as specified by contents of IC (instruction counter), is fetched and broken up,
components going to the various work registers
2. IC is incremented by 1, so that it points to the next instruction
3. conditions are checked to decide whether to execute the instruction:
DAYAC has a 3 bit CC(condition code) register:
CC(0)=1 if previous result was zero, CC(0)=0 otherwise
CC(1)=1 if previous result was positive, CC(1)=0 otherwise
CC(2)=1 if previous result was negative, CC(2)=0 otherwise
CM is used to select the bits of interest in the CC. If any of the bits selected are 1, the
instruction is executed. If they are all zero, the instruction is skipped
4. the effective address of the operand in memory is calculated: add to the address the contents
of register XR. if IND=0, done. If IND=1, fetch the word whose address has been calculated,
get new value for address, XR, and IND and repeat.
note: if XR=0, c(XR0=0.
5. 1if ¢(DIR)=0 c(T)=c(REG), c(S)=c(address) ie source is memory, target is register

if ¢(DIR)=1 c(T)-c(address), c(S)=c(REG) ie source is register, target is memory
6. if ¢c(MODE)=0 fetch c(S) as source word

if ¢(MODE)=1 use c¢(S) itself as source word
7. if ¢(NS)=1, negate source word

if ¢c(OP(0))=0 operation is arithmetic, flip sign bit

if c(OP(0))=1 operation is logical, flip every bit in source word
8. execute instruction: assumes source word in MDR, target address in T

DAYAC REFERENCE MANUAL -~ DAL, The DAYAC ASSEMBLY LANGUAGE

As yet, there is no DAL assembler written for the DAYAC itself. There is, however, a cross
assembler, written in PL/I which will assemble programs written in DAL and produce DAL object decks.
A listing of the DAL cross assembler is available as a separate document.

The DAL assembler is a classic two pass assembler. Pass I determines the value of each label
symbol in a DAL program. Pass II produces the actual code for each instruction, with all symbolic ref-
erences resolved and also prepares the object deck.

The Symbol table consists of two parallel arrays, and an index. For each symbol its external repre-
sentation and 32 bit value are stored. The Operation table consists of Four parallel arrays, and an index.
For each operation (machine, pseudo or OPDF) its external representation, 32 bit value, pass I branch
address and pass II branch address and stored. The value must include (at least) values for the following
fields: OP(0-2), CM(3-5), MODE(8), DIR(12), NS(13).

The DAL assembler uses two very powerful subroutines. The ENTER function takes an external
symbol and value and enters it in the appropriate table. ENTER checks for table overflow, duplicate sym-
bol in table, and blank symbol. The CVT function converts OP to a 32 bit value, appropriately masked
and shifted. CVT(OP,I,J) returns a 32 bit value, with significant bits only in positions I thru I + J and
zeros elsewhere. Value is determined: if OP is a symbol, by looking OP up on the appropriate table
(error if not in table): if OP is a constant, value is calculated (binary, hex, or decimal).

The flow charts for the DAL assembler are on the following page.

33

The DAYAC Internal registers, the flow of data between registers, and the functions acting on registers,
are depicted below: small numbers indicate data width in bits:

32
SCNT |,
ARITH k-
[SOPNL | SOPNR |

SBIT
i

34

DAL flow charts (2 pass}

print Symbolic,
real code
READ CARD READ CARD
\Save for PASS 2) [SCAN for LABEL, MN, OP]
7
[SCAN for Lf BEL, MN, OP | | Look up MN in Operation Takle |
3 n 17
“TOOk up MN 111% Opel;atl:: Tilblil [—pass 2 branch address |
e pass ranc a Tess
(REMD) !
& ok) ® TWORD-CVT(OF, 16,1
Bacs o
= S
= 0, 32 N=CVT(OP, 0, 32
[N=EVT(OP,,32)] [N=CVI(OF,0,32) |

[N=CVTI(OP, 0, 32)] [N=CVT(OP,0,32)] Skip N Lines [Skip N PAGES |
2 ;Y

|[ENTERST(LABEL,N)| [ENTERCF(LABEL, N, X, Y) @
X = pass 1 branch addr
Y = pass 2 branch addr EQW
@ ® ®
|IN=CVT(OF, 0, 32} | [ENTERST(‘II‘.JA BEL, LoC)| [N=CVT(OF,0, 32) | N-CvVT(OP, 0,32
- - &
 LOC=N] [N = CVT(C?LP, 0,32}] (TOCIoC TN
Gy [LOC=T0oC + N|)
lCOPN_S){, e !
1ENTERST(LABEL, LOC) 1 [WORD = CVT(OP, 0, 32) |

AL
LOC = L.LOC+1] [1.OC =£oc + 11

|

[ENTERST(LABEL,LOC) | [SCAN OP for REE, ADDR, XR, I, TYPE]
\LOC i LOC + 11 VREG = CVT{REG, 14, 2)
VADDR = CVT(ADDR, 16, 16)
VXR = CVT(XR, 10, 2)
VI = CVT(I, 9, 1)
VIYPE = CVT(’J’.IEYPE, 6, 2)

WORD = OPVALUE VREG VADDR
VXR VI VTYPE

L
(1L.6c =TLoCc + 1|

35

DAYAC REFERENCE MANUAL - SYSTEM SOFTWARE

1) Bootstrap loader - The Load key causes 10 DAYAC instructions in hex to be read from a card into
memory locations 4 thru 13 (hex C) and control to pass to location 4. Given below is a one card DAL
program which will cause two more cards to be read in starting at location 14 (hex D). This pro-
gram is more general then need be for this purpose, but merely by changing the termination constant
in location 10 (hex A) this program could read in any fixed number of cards:

location (hex) DAL instruction comment
4 IRI , = read card, control word in B
5 AM 3,=B increase buffer address by dec 10
6 MR 2,=B load R2 with hex buffer addr
7 ARN 2,=A subtract termination constant
8 JRI4 ,=D if zero, done, jump to hex D
9 JRI ,4 jump to 4 to read next card
A ,=21 test word
B , =D input control word pair
C , =

2) General loader - The two cards read in by the bootstrap loader will contain a general loader capable
of reading DAL object decks. FEach card of a DAL object deck has the following format:
X X X X X
OnDoaaaa XIXZ 3X4X5 6X7%s%g
where each Xi represents a unit of 8 hex digits or 8 blanks, n is a count indicating that the first n of
the Xj's are significant, and aaaa is the address into which X is to be loaded. If n is zero then aaaa
is the address of the first instruction in the program to be executed. The General loader is listed

below:

location (hex) DAL instruction comment
D IRI , =19 input into buffer
E MR 1,=1C
F SRNI 1,24,LS right shift 24 to isolate n
10 JR4 ,=1C if n=o0, jump to addr in hex 1C
11 MR 3,=1B 1 bit indicating XR1
12 NMN 3,=1C,RT or the bit into hex 1C
13 AMNI 1,=1C sub 1 from hex 1C
14 MR 3,=1C(1) load R3 with word from buffer
15 MM 3,=1C(*) store in proper location
16 ARNI 1,1 n=n-1
17 JRI14 ,=D if n=0 read next card
18 JRI , =14 move next word
19 ,=1C control word pair
1A , =A
1B 0, 0(1) hex 00100000
1C buffer
25

36

