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Abstract 

We consider methods of modifying L~k) 
parsers [i] while preserving the ability 
of that parsing method to detect errors at 
the earliest possible point on the input° 
Two transformations are developed, and the 
methods of KorenJak [2] and DeRemer [3] 
are expressed in terms of these transfor- 
matlonso The relation between these two 
methods is exposed° Proofs are for the 
most part omitted, but can be found in [~]. 

Io Introduction 

The LR(k) grammars [i] are the 
grammars which can be parsed bottom-up, 
deterministically, by a deterministic 
loushdown automaton which acts in a 
'natural" way, ioeo, by finding substrings 
in right sentential forms which match 
right sides of productions and replacing 
these substrings by left sides. We there- 
fore begin with a definition of a context 
free grammar and LR(k)-nesso 

A context free grammar (CFG) is a 
four-tuple G = (N,E,P,S), where N and E 
are finite disjoint sets of nonterminals 
and terminals, respectively; S, in N, is 
the start symbol, and P is a finite set of 
productions of the form A ~ s, where A is 
in N and s in (N ~Z)*o We assume produc- 
tions are numbered 1,2, o..,p in some order. 

Conventionally, A, B and C denote 
nonterminals, a, b and c denote terminals 
and X, Y and Z are in N ~Zo We use 
u,V, ooo,Z for strings in E* and s,~,°o. 
for strings in (N ~E)*. We use e for the 
empty string. 

If A ~ s is in P, then for all G and 
7 we write ~A 7 -> ~s 7. If 7 is in E*, 
then the replacement is said to be right- 
most, and we write BA 7 => 5S7o T h e ~  
exTicitly shown s is said to be a handle 
of 5s 7 in this event, ~> and ram > deno~ 

the reflexive and transitive closure of => 

and ~m>, respectively. Arrows may be 

subscripted by the name of the gramma~ to 
resolve ambiguities. The language defined 
by G is L(G) = {wlS ~> w}° It is known 

. 
that if S => w, then S *~> ~ That is, 

rm 

every sentence in the language has a 
rightmost derivation. A right sententlal 
form of G is a string s such that 

S ~> s° If S ~m > sAw ~m > sSw, then 7, a 

prefix of sB, is called a viable prefix of 
Go 

We define FIRST~(s) as (wls * => wx and 

either lwl = k or lwl_< k and x = e}. If 
s is in E*, then FIRST~(s) has one member, 

w; which is either s, if Isl is less than 
k, or the first k symbols of s. In this 

case we write FIRST~(s) = w instead of {w}. 

Note that FIRST~(~) is independent of G in 

this case. We delete G and k from FIRST 
when no ambiguity arises. 

CFG O = (N,E,P,S) is said to be LR(k) 
if given the two rightmost derivations 

(I) S ~m > sAw ==> sew, and 
rm 

(e) s ~m > 7Bx ~> s~y, 

and PlRSTk(W) = FIRSTk(Y), then we may 

conclude that 7Bx = sAy° 

Informally, G is LR(k) if the unique 
handle of a right sentential form can be 
determined by examining that string up to 
k symbols beyond the right end of the 
handle. 

A consequence of the LR(k) definition 
is that for each LR(k) grammar G = (N,E, 
P,S), a finite set of tables~can be con- 
structed. A table is a p ~  of functions 
(f,g), where: 

This work was partially supported by NSF 
grant GJ-465 o 

ttls I stands for the length of s. 
§A set of tables is called a "table" in [I]. 

-159- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800157.805048&domain=pdf&date_stamp=1971-05-03


(1) f, the parsing action function, maps 
lookahead strings, ice°, strings in 
E* of length at most k, to the 
actions shift, error, accept, and 
reduce i, where i is the number of a 
production: 

(2) g, the goto function, maps N ~Z to 
the set--F-tables and the word error. 

The tables are used to parse input 
strings bottom up as follows. A pushdown 
list holds a string of alternating grammar 
symbols and table names, say ToXiTi... 
XmTm, where the T1s are tables and the X's 
are symbols in N ~Eo If w is the unex- 
pended suffix of the original input string 
then Xl..oXmW will always be a right sen- 
tential form if error has not been 
reported. 

Let us suppose we observe the parser 
at a time when either m = O, ice., at the 
beginning, or after it has Just performed 
a reduction, i.e., when X m is a nonter- 
mlnalo Let T m = (f,g) o We find 
u = FIRSTk(W ) and apply function f to u. 
If that action is shift, the first symbol 
of u, say a, is shifted onto the pushdown 
list, and then the table g(a) is shifted 
on top of a. The pushdown list thus 
becomes ToXiT I XmTmaT_~ , where 

• ° ° l l i T ~  

Tm+ 1 = g ( a ) o  I n  t h e  s a m e  m a n n e r ,  we s h i f t  
additional symbols from input to pushdown 
list, as long as the action of the current 
table on top of the pushdown list applied 
to the first k remaining input symbols is 
shift° The actions error and accept have 
the obvious meaning. 

Eventually, if we are dealing with a 
right sentential form, we will enter a 
configuration with ToXiTioooXrT r on the 
pushdown list and lookahead string x such 
that the action of T r on x is reduce io 
At that time, the right side of production 
i will be a suffix of the grammar symbols 
on the pushdown list, that is, XnXn+io..X r 
for some no These symbols and the inter- 
vening tables are removed from the push- 
down list, leaving Tn_ I on top. Let 
Tn_l = (fl,gt), let production i have A on 
the left, and let g'(A) = T. Then the 
symbols A and T are placed on the pushdown 
list, leaving ToXiTio..Xn_iTn_iATo 

We are now "back where we started," 
with a nonterminal as the top grammar sym- 
bOlo The process repeats, until either an 
error or accept action is called for° 

The LR(k) tables are constructed from 
a CFG G = (N,E,P,S) by first generating 
what we call sets of items t. An LR(k) 
item for G is a pair [A ~ ~o~,u], w~e 

¢ Partial states in [I]o 

A ~6 is a production and u is in E*, 
with lu] < ko Item [A ~ ~.G,U] is said 
to be valrd for T, a viable preflx of G, 
if there exists a derivation 
S ==> SAw =~> 5aGw, where 7 = 5~, and 

rm rm 

u = FIRSTk(W). 

The key to constructing LR(k) tables 
for an LR(k) grammar G is to first con- 
struct the sets of valid items for the 
viable prefixes of G. The number of such 
sets of items is clearly finite. 

Let G = (N,E,P,S) be a CFG. We define 
Gr ~ EFF~), where G k are EFF_ =j, or and 

understood,K as lw|a * ~m > wx, where lwl = k 

or lwl < k and x = e, and the last step in 
the derivation ~ ~> wx, if it exists, 

does not replace the leftmost symbol of 
the string by e}.t 

Let a be a set of items. The closure 
of a is defined to be the least set-~ 7, 
satisfying: 

(1) a C a ' ;  

(2) If [A ~G.B~,u] is in a', then 
[B ~ .7,v] is in a', for all B ~ 7 
in P and v in FIRST(6U) o 

Let a be a set of items. Then the 
function GOT0(a,X), is defined as follows. 
Let a' be the set of items [B ~ ~X.8,u] 
such that [B ~ ~.XS,u] is in a. That is, 
find all X's to the right of the dot and 
shift it over. Then GOTO(a,X) is the 
closure of a,. 

Lemma I: (From [I]) If a is the set 
of items valid for ~, then GOT0(a,x) is 
the set of items valid for eX. 

The set S of the sets of valid items 
for an LR(k) grammar G - (N,E,P,S) can be 
computed as follows. 

(I) Let a 0 be constructed by taking the 
closure of the single item 
IS' ~ oS,e], where S' is a new symbol° 

(2) Begin with $ = {GO}. Repeatedly do 
step (3)° 

(3) I f  a is in $, add GOTO(a,X) to $ for 
all X in N usE, if GOTO(a,X) is non- 
empty° 

Example I: Consider the LR(1) 
grammer with productions: 

(i) S -~ AS 

(e) s * b 

t EFF stands for e-free first• 
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(3) A ~ Aa 

(4) A ~ b 

The six sets of items for G are 
listed below. Brackets are removed and 
the notation A ~ .Aa, a/b is short for the 
two Items A ~ .Aa, a and A ~ oAa, b, etc. 

S' ~ °S,e 
S ~ .AS,e 

a 0 S ~ ob, e 
A ~ oAa,a/b 
A ~ .b,a/b 

a I s, ~ s.,e 

a 2 

S -~ A.S,e 
A -~ A oa, a/b 
S ~ .AS,e 
S -~ .b,e 
A -~ .Aa,a/b 
A ~ .b,a/b 

S ~ b.,e 
a3 A ~ b.,a/b 

a 4 s -~ AS.,e 

g5 A -~ Aa.,a/b 

known [I] that the sets of items for an 
LR(k) grammar satisfy this property.) 
The table (f,g) constructed from a is 
defined as follows. 

(I) If [A ~ ~.,u] is in G, and A ~ is 
not S' ~ S, then f(u) - reduce i. 

(2) If [A ~-8,u] is in a, ~ ~ e, then 
f(v) shift for all v in EFF(Su). 

(3) If IS' ~ S.,e] is in a, then 
f(e) = accept. 

(4) f(y) = error otherwise. 

(5) g(X) is the name of the table con- 
structed from GOTO(a,X) wherever 
GOTO(a,X) is not empty. 

(6) g(X) = error if GOTO(a,X) is empty. 

We will refer to the set of tables 
constructed by this process for an LR(k) 
grammar as the"Knuth tables." 

Example 2: We display the Knuth 
tables for Example I in Fig. 2. Tables 
throughout this paper are shown as rows, 
with columns for the arguments of f and g° 
The following code is used: 

X = error 
A = accept 
S = shift 
i = reduce i 

To see that these are all the sets 
generated by the above algorithm, we llst 
the GOT0 function. 

A 

a 0 

a I 

a 2 

a 3 

a 4 

a 5 

S a b 

a 2 a I - a 3 

a~ a 4 a 5 a 3 

Fig. i OOTO(a,X) 

Note that the set of valid items for 
a strlng~whlch is not a viable prefix is 
empty. U 

The following algorithm constructs a 
table from a set of items. Let a be a set 
of items such that if [A * ~.,u] and 
[B * O-7,v] are in G, then u is not in 
EFF(Tv). Note that 7 may be e. (It is 

f g 

a b e A S a b 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

S S X 

X X A 

S S X 

4 4 2 

X X i 

3 3 X 

T 2 T I X T 3 

X X X X 

T 2 T 4 T 5 T 3 

X X X X 

X X X X 

X X X X 

Fig. 2 Knuth Tables 

Iio The General Notion of a Set of 
LR(k) Tables 

The amount of computation required to 
produce a set of LR(k) tables and the num- 
ber of tables produced using the methods 
above can be quite large for practical 
grammars. Recently, several methods [2,3] 
have been advanced for generation and 
alteration of a set of LR(k) tables. In 
order to study these methods, we define 
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an abstract notion of a set of tables, 
define certain operations on them and 
show how the transformations of [2,3] can 
be expressed in terms of these operations. 

One preliminary observation is 
necessary° It is possible that certain 
entries in an LR(k) table will never be 
"exercised," that is, they could be re- 
placed with no effect on the parser's 
operation. We will therefore allow a new 
action ~, or "don't care" in the range of 
both f and g. 

With this in mind, we define a set 
of LR(k) tables for a grammar G = (N,E,P, 
S) to be a set of pairs of functions 
T = (f,g), such that 

(1) f maps strings u in E*, where 
lul < k, to the actions shift, 
accept, error, ~, and reduce i, where 
i is the number of some production of 
G; 

(2) g maps N ~E to {error,g} and the 
names of the tables in the set. 

One table is designated to be the 
initial table. 

Note that there is no provision, yet, 
that the set of tables should form a 
parser for Go The action of the parser 
constructed from a s~of LR(~ tabT~J-for 
grammar G = (N,E,P,S) is defined as fol- 
lows. A configuration of the parser is a 
pair (ToXiTio.oXmTm,W), where T O is the 

initial table, T0,Ti,ooo,T_ are in ~, 
Xi, ,X_ are in N ~E, ann w is in E* °°° HL ° 

Let T m = (f,g), and let u - FIRSTk(W ). 

(i) If f(u) = shift, and g(a) = T, where 
w = aw', then we write 
(TQXiTio.oXmTm ,w) F (ToXITi.ooXmTmaT, 
Wt). 

(2) If f(u) = reduce i, production i is 
A ~, ~ is X~Xr+i.o.Xm, and 
Tr_ I = (f',g'), then (ToXiTi.ooXmTm, 

w) ~ (ToXiTIoooXr_iTr_iAT,w), where 

is g'(A)o 

(3) If f(~) is error, accept or ~, or if 
f(x) reduce i, and ~ ~ Xr.ooXm, 
then there is no configuration C such 
that (ToXITio.°XmTm,W) ~ Co If 

)e accept, m = I, X 1 = S and 
f(~ ? then the configuration (ToSTi, W 

e) is said to be an acceptlng con- 
figuration° 

An initial configuration is one of 
the form (To,W)o Let ~ be the reflexive 
and transitive closure o~ ~. A configura- 
tion C such that (T0,w) ~ C for some w is 

said to be accessible. The set ~ is said 
to be a pars@r for G if for each w in 
L(G), (Tn,w) ~ (ToST,e) for some To It is 
straightforward That the LR(k) tables 
constructed for an LR(k) grammar as in 
Section I form a parser for G. However 
there may be others. 

It is possible that given an LR(k) 
~rammar G, we would llke to find the 
smallest" parser for Go However, there 

is an important feature of LR(k) parsers 
which we would like to enforce. As soon 
as the LR(k) parser of Section I reaches 
a point where no possible continuation of 
the input could yield a right sentential 
form, the parser announces an error° The 
modifications of [2,3] preserve this 
property, although each allows the modi- 
fied parser to perform some reductions 
when the original parser signals error. 
The modified parser does not, however, 
allow a shift after the original has 
declared an error. Thus, the modifica- 
tions of [2,3] do not diminish the good 
error detection and recovery features 
inherent in Knuth's original parsing 
algorithm (ioeo, the parser of Section I)o 
We will make a definition of equivalent 
tables which reflects this desire to pre- 
serve rapid error detection° 

Let ~ and ~ be two sets of LR(k) 
tables for grammar O = (N,E,P,S), with 
initial tables T O and RO, respectively. 
Let C O ~ C 1 ~ ..o ~ C m and D O ~ D 1 ~ . . 

D n be sequences of configurations of 
the parsers constructed from ~ and ~, 
respectively, such that: 

C O = (To,w) and D O = (Ro,w) for some 
w in E*o 

(1) 

(2) m = n or m < n and there is no con- 
figuration C such that C_ ~ C or 
n < m and there is no co~flguration 
D such that D n ~ D. 

Let C m = (ToXiTioooXrTr,X) and 

D n = (HoYiHioooYsRs,Y) o We say J and 

are equivalent if for arbitrary sequences 
as above: 

(1) if m = n, then Xio..X_ = Y~ .Ys, 
x = y, and C m is an accepting con- 
figuration if and only if D n is an 
accepting configuration. 

(2) if m ~ n, then x = y. 

Informally, the consequence of the 
above Is that if one parser produces the 
action error or ~, the other may not shift 
any more input symbols onto the pushdown 
list but may reduce before ultimately 
reporting error° 
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a b e A S a b Our first objective is to determine 
when the action ~ can be truly considered 
a "don~t care," that is, an action which 
gets exercised. We say a set of tables 7 
is ~_~if for each accessible config- 
ura~lon ~ToXiTi..oXmTm,w), if T m = (f,g) 

and u = FIRST(w), then: 

(I) f(u) # ~, and 

(2) if f(u) = shift and the first symbol 
of W is a, then g(a) ~ ~, and 

(3) if f(u) = reduce i, production i is 
A ~Xroo.X m and Tr_ I = (f',g'), then 
g,(A) 

The following algorithm replaces an 
error action by ~ whenever possible in the 
tables constructed by Knuthls method° 

Algorithm i: Introduction of 
actions. 

Input: The set of Knuth tables for 
grammarS= (N,~,P,S) o 

Output: An equivalent set of tables 
with error entries replaced by ~, wherever 
possible. 

Method: 

(1) Let T ~ (f,g) be in ~. Replace 
g(X) = error by g(X) = ~ for each X. 

For all u, replace f(u) = error by 
f(u) = $ unless T is the initial 
table, or there is a table 
T' = (f',g') in 7, a in Z and v in 
Z* such that 

(i) f'(av) = shift, 

(ii) g'(a) = T, and 

(iii) u is v if I vl < k - ~ and u 
i s  vb f o r  some b i n  Z ~.*{e} i f  
I v l  = k - 1 .  LJ 

Example 3: Note that if k ~ I, then 
v = e in rule (2) of Algorithm i. Thus, 
the condition under which error is not 
replaced by ~ reduces to T not being g'(a) 
for any a and any table (f,,g,). 

Then, the tables of Example 2 become, 
by Algorithm 1 those shown in Fig. 3. 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

S S X 

$ A 

S S 

4 4 2 

$ i 

3 3 x 

T 2 T I $ T 3 

T 2 T 4 T 5 T 3 

Fig. 3 LR(1) Tables 

The only error entries remaining are 
in TO, because it is the initial table, 
and in T 5, because it appears under a in 
the goto portion of T 2. 

Theorem I: The set of tables con- 
structed by Algorithm i is ~-free and 
equivalent to the original set. 

III. Modification of Table Sets 

If a set of tables is ~-free, and two 
tables have entries which disagree only 
where one is ~, then the two tables can 
clearly be identified° A generalization 
of this idea is the following. 

A partition H on a set of LR(k) 
tables ~ is said to be compatible if 
whenever T I = (fl,gl) anh T2"=" (f2,g2) 
are in the same block of H, then 

(1) fllu) f2(u) or q(u) : or 
f2(u) ~ ~, for eacn u; 

(2) gl(X) and g2(X) are in the same 
b l o c k  ~ f  H, or gl(X) - $ or 
g2(X) ~ for each X. 

We can merge all tables in a block 
of a compatible partition by the following 
algorithm. 

Algorithm 2: Merger of compatible 
tables. 

Input: A set 7 of ~-free LR(k) 
tables a ~  a compatible partition H on 7. 

Output: A set of LR(k) tables 7' 
equiva~to 7. 

Method: 7' consists of one table for 
each ~o~--of H. The block containing the 
initial table of 7 yields the initial 
table of 7'. Let {(fl,gl) ..... (f~,gr)} 
be a block of ~. Then the table ~f,g) 
constructed from this block has 
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a b e A S a b (i) f(u) = fi(u)If fi(u) ~ ~; 

(ii) g(X) is the table constructed from R 0 
the b l o c k  of gi(X) if gi(X) # ~o 

R I 
The definition of compatible parti- 

tion ensures that this construction is R 3 
consistent. [] 

R 4 
Example 4: Let us consider the 

grammar with productions R5 

(1) S ~ AA R6 

(2) R8 

(3) Rl l  

A ~a 

A * bS 

The ~-free set of tables constructed 
by Knuth's algorithm and Algorithm 1 is: 

a b e A S a b 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

T 6 

T 7 

T 8 

T 9 

Ti 0 

Tii 

S S X 

~ A 

S S 

2 2 X 

S S X 

~ I 

X X 2 

S S X 

3 3 

S S 

~ 3 

I I 

T 2 T 1 T 3 T 4 

T 5 ~ T 6 T 7 

T 9 T 8 T 3 T 4 

T 5 TiO T 3 T 4 

Tii ~ T 3 T 4 

Fig° 4 s-Free Tables 

Let H be the partition with blocks 
{To}, {T1,T2}, {T4"TT}' {Ts'Tg}' 
{T6} ,  {T8 ,T to } ,  and { T l l  } .  I f  we denote 
the table for block {Ti} by R i and the 

table for block {TI,Tj} by Ri, if i < j, 

then the result of Algorithm 2 is shown 
in Fig° 5° 

S S X 

S S A 

2 2 X 

S S X 

S S i 

X X 2 

3 3 3 

I I 

R 1 R 1 R 3 R 4 

R 5 • R 6 R 4 

R 5 R 8 R 3 R 4 

RiI • R 3 R 4 

Fig° 5 Tables after Compatible Mergers 

Theorem 2: The set of table result- 
ing from Algorithm 2 is ~-free and 
equivalent to the input set of tables. 

The second idea for alteration of 
tables is to postpone certain error 
checks. If we have table (f,g), and 
f(u) = error, we could change f(u) to 
reduce i, if we were sure that: 

(1) The right side of production i 
appears on top of the pushdown list, 
and 

(2) the error would be caught by any 
table which could appear on top of 
the pushdown list immediately after 
the reduction° 

In fact (2) is slightly too strong. 
We would llke to know that if (f',g') 
could next appear on top of the pushdown 
list, then f'(u) = error. However, we 
could simultaneously change f'(u) to a 
reduce action, and equivalence would be 
preserved° 

A few definitions are useful. First 
we extend the GOTO function to tables and 
strings of grammar symbols as follows. 

If T = (f,g) is an LR(k) table, and 
g(X) = T', then we say GOT0(T,X) = T'. 
We define GOTO(T,~), where ~ is a string 
recursively as follows. 

(I) GOTO(T,e) = T 

(2) GOTO(T,~X) = GOTO(GOTO(T,e),X). 

Let i be production A ~ ~ and let T 
be a table. We define the function NEXT, 
by NEXT(T,I) = {Ttlthere exists table T" 
such that GOT0(T",~) = T and GOT0(T",A) 
= T'}o Thus, NEXT(T,I) gives the set of 
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tables that could appear on top of the 
pushdown list after T calls for a reduce 
i action. 

The ~-free set of tables obtained 
using Algorithm I from the Knuth tables 
for G is shown in Fig. 6. 

Let ~ be a set of tables. A post- 
ponement set for ~ is a set $ of trmp~s 
(T,u,i), where T is in ~, u is a terminal 
string and i is a production number, with 
the following conditions. 

(I) If T = (f,g), then f(u) is error or 

(2) If production i is A ~ ~, and T 
GOTO(T~,~), then ~ is a suffix of 
or conversely° If T ~ is the inltlal 
table, then a must be a suffix of ~. 
(This assures that a reduction of 
production i will only be called for 
if ~ appears on top of the pushdown 
llst.) 

(3) If T' is in NEXT(T.i), and T ~ = 
(f~,g), then f~(u I is error or ~. 
(This assures that errors will be 
caught before a shift, even if 
(T',u,J) is also in $ for some J.) 

Algorithm 3: Postponement of error 
checking. 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

T 6 

T 7 

T 8 

T 9 

a b e S A B a b 

S S X T I T 2 

S S ~ T 5 T 2 

X X 2 

S S X 

3 3 ~ 

S S X 

5 5 X m 

4 4 m 

T 4 T 3 

T 4 T 3 

T 6 T 4 T 8 

T 9 T 7 T 8 

Fig° 6 s-Free Tables for G 

Input: A ~-free set of tables ~ and 
a postponement set S for 7o 

Output: A set of tables ~P equival- 
ent toT. 

Call the resulting set of tables Sw. 

Example 5: Let us consider the 
grammar 

(i) S ~AS 

(2) s ~ b 

(3) A ~ aB 

(4) B ~aB 

Method: 

(I) For each (T,u,i) in ~ where 
T = (f,g), set f(u) o reduce i. 

(2) If (T,u,i) is in S, and NEXT(T,I) 
contains T ~ = (f~,g~), set f~(u) = 
error if it was originally ~ and was 
not changed in step (I). 

(3) Let (T,u,i) be in 5, and let produc- 
tion i be A ~Go For all T t = (fr,gt) 
such that GOTO(TI,a) ~ T and 
gt(A) = ~, set gliA ) ~ error. 

[] 

(5) B * b 

We can choose to replace the error 
entries in Tq with reduce 5, and the error 
entry of T 8 ~y reduce 2. That is, we 

• ick a postponement set {(T3,a,5 ), 
T3,b,5),(T8,e,2)~. Production 5 is 

B ~ b, and GOTO(To,b ) = GOTO(T2,b ) ~ T 3. 

Thus, the entries under B in T O and T 2 
must be changed from ~ to error. Similar- 
ly, the entries under S for T 4 and T 7 are 
changed to error. The resulting set-of 
tables is: 

a b e S A B a b 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

T 6 

T 7 

T 8 

T 9 

S S X 

~ A 

S S 

5 5 2 

S S X 

~ i 

3 3 

S S X 

5 5 2 

4 4 

T I T 2 

T 5 T 2 

X 

X 

x T 4 T 3 

X T 4 T 3 

T 6 T 4 T 8 

T 9 T 7 T 8 

Fig. 7 Tables After POstponement 
of Error Checking. 
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If we wished, we could now apply 
Algorithm 2 with a compatible partition 
grouping T 3 with T8, T I with T 2 and T 5 
with T 6. (Other combinations of three 
pairs are also possible.) The resulting 
set of tables is given in Fig. 8o 

a b e S A B a b 

T O 

T I 

T 3 

T 4 

T 5 

T 7 

T 9 

S S X 

S S A 

5 5 2 

S S X 

3 3 1 

S S X 

4 4 

T I T I X 

T 5 T I X 

X 

X 

T 4 T 3 

T 4 T 3 

T 5 T 4 T 3 

T 9 T 7 T 3 

Fig 8 Merged Tables 

Theorem 3: Algorithm 3 produces a 
set of tables ~' which is equivalent to 7. 

IVo DeRemer's Methods 

In [3], two subclasses of LR(k) 
grammars, called SLR(k) and LALR(k), for 
simple LR(k) and lookahead LR(k), respec- 
t ,  are defined. In each case, an 
algorithm which produces sets of LR(k) 
tables for the grammar of that class are 
given. The number of tables generated was 
considerably smaller than the number of 
Knuth tables° It turns out that the rela- 
tion of the sets of tables constructed by 
[I] and [3] can be expressed simply. An 
application of Algorithm I (introduction 
of ~'s), followed by Algorithm 3 (post- 
ponement) followed by Algorithm 2 
(compatibility) to the Knuth tables yields 
those generated by DeRemer (with certain 
error entries made ~)o 

We will discuss only the SLR(k) 
method. The LALR(k) method is more 
general, and can be characterized simi- 
larly. For simplicity, from here on, we 
restrict ourselves to the case k z Io The 
SLR(1) method can be described as follows° 

(I) Construct the set of LR(O) items for 
the LR(1) grammar G = (N,E,P,S). 

(2) Replace every item of the form 
[A ~ Go,e] in set a~ by [A ~G.,a] 
for all a in FOLLOWG(a), where 
FOLLOWG(A) - {afthere exists a right 
sentential form sAw such that 

a - FIRST (w)}. 

(3) Construct tables from the altered 
sets of items as in [I]. If the 
table construction is successful 
(It is possible that even though G 
is LR(1), certain action conflicts 
occur in these sets of items), the 
set of tables created forms an 
LR(k) parser for G equivalent to 
the set generated by [1]° If the 
method is successful, the grammar G 
is SLR(1). (Thus, DeRemer's 
algorithm forms a definition of SLR 
grammarso ) 

Theorem 4: The set of tables con- 
structed for SLR(k) grammars by DeRemerWs 
method is equivalent to the Knuth set of 
tables° 

Proof: We will sketch a proof here. 
First, we observe that the sets of LR(1) 
items constructed for G by Knuth's algor- 
ithm may have two or more sets with 
common cores° (The core of a set of items 
is the set of first components, i.eo, the 
core of [A ~ ~o~,U] is A ~ ~.B.) Since 
the second component of an LR(0) item is 
always e, all distinct sets of LR(0 ) 
items have distinct cores° Moreover, the 
set of cores which appear when the sets 
of LR(1) items are constructed for G is 
the same as the set of cores of the sets 
of LR(O) items for G. 

Thus, there is a function f which 
maps tables constructed by Knuth's 
algorithm to those constructed by 
DeRemer's, such that f(T) = T' if and 
only if T is constructed from a set of 
LR(1) items having the same core as the 
set of LR(0) items from which T' was con- 
structed. It is easy to show that f 
commutes with GOTO. That is, 
GOTO(f(T,X)) = f(GOTO(T,X)). 

Moreover, if f(T) ~ T', the only dif- 
ference in the tables T and T' is that T r 
may call for reductions when T announces 
error. This is because T may be con- 
structed from a set of items with 
[A ~o,a] but not [A ~ ~o,b]. If b is in 
FOLLOW(A), then T' will be constructed 
from a set with both. 

However, T may be altered to have the 
same actions as T' by using Algorithm 3 
with the postponement set which consists 
of all (T,a,i) such that the action of T 
on a is error, but the action of f(T) on 
a is reduce i. Then, Algorithm 2 merges 
all those tables T I and T2 such that 
f(T1) - f(T2)o [] 

Example 6: Let us consider the 
grammar with productions 
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(i) S ~ AA 

(2) A ~ aA 

(3) A ~ b 

FOLLOW(S) = {e} and FOLLOW(A) ~ {a,b}o 

We list the LR(1) sets of items 
(brackets deleted), followed by the set 
of tables generated therefrom° 

S t ~ .S,e 

S -~ .AA,e 
(30 A -+ .aA,a/b 

A -~ °b,a/b 

(31 St -~ S.,e 

S -~ A.A,e 
(32 A ~ .aA,e 

A -~ ob,e 

A -~ a.A,a/b 
(33 A -~ .aA,a/b 

A -~ .b,a/b 

(34 A -~ b., a/b 

C~ 5 S "* AA., e 

A ~ a.A,e 
(36 A -~ .aA,e 

A ~ ob,e 

(37 A -+ bo,e 

(38 A -+ aA~,a/b 

(39 A ~ aA., e 

The LR(O) items, with ",e" deleted are: 
S t -~ .S 

S -* oAA 
U~O A -+ . aA 

A -~.b 

a2 

S t ~ So 

S -+A.A 
A -+ .aA 
A ~ob 

A -~a.A 
~3 A ~ .aA 

A -*ob 

~4 A -,b. 

~5 S -* AA. 

~6 A -, aA. 

The LR(1) tables constructed from 
these items by DeRemer's method are shown 
in Fig. lO. 

a b e S A a b 

R o 

R I 

R 2 

R3 

R 4 

R 5 

R 6 

S S X 

X X A 

S S X 

S S X 

3 3 3 

X X I 

2 2 2 

R I R 2 R 3 R 4 

X X X X 

X R 5 R 3 R 4 

X R 6 R 3 R~ 

X X X X 

X X X X 

X X X X 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

T 6 

T 7 

T 8 

T 9 

b e A S a b 

S S X 

~ A 

S S 

S S X 

3 3 X 

~ 1 

S S X 

X X 3 

2 2 

T 2 T I T 3 T 4 

T 5 ~ T 6 T 7 

T 8 ~ T 3 T 4 

T 9 • T 6 T 7 

Fig. 9 LR(1) Tables 

Fig° I0 DeRemer Tables 

The function f, which maps TO,...,T 9 
to RO,...,R 6 on the basis of the cores oH 
the sets of items from which the tables 
were generated, is shown in Fig. ll 

T 

T o 

T I 

T 2 

T B 

T 4 

T 5 

T 6 

T 7 

T 8 

T 9 
Fig. II 

f(T) 

R o 

R I 

R 2 

R 3 

R 4 

R 5 

R 3 

R4 

R 6 

R6 

Function f 
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We can apply Algorithm 3 to the T's, 
with a postponement set consisting of 
(T4,e,3), (TF, a,3), (TT,b,3), (T8,e,2), 

(Tg,a,2) and (T9,b,2). It is then 
possible to merge {Tq,T6} , {T4,TT} and 
{T8,Tg}, to obtain t~bles which Are a 
renamlng of the R1s. 

V. KorenJakts Method 

A simple modification of the method 
of [2] can also be characterized by the 
operations of merger and postponement. 
Korenjakls algorithm is, essentially, the 
following. 

(I) Given LR(1) grammar G - (N,Z~P,S), 
select a splitting set N' = ISl,o.o, 
Sm} ~N of nonterminals, including 

the start symbol, and form grammar 
G' = (N,Z ~E',P',S I) by replacing 
symbols in N' on the right side of 
all productions by corresponding new 
terminal symbols in Z' = {s I, .... Sm}. 
N', the set so selected may determine 
whether the algorithm is successful 
in producing a set of LR(1) tables° 
Form component grammars Gi, 1 < i < 
from G', by choosing S i as the--start 
symbol and deleting useless symbols 
and productionsoT 

(2) For each component grammar G i con- 
struct the sets of items 

s u c h  t h a t  

Is the closure (with respect to Gi) 
of {[S i ~ o~,a]IS i ~ e is a produc- 

tion in G i and a is in FOLLOWG(si)}. 
However, when taking the closure of 
an item with respect to G i we will 
still use FIRST G rather than FIRST Gi. 
For examplez if we have added 
[A ~ ~.B~,uJ to ~ and B is not in N', 
we will also add [B ~ oF,V] to 
where B ~ v is in G' and v is in 
FIRSTG(B'u) where ~' is ~ with all 
ShtS replaced by ShlS. In this way 
all lookahead strings will be in E*o 
Each ~ in ~i is the closure 

of GOTO(~,X) ~ for some ~ in $I and X 

in (N ~E' ~JE). 

(3) In the first component of all items 
replace s i in Z' on the right side of 
a production by S i (the original sym- 
bol)o Retain the original name for 
each set of items° 

T In [2], Si was not replaced by s i in the 
productions of its own grammar. We choose 
this related approach for its symmetry. 

(4) Let ~0 = {Is{ ~ .Sl,e]} ~ 0 "  
Apply the following augmenting 
operation to ~0 and call the result- 
ing set of items ~. This ~0 will 
be the initial set-of items for Go 

Augmenting operation: If a set of 
items ~ contains item [A ~ ~.BB,a] and 

B ~> SjT for some Sj in N', T in (N ~E)*, 

then add ~ to ~o Repeat this process 
until no new sets of items can be so 
added to ~. 

(5) Now construct 8, the set of items 
for G accessible from ~n as follows. 
Initially, let ~ ~ {~0}7 Then per- 
form step (6) until no new sets of 
items can be added to 5. 

(6) Let ~ be in 5. ~ can be expressed 
W ~0 • ~Jl ~J2 , ~Jr 

as ~ = ~ ~il ~12 ~ ... ~Ir 
where ~0 is either the empty set or 

{[S 1 ~ .Sl,e] } or {[S I ~ Slo,e] }. 

For each X in N ~Z, let ~ = 

GOTO(~0~) and ~n ~ GOT0(~ n, X). Let 
n ~ n Jn 

~' be the union of ~ and these ~hnLS. 

That,, let ~' ~ GOTO(~,X). Then apply 
the augmenting operation to ~' and call 
the resulting set of items ~'. Add ~' to 
$ if it is not already in 5. For the 
given ~, repeat this process for each X 
in N ~ E. 

(7) When no new set of items can be added 
to 5, construct, if possible, LR(1) 
tables from ~ using Knuth's method. 
If not possible because of parsing 
action conflicts, report failure. [] 

Example 7: Let us consider the 
grammar G with productions 

(I) S 1 ~ S2S 2 

( 2 )  S 2 ~ aS 2 

(3) S2 ~ b 

L e t  N '  = { S 1 , $ 2 } .  Then  G 1 c o n s i s t s  
o n l y  o f  t h e  p r o d u c t i o n  

( 2 )  S 1 ~ s2s2  

and G 2 consists of the two productions 

( 2 )  S 2 ~ as 2 

(3) $2 ~ b .  

The s e t s  o f  i t e m s  f o r  G 1 a r e  
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9~: S I ~ oS2S2, e 

9~: S I ~ s2.s2, e 

1 
92: S I ~ s2s2., e 

Those for G 2 are 

2 
9o: 

2 
91: 

2 93: 

S 2 -~ .as2, a/b/e 

S 2 -+ .b, a/b/e 

S 2 -~ aoS2, a/b/e 

S 2 -~ as 2., a/b/e 

S 2 -~ b., a/b/e 

Note that FOLLOWG(s2 ) = {a,b,e}o 
To compute ~0 we begin with the set 

of items 

I 

S I ~ .SI, e 

S I ~ .$2S2, e 

Since S 2 S 2 and S 2 is in N' we add to 

S 2 ~ oaS 2, a/b/e 

S 2 ~ .b, a/b/e 

Thus ~0 = {[S~ ~ oSl,e] } ~9~ ~9~o Let 

US now compute GOTO(~o,X ) for X In {Si,S2, 
a,l}. We obtain 

; 

~1 : GOTO(~o'SI) : { [ S 1  ~ S l ' , e ] }  

The augmenting operation does not enlarge 
~i o 

: c o t e  ( % ,  s 2)  : 9 

Since S I ~ $2oS2, e is in 9~ the augment- 
ing operation will add 9~ to ~2. Con- 
tinuing in this fashion, We obtain the 
following sets of items for $o 

2 
~0 = {[Sll -~ °Sl'e]} ~-]910 <-JtO 

I 

~1 = { [ S 1  ~ S l ' ' e ] }  

~2 = 91 
2 ~9~ 

~3 = 9o 

~I 5 = 91e 

2 
~6 = 92 

All these sets of items are consis- 
tent (produce no parsing action conflict@, 
so that we can obtain a set of LR(1) 
tables for G. These are shown in ~igo 12o 
Note that Knuth's algorithm would have 
produced ten tables for this grammar° 

a b e S I S 2 a b 

T O 

T I 

T 2 

T 3 

T 4 

T 5 

T 6 

S S X 

X X A 

S S X 

S S X 

3 3 3 

X X i 

2 2 2 

T I T 2 T 3 T 4 

X X X X 

X T 5 T 3 T 4 

X T 6 T 3 T 4 

X X X X 

X X X X 

X X X X 

Fig. Ii LR(1) Tables 

Theorem 5: The set of tables con- 
struc~ed by K0renjakls algorithm is 
equivalent to the set of Knuth tables for 
the same grammar. 

Proof: The proof is similar to that 
for DeR~r's method. One finds a func- 
tion f which commutes with GOTO, and maps 
tables from Knuth's set to those from 
KorenJakls set, preserving the core of 
the sets of items underlying the two 
tables. Unlike DeRemer's SLR method, 
KorenJak's can produce two sets of ite~ 
with the same cores. 

In a sense, KorenJakts method is a 
generalization of DeRemerWs. The former 
works whenever the latter does, although 
DeRemerWs algorithm is simpler to imple- 
ment and works on many naturally occurring 
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grammars. The following relationship Is 
of interest. 

Theorem 6: DeRemer's SLR(1) algor- 
ithm succeeds In producing LR(1) tables 
for G = (N,E,P,S) if and only If 
KorenJak's algorithm succeeds when the 
splitting set N'~ N (ioeo, all nonter- 
minals are made start symbols)° The two 
sets of tables produced In this case are 
isomorphic under renaming. 

We close wlth a comment that neither 
KorenJak's nor DeRemer's algorithms 
represent maximal use of the principles 
embodied In Algorithms 1 - 3. For 
example, the grammar 

S I ~ S2AS2B 

S 2 -~ aC 

A-~b 

A -9 c 

B-so 

B-~d 

C -~Cf 

C-~f 

discussed in [2] takes 18 tables by 
Knuth's method and 14 by KorenJak's or 
DeRemer's. It Is possible, by Algorithms 
1 - 3 to construct an equivalent set of 
I0 tables° 
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