Check for
Updates

AN EXPERIMENTAL COMPUTER SCIENCE
PROBLEM SEMINAR

by
Ronald Alter and Thaddeus B. Curtz

University of Kentucky
Department of Computer Science
Lexington, Kentucky 40506

I. INTRODUCTION AND SUMMARY

In conjunction with the development of a new Master's degree program, yet to receive final
approval, the University of Kentucky Computer Science Department has devised and implemented
a problem seminar. Students who enter graduate training in the department are required to
present four of six specified items of academic background. It has been our experience that they

present these credentials but have little working knowledge of their relation to Computer Science.

The seminar is therefore designed to encourage the student to use and apply certain
techniques he is expected already to know. On the other hand, we make no great point of this with
the students - the problems are presented to them (usually) without comment on the expected
method of solution; although the background, importance and relevance of the problem is

discussed.

We have found the results obtained by offering this seminar so encouraging we now propose to
incorporate it as a requirement in the Computer Science graduate curriculum and it is also
actively under consideration for inclusion as part of an interdisciplinary program on applied
science now being developed. This creates a serious problem in staffing; obviously a course of
this kind requires a high faculty-student ratio. At present, the seminar is a two hour credit

course, however, we believe the students would be better served by a three hour credit course.
In what follows we discuss the objectives of our seminar,how it is organized to attain these
objectives, and finally our plans for the future development of the course. We conclude by

speculating briefly how we might best employ a third classroom hour.

11 Background Information

The Computer Science program at the University of Kentucky has existed since 1965. Due to a
variety of circumstances, principally the tragic death of the first chairman of the department,
Silvio Navarro, in an airplane crash in 1967 - the program suffered a major setback. The
University renewed its commitment to Computer Science with an active recruiting program in

1969 and at this point is committed in principle to the implementation of a Master's degree program

144


http://crossmark.crossref.org/dialog/?doi=10.1145%2F800155.805019&domain=pdf&date_stamp=1972-03-01

in the near future. We are at present offering a small selection of gradvuate courses and are
provisionally accepting graduate student enrollment. Much of the undergraduate program closely
resembles ACM curriculum '68 as is only to be expected in view of Navarro's close connection

with the development of that curriculum.

On the other hand, we are in the process of developing a conviction that the single course most
useful to the majority of our students is one not mentioned in curriculum '68 and not spec'ifically
incorporated in many of the curricula from other institutions. This is rather surprising in view of
the importance attached to the rather traditional problem seminar in the mathematics curriculum.

The computer science seminar which is the subject of this paper is described in some detail in the

next section; for the moment let us merely say that in a setting as closely resembling typical
industrial practice as we can create we pose to the student a variety of problems for computer

solution.

We have experimented with this seminar on the advanced undergraduate level and more
recently as a graduate course. Originally we introduced it as a means of acclimating our under-

"non-spoon-fed' problem solving using a computer. Most of our Bachelor's

graduate students to
degree candidates seek employment as programmers and they clearly benefit greatly from the
kind of experience which being led to develop their own resources offers. Of course, upper
level undergraduates should program well, nevertheless it has been our experience that they

sometimes do not do so. A second major benefit of the seminar is imrproved programming

capability of the students.

Cn the other hand it is at the graduate level that the authors have been most impressed by and
interested in the results obtained by offering the course. We believe the benefits derived by
graduate students from a seminar of this kind are substantial enough to justify the faculty-student

ratio implicit in offering this course - a ratio of more than kb appears to us to be self-defeating.

In addition to the independence and the gain in programming skill cited above as the principal
objectives in offering a course of this kind to undergraduates, graduate students derive another
major benefit and several less important ones. First, as will be seen below, we attempt to design
the problems posed for graduate students to meet a set of carefully defined specifications the most
important one of which is the exercise of certain skills learned but rarely applied as under-

graduates.
Other benefits include the usual advantages of any seminar and more particularly the following:
1) The seminar provides an opportunity to focus on the importance of documentation. We
make an effort to inculcate the principles both of commenting programs and properly describing

them. This forms an important part of the student's grade and we have gone so far as assigning

no grade to an undocumented program.

145



2} We make a conscious effort to develop a mode of thinking aimed at inducing a preference
for a computational solution. In the past ten years the relative cost of an analytic solution and a
computational one has changed by several orders of magnitude. While the analytic effort has
remained fixed, cycle times have gone from milliseconds to nanaseconds. This change will no
doubt continue and we believe it to be so major as to be a change in kind rather than in degree. Thus

we feel students should be taught to prefer (all other things being equal) a computed solution.

3) Some of the problems are difficult enough so that a st udent may hope that he can

develop a thesis topic as an extension of a prblem encountered during the seminar.

A natural question is "How do we accomplish all this? " No doubt we are hoping for a lot -
perhaps for too much - from a single course. Yet we find the results encouraging. The organiza-

tion we use to accomplish these results is described in the next section.

IIL DESCRIPTION OF THE PRESENT SEMINAR

As a basic and minimal requirement for admission to graduate training we have specified a
knowledge of mathematics through the calculus and skill in the use of a problem oriented
language. Beyond these requirements, to enter the graduate program without deficiengies a
student is required to present qualification in the form of successful comrpletion of a course in

four items from among the following six (no significance should be attached to order):

A} Numerical analysis

B) Computer organization and programming
C) Linear algebra

D) Probability and statistics

E) Logic or logical design of computers

F) Discrete mathematics or data structures

This is neither a severe, nor an unusual requirement. In our experience so far, however,
students who present these qualifications (and even those whose grade point average in these
courses normally leaves little to be desired) are far removed from being able to apply these

diverse disciplines to Computer Science.

The problem seminar has as its primary objective the confronting of students with problems
susceptible to meaningful computational solution in a 'free format''. We do our best to convey to
the students the impression that we are interested in a solution and that the method is secondary.
However we have a list of personal criteria for the inclusion of a problem and desire for a solution

as such does not appear on this list.

146



Ingenuity is required to formulate problems with the properties that they are:

1) Accessible - i.e posing a reasonable level of difficulty - neither trivial nor too
hard. As will be seen we prefer problems which can be solved in a week or so of effort.

2) Computational in nature.

3) Relevant to one of the courses whose content we believe forms a basic element in
the background of knowledge any computer scientist should have.

4) Interesting.

All these criteria should be satisfied; nevertheless, frequently one or perhaps more of the
criteria are abandoned. When this happens, it is (3) that usually goes first. We believe that a

good problem, satisfying the other criteria deserves inclusion - especially if it is in the important

area of nonumerical applications of computers.

As the seminar is presently organized we meet twice a week; the first session is devoted to
presentation of new problems and faculty discussion of problem status, the second to student pre-
sentation of results and status reports. About 3 problems per week are posed; possible grades
range from zero through three points. A minimal performance standard is defined for the students g
in a 14 week semester we require the accumulation of 18 points. The seminar is taught by the 2
authors; typically, next semester we will have 8-10 students. Obviously this is an expensive way

of teaching, but we find the progress made by typical students very encouraging.

Not only do we find improvement in student self-discipline and in programming skill during the
semester. We are very pleased by the insight students develop as to the comparative merits of
various solutions. The students develop a healthy scepticism as to the claims of the designers of
special purpose software, in fact, lively discussion as to the merits of this or that processor are by
no means unusual. They develop a harsh pragmatic view of the merits of compe ting software.
Interestingly they tend to measure merit by execution speed rather than programming ease. There
is a breed of student who will go to nearly any length to demonstrate the advantages of, say, PL1
over FORTRAN, or SNOBOL over either. This can be particularly interesting when, in fact, the

putative advantages do not exist.

As an occasional sop to the weaker students, we find it necessary to include in the list of
problems a certain number of straight forward and easy ones. Generally - however, we prefer to
err on the side of being too demanding. We are often surprised by how well students can do with a
difficult problem; it is oﬁr hope that, as time goes by, we can expect a fair number of problems to
develop into theses.

As an example of a typical problem, meeting all of the criteria listed above and interesting be-
cause of the number of different ways of attacking it developed by the students we offer the

following: (old mathematical hands will recognize the Polya-Szego, '""Aufgaben und Lehrsatz"

fl_avor of this» particular example).

147



The number of ways of making change

Description: Given a system of coinage with a stated set of denominations, how do you calculate

the number of different ways to change a coin?

Suppose we look first at a simple example. ''How many different ways can you change 15 cents
into pennies, nickels, and dimes?'" A little thought (or some scrambling in the pocket if you happen

to have the right 19 coins), shows that in this particular case the answer is 6 ways.

15X1+0X5+0X10
I0X1+1X5+0X10

15

1]

15
15=5X1+2X5+0X10

15=5X1+0X5+1X10
15=0X1+1X5+1X10
15=0X1+3X5+0X10

If you try to generalize this counting scheme you will soon recognize that the question can be °

posed as, "How many solutions in nonnegative integers does the diophantine equation:
n=x+ 5y + 10z,
have? More generally still we can ask the same question for

n = dlx1 + dZXZ + e+ dmxm,
if the d, are the denominations available to change a coin of denomination n. We have generalized
the problem in two different ways. On the one hand, we are treating an arbitrary number of
denominations. On the other, we have allowed the coin to be changed to have an arbitrary value.
Looked at from this point of view, one can say we are prepared to try to answer the question,
""How many different ways can one combine a given set of deneminations to arrive at a specified

sum? "

This is a very old problem. The earliest references to it we are aware of date from 1669.
(G.W. Leibniz asked J. Bernoulli in a letter if he had investigated the number of ways a given num-
ber can be separated into two, three or many parts, and remarked that the problem was difficult
but important.) Really it would be very disappointing if there were not a nice analytic "solution''.
By a ''solution'" we do not mean a closed form expression whose value is the desired count, rather
in this case, we mean a formulation which makes the necessary counting a relatively simple matter.

We will discuss a classical way of computing the answer to our question but let us first try to

148



formulate the problem for a digital computer without further analysis. This problem will yield to
sheer tenacity. On first being confronted with it, many students write a program which simply
exhausts all of a large set of possible combinations and keeps count of the number of successes. This

leads to the statement of several problems:

1) Write a program to compute the direct count for a reasonable range of values of n,

m, and the dj.
2) If you wrote a computer program to look at every possibility, how many possibilities

i 1 = = = = =2 = = d_ = 3007
will be examined for the values n = 1000, d1 1, d2 5, d3 10, d4 5, d5 50, cl6 100, 7

(The reason for the inclusion of d_ is that anyone who uses this method to count the number of ways
of changing ten dollars is the sort of person who is likely to accept a three dollar bill.)

3) How can you better perform this calculation? Make the observation that the problem
can be solved recursively. That is, one way of looking at it is to consider the 'number of ways of
making change on lower levels. It is important to notice that from the programmer's point of view,
what this amounts to is writing a subroutine that has the capability of calling itself, an action

which is forbidden in Fortran; but for which most modern higher level languages make provision. An

Algol solution to the program follows.

' BEGIN!

'INTEGER' 'PROCEDURE' CHANGE (AMOUNT, DENOMS, U).,

'COMMENT' PROCEDURE CHANGE RECURSIVELY COUNTS THE NUMBER OF
WAYS TO MAKE CHANGE OF AMOUNT INTO DENOMINATIONS DENOMS(/1..U/).
DENOMS MUST BE IN ASCENDING ORDER. .,

'VALUE' AMOUNT, U.,

'"INTEGER' AMOUNT, U.,

'INTEGER' 'ARRAY' DENOMS.,

'BEGIN' :

'INTEGER' I, CHNG, NUM, AMPRI.,

'COMMENT' CHNG IS A TEMPORARY VARIABLE WHICH COUNTS THE NUMBER
OF WAYS TO MAKE CHANGE AT THE END OF THE PROCEDURE. NUM IS
MORE OR LESS AMOUNT ' /! DENOMS(/U/). AMPRI IS USED TO DECIDE
WHETHER DENOMS(/U/) DIVIDES AMOUNT . .,

CHNG . = 0.,

'COMMENT' IF AMOUNT IS LESS THAN THE SMALLEST DENOMINATION THERE
IS NO WAY TO MAKE CHANGE. .,

'IF' AMOUNT 'LESS' DENOMS(/1/) ' THEN' 'GOTO' QUIT.,

NUM . = AMOUNT ' /' DENOMS(/U/).,

AMPRI ., = NUM x DENOMS(/U/).,

'COMMENT' [F THERE IS ONLY 1 DENOMINATION LEFT AND IT DOES NOT
DIVIDE AMOUNT, THERE IS NO WAY TO MAKE CHANGE. IF IT DIVIDES
THERE IS ONE WAY TO MAKE CHANGE. .,

'IF' U 'EQUAL' 1 'THEN!

' BEGIN®
'IF'" AMPRI 'EQUAL' AMOUNT 'THEN'! CHNG . =1.,
'GOTO' QUIT.,
'END' OF THEN CLAUSE., _
'COMMENT' IF NONE OF THE TERMINATING CONDITIONS MENTIONED IN THE
LAST TWO COMMENTS HOLDS, THE NUMBER OF WAYS TO MAKE CHANGE
IS THE SUM WHILE 0 '"NOTGREATER' I '"NOTGREATER!' U OF CHANGE
(AMOUNT - I x DENOMS(/U/), DENOMS, U-1). WHEN DENOMS(/U/)
DIVIDES AMOUNT, THIS CORRESPONDS TO ALL CHANGE COINS BEING
THE SAME (LARGEST) DENOMINATION. THIS SITUATION IS COUNTED
AS A SEPARATE CASE RATHER THAN RECURSIVELY. .,
'IF' AMPRI ' EQUAL' AMOUNT ' THEN!

149



' BEGINT
CHNG . = 1.,
NUM . = NUM-1.,
'END' OF THEN CLAUSE.,
'FOR' I . =0 'STEP' 1 'UNTIL' NUM 'DO!
CHNG . = CHNG + CHANGE (AMOUNT - I x DENOMS(/U/), DENOMS, U-1).,
QUIT.. CHANGE . = CHNG.,
'END' OF CHANGE.,
'INTEGER' AMOUNT, DIM.,
'COMMENT' AMOUNT IS AMOUNT TO BE CHANGED, DIM IS NUMBER CF
CHANGE DENOMINATIONS. .DIM MUST BE NONNEGATIVE. .,
READ.. ININTEGER (0, AMOUNT).,
'COMMENT' NONPOSITIVE AMOUNT IS END OF DATA SIGNAL. .,
'IF' AMOUNT ' NOTGREATER' 0 'THEN' 'GOTO' QUIT.,
ININTEGER (0, DIM).,
'IF' DIM 'LESS' 1 'THEN' 'GOTO!' ERROR.,
' BEGIN!
'INTEGER' 7J.,
'"INTEGER' 'ARRAY' DENOMS(/1, .DIM/).,
' COMMENT' DENOMS, THE ARRAY OF CHANGE DENOMINATIONS,
MUST BE NONNEGATIVE AND IN ASCENDING ORDER. .,
INTARRAY(0, DENOMS}.,

'IF' DENOMS(/1/) 'NOTGREATER' 0 'THEN' 'GOTO' ERROR.,
'FOR' J . =1*'STEP' 1 'UNTIL!

DIM-1'DO! '
'IF' DENOMS(/J/) '"NOTLESS' DENOMS(/J + 1/) ' THEN' 'GOTO!
ERROR.,
OUTSTRING (1, '(' THE NUMBER OF WAYS TO MAKE CHANGE!')').,
OUTINTEGER (1, AMOUNT).,
OUTSTRING(1, '(' INTO DENOMINATIONS')').,

OUTARRAY(l, DENOMS).,
OUTSTRING(1, ' (" 1S")").,
OUTINTEGER(l, CHANGE(AMOUNT, DENOMS, DIM).,
SYSACT(1, 14, 1).,
'GOTO' READ.,
'END' OF INNER BLOCK.,
ERROR.. OUTSTRING(1l. '(' BAD DIM OR DENOMS. SEE COMMENTS. ')').,
SYSACT(l, 14, 1).,
'GOTO' READ.,
QUIT.. 'END' OF PGM.,

Program by Lee Crawfort

Finally let us take a brief look at the classical method of solving the problem. We would like to
have all of the different ways that a positive integer n can be written as a sum of positive integers
chosen from a given set S. This is a problem in the theory of partitions. The partition function
p(n) is defined as the number of ways that the positive integer n can be written as a sum of positive
integers. Two partitions are considered to be the same if they differ only in the order of their
summands. Other partition functions can be defined for which the summands satisfy certain restric-
tions. If pm(n) is the number of partitions of n into summands less than or equal to m and we imake

the convention that

P(0) = p(0) = 1,

the following theorem can be proven.

150



Theorem The number of partitions of n into m summands is the same as the number of partitions

of n having largest summand m. The number of partitions of n into at most m summands is pm(n).

Many results concerning the partition function depend on the theory of analytic functions, however
for our purposes there is an elementary technique that is quite suitable, namely the theory of
generating functions. In a nutshell, the basic idea underlying the. use of generating functions is that
given a sequence of numbers that it is desirable to study, the manipulation of the formal power series

whose coefficients are. the given sequence, is very informative.

With regard to the partition functions it can be shown in a rather elementary way that

-0 n m 1
Yo (mx" = (1-x")
n=0 m n=1
and

(- -1

Y pla)™ = T (1oxD)
n=o0 n=l

As an example of the significance of these formulas, suppose now we want to change our original
15 cents into pennies, nickels and dimes. The number of ways we can do this is (according to the

15
above) the coefficient of X'~ in the series expansion of 1 X 1 X 1

1-x1 l-x 1-x

This can be determined from

L =1k

10 B * Tt
1-x

1 5 15

3 = l4+x 4+x 7 4 -ee-
1-x

1 2

= l+x+x + -w--

l-x

1
Clearly the x 5 term in the final product is easily seen to have coefficient 6.

For a typical example of a problem that does not have property (3), yet is relevant and important

enough to include, consider the problem of rotating a shaded shape.

151



Shaded Shape Rotation

Discussion: Computer graphics is playing a major role in the field of computer applications today.
The next problem does not use the computer to design or construct something, nevertheless, it is
related to computer graphics. The idea is to take a particular figure or shape and rotate it through a
fixed number of degrees. The shape can be made by printing x's where desired. It can be made
darker by printing, say, y's on top of the x's. By performing various tricks like these, one can shade
the shape in almost any desired way. In rotating the shape, a problem to be aware of is truncation.
That is, if you rotate the shape out of range, a section will be truncated. Distortion is another

problem.

Problem: Given a shaded shape, write a prograrﬁ which will rotate the shape x degrees. Thus if the

shape is as in

Figure 1

Figure 1, your result will look like Figure 2 after being rotated through x degrees.

Figure 2

The user should be able to select whether the original shape and/or the resultant shape is to be

printed. The user may also specify the approximate positions on the page for the shapes to be printed.

Iv. PLANS FOR FUTURE DEVELOPMENT

Though we are pleased with the results of offering the problem seminar there are nearly as many
questions remaining unresolved as toits best organization as we have already answered. Conditions
in our University and in the academic world are changing radically and two of the questions we
consider to be most important are directly connected with these changes. One of these is the staffing
problem mentioned above - we are anxiously seeking ways to handle a larger number of students in a
format similar to the present one without losing the apparent benefits of informal organization and

cordial working relationship offered by the present arrangement.

Secondly, we would like to develop a technique for feeding back into our own undergraduate
curriculum some information based on the students capabilities and shortcomings as displayed in the
seminar. Since a major rationale for the present course is the student's need for practice in applying
basic skills taught in other courses, the teaching in such courses might reasonably be influenced by

observation of the results we obtain.

152



Finally there are a couple of less important but nevertheless interesting possibilities with which we
now plan to experiment. As previously mentioned, we will give three hours of credit next semester.
At present we are considering three possibilities as to best employ another hour. Rather than simply
multiply by 11/2 what we believe is already a sufficiently demanding problem-solving work load we
prefer either to require that each student learn and employ unfamiliar language to solve one or more of
the problems, (SNOBOL, ALGOL, LISP, etc. are all good candidates for the perpose) or, more
traditionally, to require that each student read and report on a paper selected for its relevance to one

of the problems.

A third possibility, that each student select, early in the course and with the instructor's approval,
a major programming project, has also been considered. This project would have to be completed

during the semester in addition to the assigned problems.

Of the three possibilities, our inclination is in favor of the latter two, primarily because they seem
to us to develop the student' s potential for research. That is, either presenting a paper or undertaking

a major programming project could be a stepping stone to a research topic for a Master's thesis.

Also, though we already place a modest emphasis on efficient programming, we are considering
distributing a budget of computer dollars to each student with which he must make do for the entire

semester,

Finally, we welcome comments and criticism on the seminar, In particular we would like to hear
from those who may already have developed a similar course. We would also be most gratified if
readers would attract to our attention any appropriate problems which could be used in the context
described above; problem selection without repetition poses a serious and continuing dilemma for

the authors!

ACKNOWLEDGEMENT

The authors are grateful to the students who have taken this course and to the Computer Science
Department faculty who have contributed problems from time to time. In particular we would like to
thank our colleagues Professors A. C. R. Newbery, H. C. Thacher and Mrs. K. Nooning and our
students L. Crawfort, D. Gravitt, J. Hall and E. Ryan.

153



