
THE CARE AND FEEDING OF LR(k) GRAMMARS t

Alfred V. Aho
Bell Telephone Laboratories, Incorporated

Murray Hill, New Jersey

and

Jeffrey Do Ullman
Princeton University
Princeton, New Jersey

Abstract

We consider methods of modifying L~k)
parsers [i] while preserving the ability
of that parsing method to detect errors at
the earliest possible point on the input°
Two transformations are developed, and the
methods of KorenJak [2] and DeRemer [3]
are expressed in terms of these transfor-
matlonso The relation between these two
methods is exposed° Proofs are for the
most part omitted, but can be found in [~].

Io Introduction

The LR(k) grammars [i] are the
grammars which can be parsed bottom-up,
deterministically, by a deterministic
loushdown automaton which acts in a
'natural" way, ioeo, by finding substrings
in right sentential forms which match
right sides of productions and replacing
these substrings by left sides. We there-
fore begin with a definition of a context
free grammar and LR(k)-nesso

A context free grammar (CFG) is a
four-tuple G = (N,E,P,S), where N and E
are finite disjoint sets of nonterminals
and terminals, respectively; S, in N, is
the start symbol, and P is a finite set of
productions of the form A ~ s, where A is
in N and s in (N ~Z)*o We assume produc-
tions are numbered 1,2, o..,p in some order.

Conventionally, A, B and C denote
nonterminals, a, b and c denote terminals
and X, Y and Z are in N ~Zo We use
u,V, ooo,Z for strings in E* and s,~,°o.
for strings in (N ~E)*. We use e for the
empty string.

If A ~ s is in P, then for all G and
7 we write ~A 7 -> ~s 7. If 7 is in E*,
then the replacement is said to be right-
most, and we write BA 7 => 5S7o T h e ~
exTicitly shown s is said to be a handle
of 5s 7 in this event, ~> and ram > deno~

the reflexive and transitive closure of =>

and ~m>, respectively. Arrows may be

subscripted by the name of the gramma~ to
resolve ambiguities. The language defined
by G is L(G) = {wlS ~> w}° It is known

.
that if S => w, then S *~> ~ That is,

rm

every sentence in the language has a
rightmost derivation. A right sententlal
form of G is a string s such that

S ~> s° If S ~m > sAw ~m > sSw, then 7, a

prefix of sB, is called a viable prefix of
Go

We define FIRST~(s) as (wls * => wx and

either lwl = k or lwl_< k and x = e}. If
s is in E*, then FIRST~(s) has one member,

w; which is either s, if Isl is less than
k, or the first k symbols of s. In this

case we write FIRST~(s) = w instead of {w}.

Note that FIRST~(~) is independent of G in

this case. We delete G and k from FIRST
when no ambiguity arises.

CFG O = (N,E,P,S) is said to be LR(k)
if given the two rightmost derivations

(I) S ~m > sAw ==> sew, and
rm

(e) s ~m > 7Bx ~> s~y,

and PlRSTk(W) = FIRSTk(Y), then we may

conclude that 7Bx = sAy°

Informally, G is LR(k) if the unique
handle of a right sentential form can be
determined by examining that string up to
k symbols beyond the right end of the
handle.

A consequence of the LR(k) definition
is that for each LR(k) grammar G = (N,E,
P,S), a finite set of tables~can be con-
structed. A table is a p ~ of functions
(f,g), where:

This work was partially supported by NSF
grant GJ-465 o

ttls I stands for the length of s.
§A set of tables is called a "table" in [I].

-159-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800157.805048&domain=pdf&date_stamp=1971-05-03

(1) f, the parsing action function, maps
lookahead strings, ice°, strings in
E* of length at most k, to the
actions shift, error, accept, and
reduce i, where i is the number of a
production:

(2) g, the goto function, maps N ~Z to
the set--F-tables and the word error.

The tables are used to parse input
strings bottom up as follows. A pushdown
list holds a string of alternating grammar
symbols and table names, say ToXiTi...
XmTm, where the T1s are tables and the X's
are symbols in N ~Eo If w is the unex-
pended suffix of the original input string
then Xl..oXmW will always be a right sen-
tential form if error has not been
reported.

Let us suppose we observe the parser
at a time when either m = O, ice., at the
beginning, or after it has Just performed
a reduction, i.e., when X m is a nonter-
mlnalo Let T m = (f,g) o We find
u = FIRSTk(W) and apply function f to u.
If that action is shift, the first symbol
of u, say a, is shifted onto the pushdown
list, and then the table g(a) is shifted
on top of a. The pushdown list thus
becomes ToXiT I XmTmaT_~ , where

• ° ° l l i T ~

Tm+ 1 = g (a) o I n t h e s a m e m a n n e r , we s h i f t
additional symbols from input to pushdown
list, as long as the action of the current
table on top of the pushdown list applied
to the first k remaining input symbols is
shift° The actions error and accept have
the obvious meaning.

Eventually, if we are dealing with a
right sentential form, we will enter a
configuration with ToXiTioooXrT r on the
pushdown list and lookahead string x such
that the action of T r on x is reduce io
At that time, the right side of production
i will be a suffix of the grammar symbols
on the pushdown list, that is, XnXn+io..X r
for some no These symbols and the inter-
vening tables are removed from the push-
down list, leaving Tn_ I on top. Let
Tn_l = (fl,gt), let production i have A on
the left, and let g'(A) = T. Then the
symbols A and T are placed on the pushdown
list, leaving ToXiTio..Xn_iTn_iATo

We are now "back where we started,"
with a nonterminal as the top grammar sym-
bOlo The process repeats, until either an
error or accept action is called for°

The LR(k) tables are constructed from
a CFG G = (N,E,P,S) by first generating
what we call sets of items t. An LR(k)
item for G is a pair [A ~ ~o~,u], w~e

¢ Partial states in [I]o

A ~6 is a production and u is in E*,
with lu] < ko Item [A ~ ~.G,U] is said
to be valrd for T, a viable preflx of G,
if there exists a derivation
S ==> SAw =~> 5aGw, where 7 = 5~, and

rm rm

u = FIRSTk(W).

The key to constructing LR(k) tables
for an LR(k) grammar G is to first con-
struct the sets of valid items for the
viable prefixes of G. The number of such
sets of items is clearly finite.

Let G = (N,E,P,S) be a CFG. We define
Gr ~ EFF~), where G k are EFF_ =j, or and

understood,K as lw|a * ~m > wx, where lwl = k

or lwl < k and x = e, and the last step in
the derivation ~ ~> wx, if it exists,

does not replace the leftmost symbol of
the string by e}.t

Let a be a set of items. The closure
of a is defined to be the least set-~ 7,
satisfying:

(1) a C a ' ;

(2) If [A ~G.B~,u] is in a', then
[B ~ .7,v] is in a', for all B ~ 7
in P and v in FIRST(6U) o

Let a be a set of items. Then the
function GOT0(a,X), is defined as follows.
Let a' be the set of items [B ~ ~X.8,u]
such that [B ~ ~.XS,u] is in a. That is,
find all X's to the right of the dot and
shift it over. Then GOTO(a,X) is the
closure of a,.

Lemma I: (From [I]) If a is the set
of items valid for ~, then GOT0(a,x) is
the set of items valid for eX.

The set S of the sets of valid items
for an LR(k) grammar G - (N,E,P,S) can be
computed as follows.

(I) Let a 0 be constructed by taking the
closure of the single item
IS' ~ oS,e], where S' is a new symbol°

(2) Begin with $ = {GO}. Repeatedly do
step (3)°

(3) I f a is in $, add GOTO(a,X) to $ for
all X in N usE, if GOTO(a,X) is non-
empty°

Example I: Consider the LR(1)
grammer with productions:

(i) S -~ AS

(e) s * b

t EFF stands for e-free first•

-160-

(3) A ~ Aa

(4) A ~ b

The six sets of items for G are
listed below. Brackets are removed and
the notation A ~ .Aa, a/b is short for the
two Items A ~ .Aa, a and A ~ oAa, b, etc.

S' ~ °S,e
S ~ .AS,e

a 0 S ~ ob, e
A ~ oAa,a/b
A ~ .b,a/b

a I s, ~ s.,e

a 2

S -~ A.S,e
A -~ A oa, a/b
S ~ .AS,e
S -~ .b,e
A -~ .Aa,a/b
A ~ .b,a/b

S ~ b.,e
a3 A ~ b.,a/b

a 4 s -~ AS.,e

g5 A -~ Aa.,a/b

known [I] that the sets of items for an
LR(k) grammar satisfy this property.)
The table (f,g) constructed from a is
defined as follows.

(I) If [A ~ ~.,u] is in G, and A ~ is
not S' ~ S, then f(u) - reduce i.

(2) If [A ~-8,u] is in a, ~ ~ e, then
f(v) shift for all v in EFF(Su).

(3) If IS' ~ S.,e] is in a, then
f(e) = accept.

(4) f(y) = error otherwise.

(5) g(X) is the name of the table con-
structed from GOTO(a,X) wherever
GOTO(a,X) is not empty.

(6) g(X) = error if GOTO(a,X) is empty.

We will refer to the set of tables
constructed by this process for an LR(k)
grammar as the"Knuth tables."

Example 2: We display the Knuth
tables for Example I in Fig. 2. Tables
throughout this paper are shown as rows,
with columns for the arguments of f and g°
The following code is used:

X = error
A = accept
S = shift
i = reduce i

To see that these are all the sets
generated by the above algorithm, we llst
the GOT0 function.

A

a 0

a I

a 2

a 3

a 4

a 5

S a b

a 2 a I - a 3

a~ a 4 a 5 a 3

Fig. i OOTO(a,X)

Note that the set of valid items for
a strlng~whlch is not a viable prefix is
empty. U

The following algorithm constructs a
table from a set of items. Let a be a set
of items such that if [A * ~.,u] and
[B * O-7,v] are in G, then u is not in
EFF(Tv). Note that 7 may be e. (It is

f g

a b e A S a b

T O

T I

T 2

T 3

T 4

T 5

S S X

X X A

S S X

4 4 2

X X i

3 3 X

T 2 T I X T 3

X X X X

T 2 T 4 T 5 T 3

X X X X

X X X X

X X X X

Fig. 2 Knuth Tables

Iio The General Notion of a Set of
LR(k) Tables

The amount of computation required to
produce a set of LR(k) tables and the num-
ber of tables produced using the methods
above can be quite large for practical
grammars. Recently, several methods [2,3]
have been advanced for generation and
alteration of a set of LR(k) tables. In
order to study these methods, we define

-161-

an abstract notion of a set of tables,
define certain operations on them and
show how the transformations of [2,3] can
be expressed in terms of these operations.

One preliminary observation is
necessary° It is possible that certain
entries in an LR(k) table will never be
"exercised," that is, they could be re-
placed with no effect on the parser's
operation. We will therefore allow a new
action ~, or "don't care" in the range of
both f and g.

With this in mind, we define a set
of LR(k) tables for a grammar G = (N,E,P,
S) to be a set of pairs of functions
T = (f,g), such that

(1) f maps strings u in E*, where
lul < k, to the actions shift,
accept, error, ~, and reduce i, where
i is the number of some production of
G;

(2) g maps N ~E to {error,g} and the
names of the tables in the set.

One table is designated to be the
initial table.

Note that there is no provision, yet,
that the set of tables should form a
parser for Go The action of the parser
constructed from a s~of LR(~ tabT~J-for
grammar G = (N,E,P,S) is defined as fol-
lows. A configuration of the parser is a
pair (ToXiTio.oXmTm,W), where T O is the

initial table, T0,Ti,ooo,T_ are in ~,
Xi, ,X_ are in N ~E, ann w is in E* °°° HL °

Let T m = (f,g), and let u - FIRSTk(W).

(i) If f(u) = shift, and g(a) = T, where
w = aw', then we write
(TQXiTio.oXmTm ,w) F (ToXITi.ooXmTmaT,
Wt).

(2) If f(u) = reduce i, production i is
A ~, ~ is X~Xr+i.o.Xm, and
Tr_ I = (f',g'), then (ToXiTi.ooXmTm,

w) ~ (ToXiTIoooXr_iTr_iAT,w), where

is g'(A)o

(3) If f(~) is error, accept or ~, or if
f(x) reduce i, and ~ ~ Xr.ooXm,
then there is no configuration C such
that (ToXITio.°XmTm,W) ~ Co If

)e accept, m = I, X 1 = S and
f(~ ? then the configuration (ToSTi, W

e) is said to be an acceptlng con-
figuration°

An initial configuration is one of
the form (To,W)o Let ~ be the reflexive
and transitive closure o~ ~. A configura-
tion C such that (T0,w) ~ C for some w is

said to be accessible. The set ~ is said
to be a pars@r for G if for each w in
L(G), (Tn,w) ~ (ToST,e) for some To It is
straightforward That the LR(k) tables
constructed for an LR(k) grammar as in
Section I form a parser for G. However
there may be others.

It is possible that given an LR(k)
~rammar G, we would llke to find the
smallest" parser for Go However, there

is an important feature of LR(k) parsers
which we would like to enforce. As soon
as the LR(k) parser of Section I reaches
a point where no possible continuation of
the input could yield a right sentential
form, the parser announces an error° The
modifications of [2,3] preserve this
property, although each allows the modi-
fied parser to perform some reductions
when the original parser signals error.
The modified parser does not, however,
allow a shift after the original has
declared an error. Thus, the modifica-
tions of [2,3] do not diminish the good
error detection and recovery features
inherent in Knuth's original parsing
algorithm (ioeo, the parser of Section I)o
We will make a definition of equivalent
tables which reflects this desire to pre-
serve rapid error detection°

Let ~ and ~ be two sets of LR(k)
tables for grammar O = (N,E,P,S), with
initial tables T O and RO, respectively.
Let C O ~ C 1 ~ ..o ~ C m and D O ~ D 1 ~ . .

D n be sequences of configurations of
the parsers constructed from ~ and ~,
respectively, such that:

C O = (To,w) and D O = (Ro,w) for some
w in E*o

(1)

(2) m = n or m < n and there is no con-
figuration C such that C_ ~ C or
n < m and there is no co~flguration
D such that D n ~ D.

Let C m = (ToXiTioooXrTr,X) and

D n = (HoYiHioooYsRs,Y) o We say J and

are equivalent if for arbitrary sequences
as above:

(1) if m = n, then Xio..X_ = Y~ .Ys,
x = y, and C m is an accepting con-
figuration if and only if D n is an
accepting configuration.

(2) if m ~ n, then x = y.

Informally, the consequence of the
above Is that if one parser produces the
action error or ~, the other may not shift
any more input symbols onto the pushdown
list but may reduce before ultimately
reporting error°

-162-

a b e A S a b Our first objective is to determine
when the action ~ can be truly considered
a "don~t care," that is, an action which
gets exercised. We say a set of tables 7
is ~_~if for each accessible config-
ura~lon ~ToXiTi..oXmTm,w), if T m = (f,g)

and u = FIRST(w), then:

(I) f(u) # ~, and

(2) if f(u) = shift and the first symbol
of W is a, then g(a) ~ ~, and

(3) if f(u) = reduce i, production i is
A ~Xroo.X m and Tr_ I = (f',g'), then
g,(A)

The following algorithm replaces an
error action by ~ whenever possible in the
tables constructed by Knuthls method°

Algorithm i: Introduction of
actions.

Input: The set of Knuth tables for
grammarS= (N,~,P,S) o

Output: An equivalent set of tables
with error entries replaced by ~, wherever
possible.

Method:

(1) Let T ~ (f,g) be in ~. Replace
g(X) = error by g(X) = ~ for each X.

For all u, replace f(u) = error by
f(u) = $ unless T is the initial
table, or there is a table
T' = (f',g') in 7, a in Z and v in
Z* such that

(i) f'(av) = shift,

(ii) g'(a) = T, and

(iii) u is v if I vl < k - ~ and u
i s vb f o r some b i n Z ~.*{e} i f
I v l = k - 1 . LJ

Example 3: Note that if k ~ I, then
v = e in rule (2) of Algorithm i. Thus,
the condition under which error is not
replaced by ~ reduces to T not being g'(a)
for any a and any table (f,,g,).

Then, the tables of Example 2 become,
by Algorithm 1 those shown in Fig. 3.

T O

T I

T 2

T 3

T 4

T 5

S S X

$ A

S S

4 4 2

$ i

3 3 x

T 2 T I $ T 3

T 2 T 4 T 5 T 3

Fig. 3 LR(1) Tables

The only error entries remaining are
in TO, because it is the initial table,
and in T 5, because it appears under a in
the goto portion of T 2.

Theorem I: The set of tables con-
structed by Algorithm i is ~-free and
equivalent to the original set.

III. Modification of Table Sets

If a set of tables is ~-free, and two
tables have entries which disagree only
where one is ~, then the two tables can
clearly be identified° A generalization
of this idea is the following.

A partition H on a set of LR(k)
tables ~ is said to be compatible if
whenever T I = (fl,gl) anh T2"=" (f2,g2)
are in the same block of H, then

(1) fllu) f2(u) or q(u) : or
f2(u) ~ ~, for eacn u;

(2) gl(X) and g2(X) are in the same
b l o c k ~ f H, or gl(X) - $ or
g2(X) ~ for each X.

We can merge all tables in a block
of a compatible partition by the following
algorithm.

Algorithm 2: Merger of compatible
tables.

Input: A set 7 of ~-free LR(k)
tables a ~ a compatible partition H on 7.

Output: A set of LR(k) tables 7'
equiva~to 7.

Method: 7' consists of one table for
each ~o~--of H. The block containing the
initial table of 7 yields the initial
table of 7'. Let {(fl,gl) (f~,gr)}
be a block of ~. Then the table ~f,g)
constructed from this block has

-163-

a b e A S a b (i) f(u) = fi(u)If fi(u) ~ ~;

(ii) g(X) is the table constructed from R 0
the b l o c k of gi(X) if gi(X) # ~o

R I
The definition of compatible parti-

tion ensures that this construction is R 3
consistent. []

R 4
Example 4: Let us consider the

grammar with productions R5

(1) S ~ AA R6

(2) R8

(3) Rl l

A ~a

A * bS

The ~-free set of tables constructed
by Knuth's algorithm and Algorithm 1 is:

a b e A S a b

T O

T I

T 2

T 3

T 4

T 5

T 6

T 7

T 8

T 9

Ti 0

Tii

S S X

~ A

S S

2 2 X

S S X

~ I

X X 2

S S X

3 3

S S

~ 3

I I

T 2 T 1 T 3 T 4

T 5 ~ T 6 T 7

T 9 T 8 T 3 T 4

T 5 TiO T 3 T 4

Tii ~ T 3 T 4

Fig° 4 s-Free Tables

Let H be the partition with blocks
{To}, {T1,T2}, {T4"TT}' {Ts'Tg}'
{T6} , {T8 ,T to } , and { T l l } . I f we denote
the table for block {Ti} by R i and the

table for block {TI,Tj} by Ri, if i < j,

then the result of Algorithm 2 is shown
in Fig° 5°

S S X

S S A

2 2 X

S S X

S S i

X X 2

3 3 3

I I

R 1 R 1 R 3 R 4

R 5 • R 6 R 4

R 5 R 8 R 3 R 4

RiI • R 3 R 4

Fig° 5 Tables after Compatible Mergers

Theorem 2: The set of table result-
ing from Algorithm 2 is ~-free and
equivalent to the input set of tables.

The second idea for alteration of
tables is to postpone certain error
checks. If we have table (f,g), and
f(u) = error, we could change f(u) to
reduce i, if we were sure that:

(1) The right side of production i
appears on top of the pushdown list,
and

(2) the error would be caught by any
table which could appear on top of
the pushdown list immediately after
the reduction°

In fact (2) is slightly too strong.
We would llke to know that if (f',g')
could next appear on top of the pushdown
list, then f'(u) = error. However, we
could simultaneously change f'(u) to a
reduce action, and equivalence would be
preserved°

A few definitions are useful. First
we extend the GOTO function to tables and
strings of grammar symbols as follows.

If T = (f,g) is an LR(k) table, and
g(X) = T', then we say GOT0(T,X) = T'.
We define GOTO(T,~), where ~ is a string
recursively as follows.

(I) GOTO(T,e) = T

(2) GOTO(T,~X) = GOTO(GOTO(T,e),X).

Let i be production A ~ ~ and let T
be a table. We define the function NEXT,
by NEXT(T,I) = {Ttlthere exists table T"
such that GOT0(T",~) = T and GOT0(T",A)
= T'}o Thus, NEXT(T,I) gives the set of

-164-

tables that could appear on top of the
pushdown list after T calls for a reduce
i action.

The ~-free set of tables obtained
using Algorithm I from the Knuth tables
for G is shown in Fig. 6.

Let ~ be a set of tables. A post-
ponement set for ~ is a set $ of trmp~s
(T,u,i), where T is in ~, u is a terminal
string and i is a production number, with
the following conditions.

(I) If T = (f,g), then f(u) is error or

(2) If production i is A ~ ~, and T
GOTO(T~,~), then ~ is a suffix of
or conversely° If T ~ is the inltlal
table, then a must be a suffix of ~.
(This assures that a reduction of
production i will only be called for
if ~ appears on top of the pushdown
llst.)

(3) If T' is in NEXT(T.i), and T ~ =
(f~,g), then f~(u I is error or ~.
(This assures that errors will be
caught before a shift, even if
(T',u,J) is also in $ for some J.)

Algorithm 3: Postponement of error
checking.

T O

T I

T 2

T 3

T 4

T 5

T 6

T 7

T 8

T 9

a b e S A B a b

S S X T I T 2

S S ~ T 5 T 2

X X 2

S S X

3 3 ~

S S X

5 5 X m

4 4 m

T 4 T 3

T 4 T 3

T 6 T 4 T 8

T 9 T 7 T 8

Fig° 6 s-Free Tables for G

Input: A ~-free set of tables ~ and
a postponement set S for 7o

Output: A set of tables ~P equival-
ent toT.

Call the resulting set of tables Sw.

Example 5: Let us consider the
grammar

(i) S ~AS

(2) s ~ b

(3) A ~ aB

(4) B ~aB

Method:

(I) For each (T,u,i) in ~ where
T = (f,g), set f(u) o reduce i.

(2) If (T,u,i) is in S, and NEXT(T,I)
contains T ~ = (f~,g~), set f~(u) =
error if it was originally ~ and was
not changed in step (I).

(3) Let (T,u,i) be in 5, and let produc-
tion i be A ~Go For all T t = (fr,gt)
such that GOTO(TI,a) ~ T and
gt(A) = ~, set gliA) ~ error.

[]

(5) B * b

We can choose to replace the error
entries in Tq with reduce 5, and the error
entry of T 8 ~y reduce 2. That is, we

• ick a postponement set {(T3,a,5),
T3,b,5),(T8,e,2)~. Production 5 is

B ~ b, and GOTO(To,b) = GOTO(T2,b) ~ T 3.

Thus, the entries under B in T O and T 2
must be changed from ~ to error. Similar-
ly, the entries under S for T 4 and T 7 are
changed to error. The resulting set-of
tables is:

a b e S A B a b

T O

T I

T 2

T 3

T 4

T 5

T 6

T 7

T 8

T 9

S S X

~ A

S S

5 5 2

S S X

~ i

3 3

S S X

5 5 2

4 4

T I T 2

T 5 T 2

X

X

x T 4 T 3

X T 4 T 3

T 6 T 4 T 8

T 9 T 7 T 8

Fig. 7 Tables After POstponement
of Error Checking.

-165-

If we wished, we could now apply
Algorithm 2 with a compatible partition
grouping T 3 with T8, T I with T 2 and T 5
with T 6. (Other combinations of three
pairs are also possible.) The resulting
set of tables is given in Fig. 8o

a b e S A B a b

T O

T I

T 3

T 4

T 5

T 7

T 9

S S X

S S A

5 5 2

S S X

3 3 1

S S X

4 4

T I T I X

T 5 T I X

X

X

T 4 T 3

T 4 T 3

T 5 T 4 T 3

T 9 T 7 T 3

Fig 8 Merged Tables

Theorem 3: Algorithm 3 produces a
set of tables ~' which is equivalent to 7.

IVo DeRemer's Methods

In [3], two subclasses of LR(k)
grammars, called SLR(k) and LALR(k), for
simple LR(k) and lookahead LR(k), respec-
t , are defined. In each case, an
algorithm which produces sets of LR(k)
tables for the grammar of that class are
given. The number of tables generated was
considerably smaller than the number of
Knuth tables° It turns out that the rela-
tion of the sets of tables constructed by
[I] and [3] can be expressed simply. An
application of Algorithm I (introduction
of ~'s), followed by Algorithm 3 (post-
ponement) followed by Algorithm 2
(compatibility) to the Knuth tables yields
those generated by DeRemer (with certain
error entries made ~)o

We will discuss only the SLR(k)
method. The LALR(k) method is more
general, and can be characterized simi-
larly. For simplicity, from here on, we
restrict ourselves to the case k z Io The
SLR(1) method can be described as follows°

(I) Construct the set of LR(O) items for
the LR(1) grammar G = (N,E,P,S).

(2) Replace every item of the form
[A ~ Go,e] in set a~ by [A ~G.,a]
for all a in FOLLOWG(a), where
FOLLOWG(A) - {afthere exists a right
sentential form sAw such that

a - FIRST (w)}.

(3) Construct tables from the altered
sets of items as in [I]. If the
table construction is successful
(It is possible that even though G
is LR(1), certain action conflicts
occur in these sets of items), the
set of tables created forms an
LR(k) parser for G equivalent to
the set generated by [1]° If the
method is successful, the grammar G
is SLR(1). (Thus, DeRemer's
algorithm forms a definition of SLR
grammarso)

Theorem 4: The set of tables con-
structed for SLR(k) grammars by DeRemerWs
method is equivalent to the Knuth set of
tables°

Proof: We will sketch a proof here.
First, we observe that the sets of LR(1)
items constructed for G by Knuth's algor-
ithm may have two or more sets with
common cores° (The core of a set of items
is the set of first components, i.eo, the
core of [A ~ ~o~,U] is A ~ ~.B.) Since
the second component of an LR(0) item is
always e, all distinct sets of LR(0)
items have distinct cores° Moreover, the
set of cores which appear when the sets
of LR(1) items are constructed for G is
the same as the set of cores of the sets
of LR(O) items for G.

Thus, there is a function f which
maps tables constructed by Knuth's
algorithm to those constructed by
DeRemer's, such that f(T) = T' if and
only if T is constructed from a set of
LR(1) items having the same core as the
set of LR(0) items from which T' was con-
structed. It is easy to show that f
commutes with GOTO. That is,
GOTO(f(T,X)) = f(GOTO(T,X)).

Moreover, if f(T) ~ T', the only dif-
ference in the tables T and T' is that T r
may call for reductions when T announces
error. This is because T may be con-
structed from a set of items with
[A ~o,a] but not [A ~ ~o,b]. If b is in
FOLLOW(A), then T' will be constructed
from a set with both.

However, T may be altered to have the
same actions as T' by using Algorithm 3
with the postponement set which consists
of all (T,a,i) such that the action of T
on a is error, but the action of f(T) on
a is reduce i. Then, Algorithm 2 merges
all those tables T I and T2 such that
f(T1) - f(T2)o []

Example 6: Let us consider the
grammar with productions

-166-

(i) S ~ AA

(2) A ~ aA

(3) A ~ b

FOLLOW(S) = {e} and FOLLOW(A) ~ {a,b}o

We list the LR(1) sets of items
(brackets deleted), followed by the set
of tables generated therefrom°

S t ~ .S,e

S -~ .AA,e
(30 A -+ .aA,a/b

A -~ °b,a/b

(31 St -~ S.,e

S -~ A.A,e
(32 A ~ .aA,e

A -~ ob,e

A -~ a.A,a/b
(33 A -~ .aA,a/b

A -~ .b,a/b

(34 A -~ b., a/b

C~ 5 S "* AA., e

A ~ a.A,e
(36 A -~ .aA,e

A ~ ob,e

(37 A -+ bo,e

(38 A -+ aA~,a/b

(39 A ~ aA., e

The LR(O) items, with ",e" deleted are:
S t -~ .S

S -* oAA
U~O A -+ . aA

A -~.b

a2

S t ~ So

S -+A.A
A -+ .aA
A ~ob

A -~a.A
~3 A ~ .aA

A -*ob

~4 A -,b.

~5 S -* AA.

~6 A -, aA.

The LR(1) tables constructed from
these items by DeRemer's method are shown
in Fig. lO.

a b e S A a b

R o

R I

R 2

R3

R 4

R 5

R 6

S S X

X X A

S S X

S S X

3 3 3

X X I

2 2 2

R I R 2 R 3 R 4

X X X X

X R 5 R 3 R 4

X R 6 R 3 R~

X X X X

X X X X

X X X X

T O

T I

T 2

T 3

T 4

T 5

T 6

T 7

T 8

T 9

b e A S a b

S S X

~ A

S S

S S X

3 3 X

~ 1

S S X

X X 3

2 2

T 2 T I T 3 T 4

T 5 ~ T 6 T 7

T 8 ~ T 3 T 4

T 9 • T 6 T 7

Fig. 9 LR(1) Tables

Fig° I0 DeRemer Tables

The function f, which maps TO,...,T 9
to RO,...,R 6 on the basis of the cores oH
the sets of items from which the tables
were generated, is shown in Fig. ll

T

T o

T I

T 2

T B

T 4

T 5

T 6

T 7

T 8

T 9
Fig. II

f(T)

R o

R I

R 2

R 3

R 4

R 5

R 3

R4

R 6

R6

Function f

-167-

We can apply Algorithm 3 to the T's,
with a postponement set consisting of
(T4,e,3), (TF, a,3), (TT,b,3), (T8,e,2),

(Tg,a,2) and (T9,b,2). It is then
possible to merge {Tq,T6} , {T4,TT} and
{T8,Tg}, to obtain t~bles which Are a
renamlng of the R1s.

V. KorenJakts Method

A simple modification of the method
of [2] can also be characterized by the
operations of merger and postponement.
Korenjakls algorithm is, essentially, the
following.

(I) Given LR(1) grammar G - (N,Z~P,S),
select a splitting set N' = ISl,o.o,
Sm} ~N of nonterminals, including

the start symbol, and form grammar
G' = (N,Z ~E',P',S I) by replacing
symbols in N' on the right side of
all productions by corresponding new
terminal symbols in Z' = {s I, Sm}.
N', the set so selected may determine
whether the algorithm is successful
in producing a set of LR(1) tables°
Form component grammars Gi, 1 < i <
from G', by choosing S i as the--start
symbol and deleting useless symbols
and productionsoT

(2) For each component grammar G i con-
struct the sets of items

s u c h t h a t

Is the closure (with respect to Gi)
of {[S i ~ o~,a]IS i ~ e is a produc-

tion in G i and a is in FOLLOWG(si)}.
However, when taking the closure of
an item with respect to G i we will
still use FIRST G rather than FIRST Gi.
For examplez if we have added
[A ~ ~.B~,uJ to ~ and B is not in N',
we will also add [B ~ oF,V] to
where B ~ v is in G' and v is in
FIRSTG(B'u) where ~' is ~ with all
ShtS replaced by ShlS. In this way
all lookahead strings will be in E*o
Each ~ in ~i is the closure

of GOTO(~,X) ~ for some ~ in $I and X

in (N ~E' ~JE).

(3) In the first component of all items
replace s i in Z' on the right side of
a production by S i (the original sym-
bol)o Retain the original name for
each set of items°

T In [2], Si was not replaced by s i in the
productions of its own grammar. We choose
this related approach for its symmetry.

(4) Let ~0 = {Is{ ~ .Sl,e]} ~ 0 "
Apply the following augmenting
operation to ~0 and call the result-
ing set of items ~. This ~0 will
be the initial set-of items for Go

Augmenting operation: If a set of
items ~ contains item [A ~ ~.BB,a] and

B ~> SjT for some Sj in N', T in (N ~E)*,

then add ~ to ~o Repeat this process
until no new sets of items can be so
added to ~.

(5) Now construct 8, the set of items
for G accessible from ~n as follows.
Initially, let ~ ~ {~0}7 Then per-
form step (6) until no new sets of
items can be added to 5.

(6) Let ~ be in 5. ~ can be expressed
W ~0 • ~Jl ~J2 , ~Jr

as ~ = ~ ~il ~12 ~ ... ~Ir
where ~0 is either the empty set or

{[S 1 ~ .Sl,e] } or {[S I ~ Slo,e] }.

For each X in N ~Z, let ~ =

GOTO(~0~) and ~n ~ GOT0(~ n, X). Let
n ~ n Jn

~' be the union of ~ and these ~hnLS.

That,, let ~' ~ GOTO(~,X). Then apply
the augmenting operation to ~' and call
the resulting set of items ~'. Add ~' to
$ if it is not already in 5. For the
given ~, repeat this process for each X
in N ~ E.

(7) When no new set of items can be added
to 5, construct, if possible, LR(1)
tables from ~ using Knuth's method.
If not possible because of parsing
action conflicts, report failure. []

Example 7: Let us consider the
grammar G with productions

(I) S 1 ~ S2S 2

(2) S 2 ~ aS 2

(3) S2 ~ b

L e t N ' = { S 1 , $ 2 } . Then G 1 c o n s i s t s
o n l y o f t h e p r o d u c t i o n

(2) S 1 ~ s2s2

and G 2 consists of the two productions

(2) S 2 ~ as 2

(3) $2 ~ b .

The s e t s o f i t e m s f o r G 1 a r e

-168-

9~: S I ~ oS2S2, e

9~: S I ~ s2.s2, e

1
92: S I ~ s2s2., e

Those for G 2 are

2
9o:

2
91:

2 93:

S 2 -~ .as2, a/b/e

S 2 -+ .b, a/b/e

S 2 -~ aoS2, a/b/e

S 2 -~ as 2., a/b/e

S 2 -~ b., a/b/e

Note that FOLLOWG(s2) = {a,b,e}o
To compute ~0 we begin with the set

of items

I

S I ~ .SI, e

S I ~ .$2S2, e

Since S 2 S 2 and S 2 is in N' we add to

S 2 ~ oaS 2, a/b/e

S 2 ~ .b, a/b/e

Thus ~0 = {[S~ ~ oSl,e] } ~9~ ~9~o Let

US now compute GOTO(~o,X) for X In {Si,S2,
a,l}. We obtain

;

~1 : GOTO(~o'SI) : { [S 1 ~ S l ' , e] }

The augmenting operation does not enlarge
~i o

: c o t e (% , s 2) : 9

Since S I ~ $2oS2, e is in 9~ the augment-
ing operation will add 9~ to ~2. Con-
tinuing in this fashion, We obtain the
following sets of items for $o

2
~0 = {[Sll -~ °Sl'e]} ~-]910 <-JtO

I

~1 = { [S 1 ~ S l ' ' e] }

~2 = 91
2 ~9~

~3 = 9o

~I 5 = 91e

2
~6 = 92

All these sets of items are consis-
tent (produce no parsing action conflict@,
so that we can obtain a set of LR(1)
tables for G. These are shown in ~igo 12o
Note that Knuth's algorithm would have
produced ten tables for this grammar°

a b e S I S 2 a b

T O

T I

T 2

T 3

T 4

T 5

T 6

S S X

X X A

S S X

S S X

3 3 3

X X i

2 2 2

T I T 2 T 3 T 4

X X X X

X T 5 T 3 T 4

X T 6 T 3 T 4

X X X X

X X X X

X X X X

Fig. Ii LR(1) Tables

Theorem 5: The set of tables con-
struc~ed by K0renjakls algorithm is
equivalent to the set of Knuth tables for
the same grammar.

Proof: The proof is similar to that
for DeR~r's method. One finds a func-
tion f which commutes with GOTO, and maps
tables from Knuth's set to those from
KorenJakls set, preserving the core of
the sets of items underlying the two
tables. Unlike DeRemer's SLR method,
KorenJak's can produce two sets of ite~
with the same cores.

In a sense, KorenJakts method is a
generalization of DeRemerWs. The former
works whenever the latter does, although
DeRemerWs algorithm is simpler to imple-
ment and works on many naturally occurring

-169-

grammars. The following relationship Is
of interest.

Theorem 6: DeRemer's SLR(1) algor-
ithm succeeds In producing LR(1) tables
for G = (N,E,P,S) if and only If
KorenJak's algorithm succeeds when the
splitting set N'~ N (ioeo, all nonter-
minals are made start symbols)° The two
sets of tables produced In this case are
isomorphic under renaming.

We close wlth a comment that neither
KorenJak's nor DeRemer's algorithms
represent maximal use of the principles
embodied In Algorithms 1 - 3. For
example, the grammar

S I ~ S2AS2B

S 2 -~ aC

A-~b

A -9 c

B-so

B-~d

C -~Cf

C-~f

discussed in [2] takes 18 tables by
Knuth's method and 14 by KorenJak's or
DeRemer's. It Is possible, by Algorithms
1 - 3 to construct an equivalent set of
I0 tables°

References

[1] D. Eo Knuth, "On the translation of
languages from left to right," Inf.
Control, Vol. 8, no. 6, 607-639~
1965°

[2] A. J. Korenjak, "A practical method
for constructing LR(k) processors,"
Comm. ACM, vol 12, no. Ii, November
1969, 613-623.

[3] F. DeRemer, Practical Translators
for LR(k) Languages, Project MAt
Report MAc TR-65, October 1969,
Cambridge, Mass.

[4] A and U, The Sensuous Compiler,
Prentice Hall, Englewood Cliffs,
New Jersey, to appear.

-170-

