Check for
Updates

A Programming Language For the Teaching
of Algorithmic Analysis

by

William Max Ivey and Larry C. Eversole
University of Houston, Houston, Texas

Introduction

This report deals with the design, implement-

ation and evolution of programming language de-
signed specially for the teaching of Algorithmic
Processes. In the first section two alternative
approaches to the teaching of this first course in
Computer Science are described. Next the authors
state their basic hypothesis: that a programming
language may be custom-designed for a given flow
chart language with ensuing benefit. A flow chart
language is chosen and described in detail with
several examples of complete problems solved in
flow chart form, Next the programming language

is described and the problems solved in the pre-
vious section with flow charts are now coded in
this programming language. Several simplifying
features of the programming language are described.
This programming language is now being utilized

in a college classroom situation in order to eval-
uate its effectiveness as a teaching tool. A brief
description of its current use and the means of
its evaluation are presented in the last section.

Dual Purpose of the First Course in Computer Sci-
ence

The first course in Computer Science curric-
ulums often is titled "Introduction to Computer
Science"; sometimes "Introduction to Algorithmic
Processes"; and perhaps sometimes "Introduction
to Programming'. The latter two titles both sug-
gest slightly different shades of emphasis. Some
schools attempt to emphasize the programming as~-
pect of this first programming course-~-the goal
being the greatest fluency possible in one pro-
gramming languege--usually FORTRAN, Other schools
place primary emphasis instead of developing as
firmly as possible good problem-solving habits,
i.e., effective analysis of algorithmic processes.
It should not be construed that these goals are
necessarily mutually exclusive, however, there are
a sufficient number of "Instructional Detours"
that one must make in teaching the programming
language such that a considerable fraction of the
instructional hours available are spent off the
main path. Instructional detours are required for
some elements of the programming language which
do not contribute to the algorithmic analysis,
such as, formatted I/0, declaration statements,
internal number representation, etc. One approach
to alleviate this problem is to design a program-
ming language which reduces the desparity between
the algorithmic analysis and its representation
in a programming language to a minimum.

This work was supported in part by ONR Contract
N000-14-68-A-0151. (Project Themis at the Univer-
sity of Houston).

136

A Hyvpothesis Concerning Flow-Charts and their
Representation in a Programming Language

Most courses that emphasize algorithmic de-~
sign use a flow-charting discipline to solidify
the student concevtionalization process. This is
the case here at the University of Houston where
the students are encouraged stronglv to "solve'
their problems completely with flow-charts before
going to the computer. Thus within this frame-
work the instructional detours, amount principly
to the disvarities between this flow-charting
"lenguage" and the vrogramming language. If this
disparity. can be reduced to a minimum then the
main theme of the course can be pursued more ful-
ly.

In order to illustrate and investigate this
hypothesis a particular flow-charting language
must be choosen from among the several available.
Therefore, -the flow-charting language used in the
text Computer Science: A First Course was chosen
for thls purpose.” This particular flow-charting
language and text were chosen for several rea-
sons: first the flow-chart language is well de-
fined and rigorously applied to many examples and:
secondly the authors have considerable personal
familarity with the text since it has been used
at. the University of Houston for several years,
The choice of this particular text.and flow-chart
language is not essential to the hyvothesis~-that
given a flow-chart language, a programming lan-
guage can be designed which reflects as closely
as possible the structure and elements of flowe
chart language thus eliminating spurious disvpar-
ities. Indeed any other flow-charting language
could have been alternately chosen. In the next
section the flow-chart language will be defined
and in the section immediately following that a
simple programming language. based on the flow=
chart language will be presented.

The Flow-Chart Language

Basically the flow-chart language consists
of numerous types of numbered "boxes" connected
by arrows with logical and/or arithmatic expres-
sions within these boxes.

The basic symbols within the flow-charts con-
sist of flow-chart variables, operators and nu-
merals.

A flow-chart variable consists of an alvpha-
betical character followed by from zero to five
alphanumeric chsracters. Numerals consist of
decimal digits which may or may not contain a de-
cimal point (which has its usual meaning). Oper-
ators include the following:

IA,I, . Forsvthe and others, Computer Science:
A Tirst Course. New York: John Wiley & Sons,
1967.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800155.805017&domain=pdf&date_stamp=1972-03-01

Operator Meaning

+

add

substract

multiply

divide

assign

interchange (two variables)
exponentation

equal

not equal

less than

greater than

less than or equal
greater than or equal
quote

and (logical)

or (logical)

Fvia v A > § 4K

o=
8

FIGURE 1: Flow-Chart operators and their meaning
Examples of valid expressions are:
X+X+2,5XY

Parenthesis may be used to imply the order of
operations or to increase readability.

Subscripts may be appended to flow-chart var-
iables. A subscript is distinguished from a flow-
chart variable by the fact that it is printed in
smaller type and one-half character below the line.

Functions are denoted by a flow-chart symbol
followed by left and right parenthesis which con-
tain (between them) the arguments to the function.

The shape of the boxes is very significant
in this flow-charting language implying the use
to which the expressions within the boxes will be
put and the relation between boxes. The basic
shapes of the boxes are illustrated in Figure 2.

A, K25, A+B,

Shape Function
‘start or stop algorithm
| input
output
\-——ﬂ”’—_d
assignment
(:) decision

repetition or interation

call on a "special" procedure

FIGURE 2: Flow-Chart boxes and their meanings

137

Three flow-chart exasmples are given in
Figures 3, L4, and 5. The first, Figure 3, is the
glgorithm for finding the first value over 1,000
in the Fibonaccl sequence. The second, Figure h,
is the Fuclidean algorithm for the greatest com-
mon divisor, and the third, Figure 5, is the
shuttle interchange sort algorithm. An examina-
tion of these flow charts will acquaint the reader
with the flow-chart conventions.

A feature of this flow-chart language not
emphasized in the text but relied on by the au-
thor in the design of the programming language is
the fact that flow chart boxes are always num-
bered.

The Programming Language

Figures 7, 8, and 9 are examples of the pro-
gramming language as a representation of the flow
charts given in Figures 3, 4, and 5, resvectively.
As the following description of the programming
language is read it may be useful to consult
these figures for concrete examples.

Basically the programming language consists
of statements each of which must be preceded by
a label and followed by one label or by two labels
separated by a comma. A label consists of the let-
ters "BOX" followed by one or more digits. A
vertical bar indicates both the beginning and the
end of a statement. The vertical bars are intend-
ed to represent the "edge" of a flow chart box to
the student. To Increase this suggestive quality,
decision statements are enclosed in left and right
varenthesis to suggest the curved sides of the
decision box and call statements are enclosed by
two vertical bars rather than one. Also since
the flow chart language allows for several assign-
ment statements within an assignment box, the pro-
gramming language allows for several distinct as-
signment statements to be written as one state-
ment; each assignment must be separated from the
next by a semicolon (See Figure 8 for an examvle).
Statements are composed of program veriables and
operators and numerals. Program variables and
numerals are defined identically to flow-chart
variables and numerals, respectively. The same
symbols are used for operators with the following
differences.

Flow-Chart Program Symbol Meaning
Symbols
x * Multiply
+ % Fxvonentation
-1 = (two symbols) Not equal
< <= (two symbols) Less than or
equal
> »= (two symbols) Greater than
. or equal

FIGURE 6: Operator Discrepaney Between the Flow-
chart language and the programming language

These changes in the operators were necessitac
ted by limitations.on the availability of characc
ters imposed upon us by the line printer,

Subscripts are treated similarlvy to FORTRAN,
i.e., the subscripts are enclosed by left and right
parenthesis. TFunctions may be distinguished from
subscripted variables due to the fact that their
argument lists are enclosed by left and right

NEXT < 0
LATEST <1

|

4

SUM <~ NEXT + LATEST

SUM ? 1000

NEXT «LATEST
LATEST < SUM

FIGURE 3

Q € CHOP(L/S)
R€L-QxS$§
Lé8
S€R

FIGURE 4

138

2

[(Ay, T=L(LN)

3

COPY€—AJ

Ay €Az
Aj4] € COFY

v 6

Ké&J -1

K€K -1

(A, I=L(LN)

COPY € Ay
A€ A4l
Ag+] ¢ COPY

FIGURE 5

*a%aes F N=TRAN PRNCFERSNR #¢ VFRSINN | sés
sty FIN=TRAN PRACFSSNR ss VERSINN | sy
STUNENT MAME JLARRY Cs EVERSOLE,INSTRYCTOR STUDENT
¢ats sl | O=TRAN TRANS|LATION AFGIMG sosnes
STARTY 80X

BOY! § MEYT <= Q } LATEST <= | | BOX?2

gox2 | SUM <= [ATFSRT ¢ NFXT § AQX3

BOX2 (SUM > 10NN) BOXS,BOXH

8OX4 | NEXT <= LATEST § LATEST <= SUM | BOX2
80X5 | NUTPUT SuM | STOP

e

TRANS|LATION COMPLETE
etsey FXFCUTION BRFGINS [ZXT YT
1¢597,+02
NNRMAL PRNAGRAM TERMINATION

FIGURE 7

#a%80s FILN=TRAN PRNCESSNR #» VFRSINN | »ee
*etees FLO=TRAN PROCESSNR s VERSINN 1 sne
STUNENT NAMF ¢ WMe HMAX IVEY STUPRENT

*#8%0uer) D=TRAN YRANSLATION AFGINS s2sses
START gOX!
gox1 I INPUT AWB | BOX2
BOX2 1 L <= A 3 S <= B | BQX3
BOXY §{ S = 0) BOXS,pOXY
BO¥4 QR <= CHOPCL/S> j} R <= |_ = @ *# 5 | | <=
goxs I QUTPUT BTHE GCC OF2,A,RANDRR 1S,y L
e

TRANSLATION COMPLFTE

e%sae FXECUTIONM RFGINS aenndee

THE GCQ OF
Fed4an,+n?2
AND
44,370,402
15
2,300,¢n)
NORMA| PRNGRAM TERMIMATION

TIGURE 8

seduee FIN=TRAN PRNCESSNR #s VFRSIAN | ¢se
sessas FLN=TRAN PRNACESSNR #s VERSINN | sas
STURFNT NAME (LARRY Ce EVERSOLE,INSTRUCTOR STYUDFEMT

#e®esaf | O=TRAN TRANSLATION RFGING s%sses

START aoX|

Boxt § INPUT N ' AnNX?

BOY2 1 INPUT (A(T),1=1(1)N) J AQX3!?

BOX31 I J <= U | mrAaxar

goXATY { J € N) RAXY,°0X9Q

BOX 3K I J €= g + 1 | ADOX2AT

BOXY4 ¢ A{J) <= Alg+ly) ROYIK,RNYS

e

10 NQe

80Xx8] COPY <m ALY § ALY <= ACJ+1) 3 ALY+

BOYAT | ¥ €= 4 = | | ROXAT

BOYXATY (¥ >= |) RNX7,RNX3x

BOXAK § K €= ¥ = { | ROXAT

BOX7 (¢ A(K) < Alg+1)) nnyix,ppXe

S

N

.
’

HO

s <=

STOP

NQe«

<=

cnPy

‘001

0eo

R

001

t Box3

nAXAt

BoOX8 f COPY <= Alk) | A(K) <= A(¥+1) § A(K+1) <= COPY ¢ »nX4K

goO¥Y9 | OUTPUT (AlTY) =1 ltINny | STNP
..
TRANMS|ATIOM COMPLFTFE
srsee FXECUTION REGINMS sesssne

=5,304,4N2 =h,45N,40N 1,457,400 4eBON,+0Y Re770,+01
2,450,402 7.533,40n2 2.549,4+03 30624 ,+01 fe43R,4n4

NDRMA} PRNOGRAM TERMINATION

FIGURE 9

139

pointed brackets ("<" and ">"). Read and write
statements are indicated by the occurance of the
word INPUT or OUTPUT, respectively immediately
after the beginning vertical bar. Conditional ex-
pression (no arrows present) are surrounded by
parenthesis and have two labels following the state-
ment. The repetition box which is actually com-
posed of three connected boxes has been "split-up"
into three statements each of which corresponds

to one of the three parts of the repetition box.
The initialization box, test box, and incrementa-
tion box are denoted by appending the letter I, T,
and K, respectively to the end of the label of the
statement (Refer to Figure 9 for several examples
of iteration boxes). Three examples of the pro-
gramming language are given here to help clarify
any further points. Figure 7 is the Fibonacci
sequence algorithm. Figure 8 is the program to
find the greestest common divisor using the Euclid-
ean (division) algorithm and Figure 9 is the shut-
tle interchange sort.

Simplifying Features of the Language

Among the simplifying features of the lan-
guage are the following:

1. The programming language contains only those
statements which are found in the flow-chart
language. It has no declaration statments
such as DIMENSION, INTEGER, etec. such as are
found in FORTRAN and other high level lan-
guages. No GO TO statements are necessary.

2. The flow-chart language does not contain state-
types which have no correspondence in the pro-
gramming language, although the notation in
some types, i.e., read and write, has been
changed slightly.

3. DNumerals are written as in arithmetic without
consideration to their internal (integer or
real) representation.

4. I/0 has been simplified. There is nothing in
this language which corresponds to a FORMAT
statement in FORTRAN, an item which is not
represented in a flow-chart.

5. Whenever possible the same symbols are used to
denote the same operations in both the flow-
chart language and the programming language.

Limitations of the Programming Language

The reader should remember that the program-
ming language described herein is designed strictly
for instructional use and not for any type of com-
mercial applications programming. When evaluated
in comparison with FORTRAN, ALGOL, COBOL, PL/1l or
any other production language it has many limita-
tions.

The programming language described here is
particularly linited in its input and output capa-
bilities. It can only input numbers and output
literal character strings and numbers. The user
has no control over the app.arance of the output
produced by his programs.

The programming language does not have the
cepability to represent data in different ways such
as integer, decimal, real (floating), complex,
double precision, or character form, More over it
does not have the capability of representing struc-
tural relationships between data items such as does
COBOL, PL/1 and some implementations of ALGOL.

140

Evaluation of the Programming Language: An
Experiment

An experiment is being conducted at the
University of Houston during the current semester
to evaluate the effectiveness of the programming
language in the teaching of Algorithmic processes.
Two classes of students registered for Computer
Science 141 (Introduction to Algorithmic Processes)
are being used in the experiment. Both classes
meet on Mondays and Wednesdays, one from 5:00 to
T:00 p.m. and the other from T:00 to 9:00 p.m.

A recently administered test demonstrated that
the classes score about equally well on purely
flow-charting problems. The first class is now
being taught a standard high-level language
(FORTRAN) and they will use this language to re-
present all of their flow-chart solutions for the
remainder of the semester. The second class will
be taught the programming language described with-
in this paper and they will use it to revresent
all of their flow-chart solutions. The same in-
structor will teach both classes (Larry C.
Eversole),

Every attempt is being made to see that each
class receives about the same number of instruc-
tional hours on the programming language which it
is being taught. Fach class has identical op-
portunities for access to the UNIVAC 1108 upon
which both classes will run their comvputer prob-
lems, since language processors for the two lan-
guages are both avallable at all times during the
day. .
During the semester and at its conclusion data
will be gathered in an attempt to evaluate the
performances of the two groups. Data which will
be taken concerns the following:

1. The number of computer runs each student makes
during.the semester,

2. The students' scores on midsemester and final
examinations.

3. The average number of runs required to success-
fully complete each assigned computer problem.

4. The percentage of successfully completed com-
puter assignments, per assignment.

5. Students personal opinions (from a question-
naire).

6. Time spent debugging.

Results of this evaluation will be available
sometime during the summer and any interested
parties are urged to write the authors for infor-
mation. Any suggestions would also be appreciated.

The authors wish to.thank Professor R. A, Sibley,
Jr,, Universlty of Houston, for his valuable sug-
gestions and assistance throughout this research
project,

