
A Programming Language For the Teaching
of Algorithmic Analysis

by
William Max Ivey and Larry C. Eversole
University of Houston, Houston, Texas

Introduction

This report deals with the design, implement-
ation and evolution of programming language de-
signed specially for the teaching of Algorithmic
Processes. In the first section two alternative
approaches to the teaching of this first course in
Computer Science are described. Next the authors
state their basic hypothesis: that a programming
language may be custom-designed for a given flow
chart language with ensuing benefit. A flow chart
language is chosen and described in detail with
several examples of complete problems solved in
flow chart form, Next the progranmning language
is described and the problems solved in the pre-
vious section with flow charts are now coded in
this programming language. Several simplifying
features of the programming language are described.
This programming language is now being utilized
in a college classroom situation in order to eval-
uate its effectiveness as a teaching tool. A brief
description of its current use and the means of
its evaluation are presented in the last section.

Dual Purpose of the First Course in Computer Sci-
ence

The first course in Computer Science curric-
ulums often is titled "Introduction to Computer
Science"; sometimes "Introduction to Algorithmic
Processes"; and perhaps sometimes "Introduction
to Programming". The latter two titles both sug-
gest slightly different shades of emohasis. Some
schools attempt to emphasize the programming as-
pect of this first programming course--the goal
being the greatest fluency possible in one pro-
gramming language--usually FORTRAN. Other schools
place primary emphasis instead of developing as
firmly as possible good problem-solving habits,
i.e., effective analysis of algorithmic processes.
It should not be construed that these goals are
necessarily mutually exclusive, however, there are
a sufficient number of "Instructional Detours"
that one must make in teaching the programming
language such that a considerable fraction of the
instructional hours available are spent off the
main path. Instructional detours are required for
some elements of the programming language which
do not contribute to the algorithmic analysis,
such as, formatted I/O, declaration statements,
internal number representation, etc. One approach
to alleviate this problem is to design a programr
ming language which reduces the desparity between
the algorithmic analysis and its representation
in a programming language to a minimum.

This work was supported in part by~ 0NR c0ntra~t
NOOO-14-68-A-0151. (Project Themis at the Univer-
sity of Houston).

A Hypothesis Concerning Flow-Charts and their
Representation in a Prograv~ing Language

Most courses that emnhasize algorithmic de-
sign use a flow-charting discipline to solidify
the student concentionalization process. This is
the case here at the University of Houston where
the students are encouraged strongly to "solve"
their problems completely with flow-charts before
going to the computer. Thus within this frame-
work the instructional detours, amount principly
to the disparities between this flow-charting
"language" and the programming language. If this
disparity can be reduced to a minimum then the
main theme of the course can be pursued more ful-
ly.

In order to illustrate and investigate this
hypothesis a particular flow-charting language
must be choosen from among the several available.
Therefore, theflow-chartinglanguage used in the
text Com~uter SciEnce: A First Course was chosen
for this' purpose. This particular flow-charting
language and text were chosen for several rea-
sons: first the flow-chart language is well de-
fined and rigorously applied to many examples and:
secondly the authors have considerable personal
familarity with the text since it has been used
atthe University of Houston for several years,
The choice of this particular text and flow-chart
language is not essential to the hypothesis--that
given a flow-chart language, a programming lan-
guage can be designed which reflects as closely
as possible the structure and elements of flow~
chart language thus eliminating spurious dispar-
ities. Indeed any other flow-charting language
could have been alternately chosen. In the next
section the flow-chart language will be defined
and in the section immediately following that a
simple programming languagebased on the flow~
chart language will be presented,

The Flow, Char ~ Langua6e

Basically the flow,chart language consists
of numerous ty~0es of numbered "boxes" connected
by arrows with logical and/or arithmatic expres-
sions within these boxes.

The basic symbols within the flow-charts con-
sist of flow-chart variables, operators and nu-
merals.

A flow-chart variable consists of an aloha-
betical character followed by from zero to five
alphanumeric characters. Numerals consist of
decimal digits which may or may not contain a de-
cimal point (which has its usual meaning). Oper-
ators include the following:

1A.I. Forsythe and others, Computer Science:
A First Course. New York: John Wiley & Sons,
f967.

136

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800155.805017&domain=pdf&date_stamp=1972-03-01

Oper at or Me aning

+ add
substract

x mult iply
/ divide
÷ a s sign
+~ interchange (two variables)
÷ exponentat ion
= equal

not equal
< less than
> greater than
< less than or equal

greater than or equal
~- quote
AND and (logical)
OR or (logical)

FIGURE i: Flow-Chart operators and their meaning

Examples of valid expressions are: A, K25, A+B,
X÷X+2.5XY

Parenthesis may be used to imply the order of
operations or to increase readability.

Subscripts may be appended to flow-chart var-
iables. A subscript is distinguished from a flow-
chart variable by the fact that it is printed in
smaller type and one-half character below the line.

Functions are denoted by a flow-chart symbol
followed by left and right parenthesis which con-
tain (between them) the arguments to the function.

The shape of the boxes is very significant
in this flow-charting language implying the use
to which the expressions within the boxes will be
put and the relation between boxes. The basic
shapes of the boxes are illustrated in Figure 2.

Shape Function

O start or stop algorithm

" I input

output

I I assignment

() decision

repetition or interation

I
FIGURE 2 :

IJ call on a "special" procedure

Flow-Chart boxes and their meanings

Three flow-chart examples are given in
Figures 3, 4, and 5. The first, Figure 3, is the
algorithm for finding the first value over 1,000
in the Fibonacci sequence. The second, Figure 4,
is the Euclidean algorithm for the greatest com-
mon divisor, and the third, Figure 5, is the
shuttle interchange sort algorithm. An examina-
tion of these flow charts will acquaint the reader
with the flow-chart conventions.

A feature of this flow-chart language not
emphasized in the text but relied on by the au-
thor in the design of the programming language is
the fact that flow chart boxes are always num-
bered.

The Programming Language

Figures 7, 8, and 9 are examples of the pro-
gramming language as a representation of the flow
charts given in Figures 3, 4, and 5, respectively.
As the following description of the programming
language is read it may be useful to consult
these figures for concrete examples.

Basically the Drograntming language consists
of statements each of which must be preceded by
a label and followed by one label or by two labels
separated by a comma. A label consists of the let-
ters "BOX" followed by one or more digits. A
vertical bar indicates both the beginning and the
end of a statement. The vertical bars are intend-
ed to represent the "edge" of a flow chart box to
the student. To increase this suggestive quality,
decision statements are enclosed in left and right
parenthesis to suggest the curved sides of the
decision box and call statements are enclosed by
two vertical bars rather than one. Also since
the flow chart language allows for several assign-
ment statements within an assignment box, the pro-
graaming language allows for several distinct as-
signment statements to be ~Titten as one state-
ment; each assignment must be separated from the
next by a semicolon (See Figure 8 for an examnle).
Statements are comnosed of program variables and
operators and numerals. Program variables and
numerals are defined identically to flow-chart
variables and numerals, respectively. The same
symbols are used for operators with the following
differences.

Flow-Chart 1~rogram Symbol Meaning
Symbols

x * Multiply
+ % Eroonentation

--~= (two symbols) Not e~ual
! < = (two symbols) Less than or

equal
>= (two symbols) Greater than

or equal

FI~E 6: Operator Discrepancy Between the Flow-
chart language and the programming language

These changes in the operators were necessita~
ted by llmltatlonson the availability of characr
ters imposed upon us by the llne printer.

Subscripts are treated similarly to FORTRAN,
i.e., the subscripts are enclosed by left and right
parenthesis. Functions may be distinguished from
subscripted variables due to the fact that their
argument lists are enclosed by left and right

137

|

NEXT .~- 0]

! LATEST ~ - 1

• q , 2
!

SUM ~ - NEXT + LATEST [
!

3, T 5

FIGURE 3

L ~ - A

S ~ - B

3 "THE GCD OF'
()~ " S = 0 A,"AND",B,

Q ~ CHOP(L/S)
R ' ~ ' L - O x S
L ~ - S
S ~ - R

I I
¢ 2

(AI' I=i(1)N) I

I J ,~.- I. <N

J ~ - J +]

4

,F 5

[Aj ~- A j+ l
l A j+l ~'- COPY

K~--K - I

AK ~ AK+i

COPY ~ A K
AKW- AK+t
~+1 .¢- COPY

(Ai, I=X(1)~)

FIGURE h

~F IGURE 5

138

el•met rL~-TRAN P R O C E S S O R e , VF~SI~N ! ~e•
cecile rLO-T~AM P~OCESS~ t • vr~SInN t * • '

STU~F~T ~ M E ! L A R R Y C, EVERSOLEm|NSTR(}CTOR STUOFNT 10 HO* : O O l
e l e l e e F | . . O - T ~ N TRAMSLATtO~I mEGtN~ ••llii

START 80X1
BO ~ l I MEYT < - ~ ; LATEST < - 1 I ~OX7
~OX~ l SUM < . LATFqT • NFXT l ~OX3
BO~3 (qUM > l ~ n n) ~ O X S , B O X ~
.BO~q I MrXT < - L A I E S T ; L ~ T ~ S T < - 5!)M | 8 0 ~ 2
BOX5 I ~ ! fTPUT SUM | STOP

T R A ~ S L A T I O H COMPLETE
• e e o c FXffCI./TIO~! ~FGt~ I~ ~ • • • * • ~

l , 5 9 7 o + O]
N~RMA L PROgrAM T E q M I ~ A T T O N

YlGURE ?

• * o e e * r L ~ - T R A N P ~ O C E ~ n ~ " * V ~ S | O N | , e e

STr idENT NAMF ! ~H* MAX [~ E Y ST(IPENT tO NO. :OOO
IIIIIirIO-~RAN TRAH~L~T~ON ~EGT~'S e e * * * *

~ A R T 8 0 X I
OOXl I INPUT A t ~ I BOX2
BOX2 I t < - A ; S < - B I 8 0 X 3
BOX3 (S • O) BOXS,OOXq
8 0 ~ q IG < - C H O P < L / S > ; R < - L " ~ • 5 ; L < " S ; 5 < - R ! BOX3
BOX~ I OUTPUT ~THE GCD O F g , A , ~ A N D ~ , 8 , ~ I S ~ o L I STOP

T R A N S L A T I O N C O ~ P L r T F
• e e l • ~XECL.JTIOH ~FGTN~ l l l l l i . i

T~F GCD OF
9 , q 3 q t ÷ q Z

15
2 , 3 D O t + S t

NORMSL P R O ~ M r E , M I g r A T I O N

~FIGURE 8

e e * , , , r L O - T D A N P ~ O C E S S " ~ , o V r n $ 1 ~ | , * ,
* o e * e , r L O - T ~ A N P ~ O C £ ~ n ~ t . VFQS~nN I * o *

5TU~FMT NAME : L A R R Y C, E V E P S O L E t T N S TWtlCTO~ KTUOF ~!T T ~ NO. : 0 0 1
IBIII*~LO-TRAM TRA~IFLATTO~I ~rGT~!~ *oo***

~TA~T nOX|
BOXI | INPUT N P ~OX?
BOYS I INPUT (A (T) , T = I (I) H) I ~OX3T

8 0 X 3 T (J < ~) ~ x ~ o ~ O X 9
8 0 X ~ K I J <- J + ! I ~O~3T

8 0 X ~ # COPY < - A (J) ~ ^ (J) < - A (J + I) | A (J +]) < - COPY # n . X ~ I

BO X~ I COPY < - A (~) ~ A (K I < - A (~ + |) { A (K + I) < - COPY | r. OXAK
~0 Yq I ~!!TP!JT (A I T) t I ~ | I |) M I I STOP
I I

T ~ A N S L A T I O ~ C O M , L F T E
t t i l l F X E C U T I ~ ' nEGT~S *~l,*i,
-S,3n&0+O~ -4,qS~t+n~ 3,qSTt+O~ ~,SO~I+OI 8,77n:+~I
2,q~,+O? 7,533~+07 2 . 5 ~ q o + O B 3,$2qt+03 | . q 3 n o + O ~

NORMAL PROGPAM T E ~ M I N A T T O H

FI~E9

139

pointed brackets ("<" and ">"). Read and write
statements are indicated by the occurance of the
word INPUT or OUTPUT, respectively immediately
after the beginning verticalbar. Conditional ex-
pression (no arrows present) are surrounded by
parenthesis and have two labels following the state-
ment. The repetition box which is actually com-
posed of three connected boxes has been "split-up"
into three statements each of which corresponds
to one of the three parts of the repetition box.
The initialization box, test box, and incrementa-
tion box are denoted by appending the letter I, T,
and K, respectively to the end of the label of the
statement (Refer to Figure 9 for several examples
of iteration boxes). Three examples of the pro-
gramming language are given here to help clarify
any further points. Figure 7 is the Fibonacci
sequence algorithm. Figure 8 is the program to
find the greelest common divisor using the Euclid-
ean (division) algorithm and Figure 9 is the shut-
tle interchange sort.

Simplifying Features of the Language

Among the simplifying features of the lan-
guage are the following:
1. The programming language contains only those

statements which are found in the flow-chart
language. It has no declaration statments
such as DIMENSION, INTEGER, etc. such as are
found in FORTRAN and other high level lan-
guages. No GO TO statements are necessary.

2. The flow-chart language does not contain state-
types which have no correspondence in the pro-
gramming language, although the notation in
some types, i.e., read and write, has been
changed slightly.

3. Numerals are written as in arithmetic without
consideration to their internal (integer or
real) representation.

4. I/O has been simplified. There is nothing in
this language which corresponds to a FORMAT
statement in FORTRAN, an item which is not
represented in a flow-chart.

5. Whenever possible the same symbols are used to
denote the same operations in both the flow-
chart language and the programming language.

Limitations of the Pro6ramming Langua6e

The reader should remember that the program-
ming language described herein is designed strictly
for instructional use and not for any type of com-
mercial applications programming. When evaluated
in comparison with FORTRAN, ALGOL, COBOL, PL/1 or
any other production language it has many limita-
tions.

The programming language described here is
particularly limited in its input and output capa-
bilities. It can only input numbers and output
literal character strings and numbers. The user
has no control over the appearance of the output
produced by his programs.

The programming language does not have the
capability to represent data in different ways such
as integer, decimal, real (floating), complex,
double precision, or character form. More over it
does not have the capability of representing struc-
tural relationships between data items such as does
COBOL, PL/1 and some implementations of ALGOL.

Evaluation of the]~rogrammin~ Language: An
Experiment

An experiment is being conducted at the
University of Houston during the current semester
to evaluate the effectiveness of the programming
language in the teaching of Algorithmic processes.
Two classes of students registered for Computer
Science lhl (Introduction to Algorithmic ~rocesses)
are being used in the experiment. Both classes
meet on Mondays and Wednesdays, one from 5:00 to
7:00 p.m. and the other from 7:00 to 9:00 p.m.
A recently administered test demonstrated that
the classes score about equally well on purely
flow-charting problems. The first class is now
being taught a standard high-level language
(FORTRAN) and they will use this language to re-
present all of their flow-chart solutions for the
remainder of the semester. The second class will
be taught the programming language described with-
in this ~aoer and they will use it to renresent
all of their flow-chart solutions. The same in-
structor will teach both classes (Larry C.
Ever sole).

Every attempt is being made to see that each
class receives about the same number of instruc-
tional hours on the programming language which it
is being taught. Each class has identical op-
portunities for access to the UNIVAC ll08 uDon
which both classes will run their comDuter prob-
lems, since language processors for the two lan-
guages are both available at all times during the
day.

During the semester and at its conclusion data
will be gathered in an attempt to evaluate the
performances of the two groups. Data which will
be taken concerns the following:
1. The number of computer runs each student makes

duringthe semester.
2. The students' scores on midsemester and final

examinations.
3. The average number of runs required to success-

fully complete eachassigned computer problem,
4. The percentage of successfully completed com-

puter assignments, per assignment.
5. Students personal opinions (from a question-

naire).
6. Time spent debugging.

Results of this evaluation will be available
sometime during the summer and any interested
parties are urged to write the authors for infor-
mation. Any suggestions would also be appreciated.

The authors wish to thank Professor R. A. Sibley,
Jr,, University of Houston, for his valuable sug-
gestions and assistance throughout this research
project.

140

