Check for
Updates

THE CARE AND FEEDING OF LR(k) GRAMMARS?

Alfred V. Aho
Bell Telephone Laboratories, Incorporated
Murray H11ll, New Jersey

and

Jeffrey D, Ullman
Princeton University
Princeton, New Jersey

Abstract

We consilder methods of modifying LR(k)
parsers [1] whlle preserving the ability
of that parsing method to detect errors at
the earliest possible point on the input,
Two transformations are developzd, and the
methods of Korenjak [2] and DeRemer [3]
are expressed 1ln terms of these transfor-
matlons., The relation between these two
methods 1s exposed. Proofs are for the
most part omitted, but can be found in [4]

I, Introduction

The LR(k) grammars [1] are the
grammars which can be parsed bottom-up,
deterministlically, by a deterministic
Pushdown automaton which acts in a
'natural" way, i.e., by finding substrings
in right sentential forms which match
right sides of productions and replacing
these substrings by left sides, We there-
fore begln wilth a definitlon of a context
free grammar and LR(k)-ness,

A context free grammar (CFG) i1s a
four-tuple G = (N,5,P,S), where N and 3
are finite disjoint sets of nonterminals
and terminals, respectively; 3, In N, is
the start symbol, and P is a finlte set of
productions of the form A - o, where A is
In N and @ in (N w3z)*, We assume produc-
tions are numbered 1,2,...,p in some order.

Conventionally, A, B and C denote
nonterminals, a, b and ¢ denote terminals
and X, Y and 2 are in N v 3. We use
U,V,000,2 fOr strings in ¥ and a,B8,...
for strings in (N wx)*, We use e for the
empty string.

If A 2o 1s In P, then for all B and
vy we write BAy => Bay, If y 1is in ¥,
then the replacement 1s sald to be right-
most, and we write BAy => Bay, The
explicitly shown a 1s sald to be a handle
of Bay in this event. &> and %;) denote

the reflexive and transitlve closure of =>

1 This work was partially supported by NSF

grant GJ-465,

and ?E>’ respectively. Arrows may be

subscripted by the name of the grammar, to
resolve ambilguities. The language defined
by ¢ 1s L(G) = {w|s = w} .7 It Is known
*

that if S => w, then S §%> w, That 1s,
every sentence 1n the language has a
rightmost derivation, A right sentential
form of G 1s a string a such that

* *
S =>a. If s ;a> aAw Fﬁ> aBw, then 7y, a

prefix of aB, is called a vliable prefix of
G.

. G *
We define FIRSTj(a) as {w|a => wx and

either |w|™ = k or |w| < k and x = e}. If
@ is in $*, then FIRSTf(a) has one member,

w, which 1s elther a, if |a| 1s less than
k, or the first k symbols of a. In this

case we write FIRST&(@) = w instead of {w}.
Note that FIRSTﬁ(a) 1s independent of G in
this case., We delete G and k from FIRST
when no ambiguity arises,

CFG G = (N,x,P,8) is sald to be LR(k)
if given the two rightmost derivations

*

(1) s => aAw ;;> afw, and
*

(2) s => yBx => afy,

and FIRSTK(W) = FIRSTk(y), then we may
conclude that yBx = qAy.

Informally, G is LR(k) if the unique
handle of a right sententlal form can be
determined by examining that string up to
k symbols beyond the right end of the
handle,

A consequence of the LR(k) definition
1s that for each LR(k) grammar ¢ = (N,3,
P,S), a finite set of tablesdcan be con-
structed, A table 1s @ palr of functilons
(f,g), where:

™|a| stands for the length of o,
§A set of tables Is called a "table" in [1].

-159-


http://crossmark.crossref.org/dialog/?doi=10.1145%2F800157.805048&domain=pdf&date_stamp=1971-05-03

(1) £, the parsing action function, maps
lookahead strings, I.e., strings in
¥ of Tength at most k, to the
actions shift, error, accept, and
reduce 1, where 1 is the number of a
production:

(2) g, the goto function, maps N w3 to
the set of tables and the word error,

The tables are used to parse input
strings bottom up as follows., A pushdown
list holds a string of alternating grammar
symbols and table names, say TpX{Tp...
XnTm, where the T's are tables and the X's
are symbols In N w3, If w is the unex-
pended suffix of the orlginal input string,
then Xj...Xypw will always be a right sen-
tential form 1f error has not been
reported.

Let us suppose we observe the parser
at a time when either m = 0, 1.e., at the
beglinning, or after it has Just performed
a reduction, i.e., when X, is a nonter-
minal, Let Ty = (f,g). We find
u = FIRSTk(w) and apply function f to u.
If that action 1s shift, the first symbol
of u, say a, is shifted onto the pushdown
list, and then the table g(a) is shifted
on top of a, The pushdown list thus
becomes TpX1Tj...XnTpaTy41, wWhere
Tpm+1l = 8(2), "In the same manner, we shift
additional symbols from input to pushdown
list, as long as the action of the current
table on top of the pushdown list appliled
to the first k remaining input symbols 1is
shift., The actions error and accept have
the obvious meaning,

Eventually, if we are dealing with a
right sentential form, we willl enter a
configuration with TpX3Ty...X,T, on the
pushdown list and lookahead sgring X such
that the action of Ty, on x is reduce 1.

At that time, the right side of production
1 will be a suffix of the grammar symbols
on the pushdown list, that is, XpXp41...Xp
for some n, These symbols and the inter-
vening tables are removed from the push-
down list, leaving Tp_q on top. Let

T,.1 = (f',8’), let production 1 have A on
thé 1eft, and let g’(A) = T. Then the
symbols A and T are placed on the pushdown
list, leaving TpX1Ty...X,_1T,.1AT.

We are now "back where we started,"
with a nonterminal as the top grammar sym-
bol, The process repeats, until elther an
error or accept action is called for,

The LR(k) tables are constructed from
a CFG G = (N,s,P,S8) by first generating
what we call sets of items®., An LR(k)
item for G 1s a pair L& — a-B,ul], where

T partial states in [11.

A -2 0B 1s a productlon and y 1s in =¥,
with |u| ¢ k. TItem [A - a-B,u] 1s sald
to be valid for y, a viable prefix of @,
1fﬂ£here exXlsts a derlvation

3 ;;> BAW ;;) gaPw, where y = 5o, and

u = FIRST)(w).

The key to constructing LR(k) tables
for an LR(k) grammar G is to first con-
struct the setgof valld items for the
viable prefixes of G. The number of such
sets of 1ltems is clearly finite.

Let ¢ = (N,s,P,8) be a CFG, We define
EFFG(a), or EFF(a), where G and k are
undérstood, as {wja ==> wx, where |lwj =k

or {w| < k and x = e, and the last step in
the derivation a §§> wx, if 1t exists,

does not replace the leftmost symbol of
the string by e}.t

Let G be a set of items, The closure
of @ 1s defined to be the least set a7,
satisfying:

(1) aCar;

(2) 1If [A 2 a.B3,ul] is 1n @', then
[B - .y,v] is in a', for all B - ¥
in P and v in FIRST(Bu),

Let @ be a set of items, Then the
function GOTO(Q,X), 1s defined as follows.
Let @’ be the set of i1tems [B - aX-.B,ul
such that [B = a-XB,u] i1s in @, That is,
find all X'%s to the right of the dot and
shift it over, Then GOTO(Q,X) is the
closure of Q’.

Lemma 1l: (From [1]) If @ is the set
of items valld for a, then GOTO{(a,X) is
the set of ltems vallid for oX,

The set § of the sets of valid items
for an LR(k) grammar G = (N,>,P,3) can be
computed as follows,

(1) Let Qg be constructed by taking the
closure of the single item
[s* = .3,e], where 8’ is a new symbol,

(2) Begin with § = {ap}. Repeatedly do

step (3).

(3) 1If a is in §, add GOTO(Q,X) to § for
all X in N v 3, if GOTO(Q,X) 1s non-
empty.

Example 1: Consider the LR(1)
grammer with productions:

(1) s - As
(2 s =-01p

t EFF stands for e-free first.

-169-



(3) A - Aa
(4y A -0D

The six sets of 1ltems for G are
listed below, Brackets are removed and
the notation A - ,Aa, a/b 1is short for the
two items A - ,Aa, a and A - ,Aa, b, etc,

S’ .3,e
AS,e
.b, e
JAa,a/b
Jb,a/b

19
~ ho =R s W]
{ il
19

o

n
e

Q
w
>0
{
o
o
~
o

ay S 2 AS,,e

o} A - Apa,,a/b

5

To see that these are all the sets
generated by the above algorithm, we lilst
the GOTO functilon,

Q A S a b
Qo o ay - Qg
ay - - - -
ay a, ay, ag aq
aq - - - -
(lu - - - -
Qs - - - -
Fig., 1 GoTO(Q,X)

"

Note that the set of valid 1tems for
a string which is not a vliable prefix 1s
empty.

The following algorithm constructs a
table from a get of items. Let Q be a set
of items such that if {A - a,,ul] and
[B »B.y,v] are in @, then u 1is not in
EFF(yv). Note that y may be e. (It is

known [1] that the sets of items for an
LR(k) grammar satisfy this property.)
The table (f,g) constructed from Q@ is
defined as follows.

(1) 1If [A - a.,u] 1s in ¢, and A 2 a 1s
not 8§’ - §, then f(u) = reduce 1,

(2 If [A »a+p,u) is In a, B # e, then
f(v) = shift for all v in EFF(Bu).

(3) 1If [8’ »S.,e] 1s in @, then
f(e) = accept.

(4) f£(y) = error otherwise,

(5) g(X) i1s the name of the table con-
structed from GOTO(Q,X) wherever
G0TO(a,X) 1s not empty.

(6) g(X) = error if GOTO(Q,X) 1s empty.

We will refer to the set of tables
constructed by this process for an LR(k)
grammar as the'"Knuth tables."

Example 2: We display the Knuth
tables for Example 1 in Fig, 2. Tables
throughout thls paper are shown as rows,
with columns for the arguments of f and g.
The following code 1s used:

X = error
A = accept
S = shift
1 = reduce 1
£ g
a b e A S a b
TO S S X T2 T1 X T3
T1 X X A X X X X
T2 S S X Ty TM T5 T3
T3 4 4 2 X X X X
T4 X X 1 X X X X
T5 3 3 X X X X X
Fig, 2 Knuth Tables

II. The General Notion of a Set of
LR(k) Tables

The amount of computation required to
produce a set of LR(k) tables and the num-
ber of tables produced using the methods
above can be quite large for practical
grammars, Recently, several methods [2,3]
have been advanced for generation and
alteration of a set of LR(k) tables. 1In
order to study these methods, we define

-161-



an abstract notion of a set of tables,
define certain operations on them and
show how the transformations of [2,3] can
be expressed in terms of these overations.

One preliminary observation is
necessary., It is possible that certain
entries in an LR(k) table will never be
"exercised," that is, they could be re-
placed with no effect on the parseris
operation, We will therefore allow a new
action ¢, or "don't care" in the range of
both f and g.

With this in mind, we define a set
of LR(k) tables for a grammar G = (N,3,P,
S) to be a set of pairs of functions
T = (f,g), such that

(1) f maps strings u in ¥, where
ful < k, to the actions shift,
accept, error, g, and reduce i, where
1 is the number of some production of
G;

(2) g maps N w3 to {error,p} and the
names of the tables 1n the set.

One table is designated to be the
initial table.

Note that there is no provision, yet,
that the set of tables should form a
parser for G. The action of the parser
constructed from a set of IR(k) tables J for
grammar ¢ = (N,s,P,S8) is defined as fol-
lows., A configuration of the parser is a
pair (TpX1Ty...XyTmsW), where Tg 1s the

initlal table, Ty,T1,...,Ty are in J,
XlseoosXy are in N U 3, ang w is in 3¥*.
Let Ty = (f,g), and let u = FIRST,(w).

(1) If f£(u) = shift, and g(a) = T, where
w = aw’, then we wrilite
(??XlTl o oxmle’W) '— (TOX]_T]_ .o aXmeaT:
Wi

(2) If £(u) = reduce 1, production i is
A 2a, als XpXppq...Xps and
Tpoq = (£7,87), then (ToX1Ty...XgTys
W) b (ToX1T1e00Xp-1Tp_1AT,w), where
T is g’(A).

(3) If f(u) is error, accept or g, or if
f(x) = reduce 1, and a # X,....Xy,
then there 1s no configuragion C such
that (ToX1Tq...XyTpsw) - C. If

f(x) = accept, m =1, X3 = S and

w = e, then the configuration (TyST;,
e) is sald to be an accepting con-
figuration,

An initlal configuration is one of
the form (Tg,W)., Let |k be the reflexive
and transitive closure of . A configura-
tion C such that (Tg,w) é C for some w is

sald to be accessible. The set J 1s sald
to be a parser for G i1f for each w 1n
L(G), (Tn,w) (TaST,e) for some T, It is
straigh%forward hat the LR(k) tables
constructed for an LR(k) grammar as in
Section I form a parser for G. However
there may be others,

Tt 1s possible that given an LR(k)
5rammar G, we would like to find the
"smallest" parser for G. However, there
is an important feature of LR(k) parsers
which we would like to enforce. As soon
as the LR(k) parser of Section I reaches
a point where no possible continuation of
the input could yleld a right sentential
form, the parser announces an error. The
modifications of [2,3] preserve this
property, although each allows the modi-
fied parser to perform some reductions
when the origlnal parser signals error,
The modified parser does not, however,
allow a shift after the original has
declared an error. Thus, the modifica-
tions of [2,3] do not diminish the good
error detectlon and recovery features
inherent in Knuth's original parsing
algorithm (i.e.,, the parser of Section I).
We wlll make a definition of equivalent
tables which reflects this desire to pre-
serve rapid error detectlon,

Let J and R be two sets of LR(k)
tables for grammar G = (N,x,P,S), with
initlal tables Ty and Rp, respectlvely,
Let Cog b C k..o FCp 8nd Dy Dy F ...
F Dn be sequences of configurations of
the parsers constructed from J and R,
respectively, such that:

(1) Co = (Tg,w) and Dy = (Rp,w) for some
w in 5%,

(2) m =n or m < n and there is no con-
figuration C such that Cy - C or
n < m and there is no configuration
D such that D, } D,

Let Cp = (ToX1T1...XpTp,X) and
Dy = (Rg¥1R1...YgRg,¥). We say J and R

are equivalent if for arbltrary sequences
as above:

(1) if m = n, then Xj...X, = Y7...Yg,
X =y, and Cp 1s an accepting con-
figuration ir and only if D, 1s an
accepting configuration.

(2) if m # n, then x =y,

Informally, the consequence of the
above 1s that 1f one parser produces the
action error or ¢, the other may not shift
any more input symbols onto the pushdown
1ist but may reduce before ultimately
reporting error,

-162-



Our first objectlve 1is to determine
when the action ¢ can be truly considered
a "don't care," that is, an action which
gets exerclsed, We say a set of tables J
is @-free if for each accessible config-
ura%ion (ToX1T1 e o o X Tmow), 1f Ty = (£,8)

and u = FIRST(w), then:
(1) f£(u) # ¢, and

(2) if f(u) = shift and the first symbol
of w is a, then g(a) # 9, and

(3) 4if f£(u) = reduce i, production i is
A 2 Xp...X, and Tp_j = (£/,g’), then
g'(8) # o.

The following algorithm replaces an
error action by ¢ whenever posslble in the
tables constructed by Knuth's method,

Algorithm 1: Introduction of ¢
actions,

Input: The set of Knuth tables for
grammar @ = (N,s,P,3).

Output: An equivalent set of tables
with error entries replaced by ¢, wherever
possible,

Method:

(1) Let T = (f,g) be in J,

Replace
g(X) = error by g(X)

= ¢ for each X,

(2) For all u, replace f(u) = error by
f{u) = ¢ unless T is the initial
table, or there 1s a table
T’ = (£',g') InJ, a in § and v in
% such that

(1) fr(av) = shift,

(11) g'(a) = T, and
(111) wu is v I1f |v] < k - L, and u
is vb for some b in 3 w{e} if
vl = k& - 1, ]
Example 3: Note that if k = 1, then

v = e In rule (2) of Algorithm 1. Thus,
the condition under which error is not
replaced by ¢ reduces to T not beilng g’(a)
for any a and any table (f’,g’).

Then, the tables of Example 2 become,
by Algorithm 1 those shown in Fig. 3.

Ty s s X T, T, o Ty
T ¢ o A ® P ®
Ty o) Ty Ty T5 T3
T, b b2 > o o o
T), 9 1 ? ? ® ?
Ts X P ? P ®

Fig. 3 LR(1l) Tables

The only error entries remaining are
in T,, because 1t is the initial table,
and gn T5, because 1t appears under a in
the goto”portion of Ts.

Theorem 1l: The set of tables con-
structed by BAlgorithm 1 1s ¢-free and
equlvalent to the origilnal set.

IITI., Modification of Table Sets

If a set of tables is ¢-free, and two
tables have entries which dlsagree only
where one 1s ¢, then the two tables can
clearly be identified., A generalization
of this idea 1s the followlng.

A partition Il on a set of LR(k)
tables J 1s sald to be compatible if
whenever Tq = (f1,g1) ahd Tp = (Ip,82)
are 1n the same block of 1, then

(1) £,

fzgug = f2(u) or f1(u) = ¢ or

u) = ¢, for each u;

(2) g1(X) and go(X) are in the same
block of T, or g1(X) = ¢ or
gg(X) = ¢ for each X.

We can merge all tables in a block
of a compatlible partition by the following
algorithm,

Algorithm 2:
tables.,

Merger of compatible

Input: A set J of g¢-free LR(k)
tables and a compatible partition 1 on J,

Output: A set of LR(k) tables J’
equivalent to J.

Method: J’ consists of one table for
each bIock of T, The block containing the
initial table of J yields the initial
table of J/., Let {(£1,87)se0es(Fp,8p)}
be a block of M, Then the table (f,e)
constructed from this block has

-163-



(1) f£(u) = £1(u)if £3(u) # o;

(i1) g(X) 1s the table constructed from
the block of gy (X) 1f g4(X) # o.

The definition of compatible parti-
tlon ensures that this construction 1is
consistent.

Example 4: ILet us consider the
grammar with productions
(1) s = AA
(2) A —»a
(3) A -bs

The ¢-free set of tables constructed
by Knuth's algorithm and Algorithm 1 is:

a b e A S a b
T, |8 S X T, T; T3 Ty
T4 o A ® ? ®
Ty S ) T5 o) Tg 7
T3 12 2 X ? P ® ®
T, {S s X Tq Tg T3 Ty
Tg Jo o 1 ® 9 9o 9
Tg |X X 2 ® o o
T, |S S X Tg  Tyg T3 T)
Tg |13 3 o P P P P
T9 S S ® T11 [0 T3 T4
Tip |® o 3 ® ® ® ®
T4 P P P P P
Fig. 4 o¢-Free Tables

Let I be the partition with blocks
{To}, {T1,To}, {3}, {Ty,T7k, {T5.70},
{76}, {Tg,T10}, ana {Ty1}. If we denote
the table for block {Ti} by Ry and the
table for block {Ti,TJ} by Ry, if 1 < §,

then the result of Algorithm 2 is shown
in Pig. 5.

a b e A S a b
RO S S X R1 Rl R3 RM
Ry S 8 A Rg o Rg Ry
By | 2 2 X * 9 9 9
RM S S X 5 R8 3 RH
R s s 1 Ry @ Ry Ry
Rg X X 2 ) ? ? ?
Rg 3 3 3 P P ® P
R4 11 9 P ? ® ?
Fig. 5 Tables after Compatible Mergers
Theorem 2: The set of table result-

ing from Algorithm 2 is p-free and
equilvalent to the input set of tables.

The second ldea for alteration of
tables 1s to postpone certain error
checks. 1If we have table (f,g), and
f(u) = error, we could change f(u) to
reduce 1, if we were sure that:

(1) The right side of production i
appears on top of the pushdown list,
and

(2) the error would be caught by any
table which could appear on top of
the pushdown list immediately after
the reduction,

In fact (2) 1s slightly too strong.
We would like to know that 1f (f’/,g’)
could next appear on top of the pushdown
list, then f£’(u) = error, However, we
could simultaneously change f’(u) to a
reduce actlon, and equlvalence would be
preserved,

A few definltions are useful., First
we extend the GOTO function to tables and
strings of grammar symbols as follows,

If T = (f,g) is an LR(k) table, and
g(X) = T', then we say GOTO(T,X) = T'.
We define GOTO(T,a), where a 1s & string
recursively as follows,

(1) GOTO(T,e) =T
(2) GOTO(T,aX) = GOTO(GOTO(T,a),X).

Let 1 be production A =+ a and let T
be a table., We define the function NEXT,
by NEXT(T,1) = {T’|there exists table T~
such_ that GOTO(T"”,a) = T and GOTO(T”,A)
= T'}, Thus, NEXT(T,1) gives the set of

-164-



tables that could appear on top of the
pushdown list after T calls for a reduce
1 action.

Let J be a set of tables. A post-
ponement set for J is a set § of triples
{T,u,1), where T is in J, u 1s a terminal
string and i is a production number, with
the following conditions.

(1) If T = (f,g), then f(u) 1s error or
o

(2) 1If production i is A - a, and T =
GOTO(T’,B), then a is a suffix of P
or conversely., If T' is the initial
table, then a must be a suffix of B,
(This assures that a reduction of
production i will only be called for
1f a appears on top of the pushdown
list.)

(3) If T’ is in NEXTET i), and T’ =
éf’,g'), then £/ us 1s error or g.
Thls assures that errors wlll be
caught before a shift, even if
(T’,u,j) 1s also in § for some J.)

Algorithm 3:
checking.

Postponement of error
Input: A ¢-free set of tables J and
& posTporiement set § for J.

Output:
ent to J.

Method:

A set of tables J’ equival-

(1) For each (T,u,1) in §, where
T = (f,g), set f(u) to reduce 1.

(2) 1f (T,u,1) is in §, and NEXT(T,1)
contains T/ = (f’,g'), set £’(u) =
error 1f it was origlnally ¢ and was
not changed in step (1).

(3) Let (T,u,i) be in §, and let produc-
tion 1 be A »a, For all T'=(f’,g')
such that GOTO(T',a; = T and

g'{A) = ¢, set g'(A) = error.

Call the resulting set of tables J’. il
Example 5: Let us conslder the

grammar

(1) s - AS

(2) 8 -b

(3) A - aB

(4) B - aB

(5) B-b

The ¢-free set of tables obtalned
using Algorithm 1 from the Knuth tables
for G is shown in Fig, 6,

a b e S A B a b
Ty s s X Ty T, 9 Ty Ty
Ty ® ¢ A ® @ 9
T, S S ¢ Ty Tp o Ty Tg
T3 | X X 2 ® 9 9 @ ©
Ty s s X o o Tg Ty Tg
Ty o 9 1 * 9 ¢ 9 9
Tg | 3 3 o * 9 ®
T7 s 8 X o] U] 9 T7 T8
Tg 5 5 X » 9 9 ¢ 9
Tg | 4 % o ® 9 @ 9 9

Fig, 6 @-Free Tables for G

We can choose to replace the error
entries in T, with reduce 5, and the error
entry of Tg %y reduce 2, That 1s, we

ick a postponement set {(T%,a,5),
?T3,b,5 ,(Tg,e,2)}. Production 5 is
B = b, and GOTO(Tp,b) = GOTO(Tp,b) = T3.
Thus, the entries under B in T, and T
must be changed from ¢ to error. Simllar-

ly, the entries under S for T) and T- are
changed to error, The resulting set of

tables 1is:
a b e S A B a b
TO S S X T1 Ty X Ty T3
T ? o A ® ® 9
Ty S 8 o Ts Tp Ty Tg
Ty 5 5 2 > @ 9 ©
), S8 X X ¢ Tg T, Ty
Ts | o o 1 » 9 © 9 9
Tg 3 3 9 P P e
T7 S 8 X 9 9 T7 T8
Tg | 5 5 ®» ¢ 9 9 9
Ty | 4 4 oo > 9 9 © o
Fig. 7 Tables After Postponement

of Error Checking,

-165-



If we wished, we could now apply
Algorithm 2 with a compatible partition
grouping T3 with Tg, Ty with Tp and T
with Tg. %Other combinations of three
pairs are also possible.) The resulting
set of tables is given in Fig. 8.

a b e S A B a b
TO S S X T1 Tl X TM T3
Tl S 8 A T5 Tl X T4 T3
T3 5 5 2 » 9 @ 9 ¢
T, | S 5 X ° Ty Ty Ty
T5 3 3 1 o 9@ P
T, | 8 s X ® Ty T, Ty
Tg | 4 4 o ® 92 9 9 9
Fig 8 . Merged Tables

Theorem 3: Algorithm 3 produces a
set of tables J’ which is equivalent to J.

IV, DeRemer's Methods

In [3], two subclasses of LR(k)
grammars, called SLR(k) and LALR(k), for
simple LR(k) and lookahead LR(k), respec-
tIvely, are defined. 1In each case, an
algorithm which produces sets of LR(k)
tables for the grammar of that class are
given, The number of tables generated was
considerably smaller than the number of
Knuth tables. It turns out that the rela-
tion of the sets of tables constructed by
[1] and [3] can be expressed simply. An
application of Algorithm 1 (introduction
of ¢'s), followed by Algorithm 3 (post-
ponement) followed by Algorithm 2
(compatibility) to the Knuth tables yields
those generated by DeRemer (with certain
error entries made o).

We will discuss only the SLR(k)
method. The LALR(k) method is more
general, and can be characterized simi-
larly, For simplicity, from here on, we
restrict ourselves to the case k = 1, The
'SLR(1) method can be described as follows.

(1) Construct the set of LR(0) items for
the LR(1) grammar G = (N,%,P,S).

(2) Replace every item of the form
A »B.,e] 1n set @, by [A - B.,a]
for all a in FOLLOWé(a , where
FOLLOWG(A) = {a|there exists a right
sententlial form aoAw such that

a = FIRSTS(w)}.

(3) Construct tables from the altered
sets of items as in [1]. If the
table construction is successful
(It is possible that even though G
is LR(1), certaln action conflicts
occur in these sets of 1tems), the
set of tables created forms an
LR(k) parser for G equivalent to
the set generated by [1]}. If the
method 1s successful, the grammar G
is SLR(1). (Thus, DeRemer's
algorithm forms a definition of SLR
grammars )

Theorem 4: The set of tables con-
structed for SLR(k) grammars by DeRemer's
method is equilvalent to the Knuth set of
tables,

Proof: We will sketch a proof here,
First, we observe that the sets of LR(1l)
items constructed for G by Knuth's algor-
ithm may have two or more sets with
common cores, (The core of a set of items
is the set of first components, l.e., the
core of [A s a.B,u] 1s &4 - a.B.g Since
the second component of an LR(0) item is
always e, all distinct sets of LR(O)
items have distinct cores, Moreover, the
set of cores which appear when the sets
of LR(1) items are constructed for G is
the same as the set of cores of the sets
of LR(0O) items for G.

Thus, there is a function f which
maps tables constructed by Knuthfs
algorithm to those constructed by
DeRemer's, such that £{T) = T’ if and
only if T 1is constructed from a set of
LR(1l) items having the same core as the
set of LR(O) items from which T’ was con-
structed, It 1s easy to show that f
commutes with GOTO, That is,
GOTO(F£(T,X)) = f£{coTo(T,X)).

Moreover, if f(T) = T+, the only dif-
ference 1n the tables T and T’ 1s that T’
may call for reductions when T announces
error, Thils 1s because T may be con-
structed from a set of items with
fa »a.,a] put not [A +a.,b]. If b is in
FOLLOW(A), then T’ will be constructed
from a set with both.

However, T may be altered to have the
same actions as T’ by using Algorithm 3
with the postponement set which consists
of all (T,a,i§ such that the action of T
on a 1s error, but the action of F£(T) on
a 1s reduce 1. Then, Algorithm 2 merges
all those tables Ty .and T2 such that
£(T1) = £(To). O

Example 6: Let us conslder the
grammar with productions

-166-



The LR(0) items, with ",e" deleted are:

(1) s - AA S’ > .8
2] S - JAA
(2) A - ah 0 A > ,aA
i A - b
(3) A ~0b
FOLLOW(S) = {e} and FOLLOW(A) = {a,b}.
S - AA
We 1list the LR(1) sets of items B, A - ,aA
(brackets deleted), followed by the set A - .b
of tables generated therefrom,
A —»>aA
83 A - ,aA
st = .S,e A= .b
a S = AA,e
0 A - ,alf,a/b Bu A >b,
A = .b,a/b
635 S - AA,
al Sr = 8,.,e
636 A - aA.
S 2 AA,e
a2 A - Lah,e
A = .b,e The LR(1) tables constructed from
these 1tems by DeRemer'!s method are shown
A - a.Aa/b in Fig. 10,
a3 A = ,aA,a/b
A= .b,a/b a b e s A a b
a A > b.,a/b
4 Ry s 8 X Ry Ry Ry Ry
A5 S = Ah.,e Ry | X X A X X X X
A - aA,e
a A - .oAe R, | 8 5 X X Ry Ry Ry
A= .be R s s X X R Ry R
3 6 3 L
>
G A = hose R, | 3 3 3 X X X X
- ah,
g A >ahi,a/b Ry | X x 1 X X X X
-
99 A »ah.,e Rg | 2 2 2 X X X X
a b e A S a b Fig, 10 DeRemer Tables
To s 8 X T, Ty T3 Ty The function f, which maps Tg,...,T
to Rg,...sBRg on the basis of the cores o
Ty o o & L the Sots orl1tems from which the tables
were generated, 1s shown in Filg. 11
T, | 8§ S o 5 9 Tg T ;
T £(T)
T, | S 8 X Ty o Ty Ty . é
0 0
Ty, 3 3 X P P o) o) T R,
T5 ¢ o 1 * 9 Ty Ry
T R
T6 S S X T9 o T6 7 T3 R3
T X X 3 ? P ® P 4 4
7 T5 R5
Tg | 2 2 o ® 9 © 9 Tg Ry
Tg | @ @ 2 ® 9 © 9 T Ry
T R
8 6
T9 R6

Fig. R(1 1
g. 9 LR(1) Tables Fig, 11  Function f

-167-



We can apply Algorithm 3 to the T's,
with a postponement set consisting of
(Tlhe:3 s (T7:a:3): (T7:b:3): (T8:e,2):
(T9,a,2) and (Tg,b,2). It is then

o8sible to merge {T3,Tg}, {Ty,T7} and
T8,Tg}, to obtain tablés which are a
renam%ng of the R's,

V. Korenjak's Method

A simple modification of the method
of [2] can also be characterized by the
operations of merger and postponement,
Korenjak's algorithm is, essentially, the
following.

(1) Given LR(1) grammar G = (N,>,P,S),
select a splitting set N’ = {Sl,...,
Smt C N of nonterminals, including

the start symbol, and form grammar

G = (N,x w3z',P',31) by replacing
symbols in N’ on the right side of
all productions by corresponding new
terminal symbols in =f = fsl,...,sm .
N/, the set so selected may determine
whether the algorithm is successful
in producing a set of LR(1) tables.
Form component grammars Gy, 1 <1 {m
from G’, by choosing Sy as the staTt
symbol and deleting useless symbols
and productions.t

(2) For each component grammar G; con-
struct the sets of items

S1 ={Dé:9%,9%, u.}sud1thm;93

is the closure (with respect to Gy)
of {[Si -~ ,a,a]|sy »a 1s a produc-

tion in G4 and a is in FOLLOWZ(Sy)}.
However, when taking the closure of
an item wlth regpect to Gy we will
st111 use FIRST® rather than FIRST®L,
For example, if we have added

[A —9a.BB,uj to Y and B 1s not in N/,
we will also add [B = .y,v] to 2
where B — is in G’ and v 1s in
FIRSTG(B’u) where B’ 1s B with all
sn's replaced by Sp's. In this way
a?l lookahead strings will be in 5%,
Each Q& in §4 1s the closure

of GOTO(Q&,X) for some Q% in §; and X
in (N vws' vsz).

(3) In the first component of all items
replace si in 5’ on the right side of
a production by Sy (the original sym-
bol), Retain the original name for
each set of items,

T In [2], 84 was not replaced by si in the
productions of its own grammar, We choose
this related approach for its symmetry.

(1) Let My = {[57 = .81,el} w2q.
Apply the following augmentgng
operation to Hy and call the result-

ing set of items Hy. This Hy will
be the initial set of items for G.
Augmenting operation: If a set of

items ™ contalns 1tem 1A - a.BB,al and

*
B E> SJ7 for some S; in N', 7 in (N w )%,
then add Dg to Y., Repeat this process

until no new sets of items can be so
added to 3.

(5) Now construct §, the set of ltems
for G accessible from Hy as follows,
Initially, let § = {Hp}. Then per-
form step (6) until no new sets of
items can be added to §.

(6) Let H be in §. ¥H can be expressed
as ¥ =00 L2l Lad2 o oale
where Qg 1s ei%her the empty set or
{15y - .s1.el} or {[8y »57.,el}.
For each X in N Uz, let 29 =

coro®°x) and Qﬂg = GOTo(Qfg, X)., Let

H’ be the union of 98 and these Dhg‘s.

That is, let H’ = GOTO(H,X). Then apply

the augmenting operation to Hf and call

the resulting set of items H’/., Add H’ to

g if it 1s not already in §., For the

given H, repeat this process for each X

in N vz,

(7) When no new set of items can be added
to &, construct, if possible, LR(1)
tables from § using Knuth's method,
If not possible because of parsing
action conflicts, report failure,

Example 7: Let us consider the
grammar G with productions

(1) 87 = 8082
(2) So —* alp
(3) sp —b

Let N’ = {S1,80}.
only of the production

Then G1 consists

(1) 89 = s2sp

and Go conslsts of the two productions
(2) sp —asp

(3) 8o —b.

The sets of 1tems for Gl are

-168-



1,
S MR L PCPOR
D%: Sy @ s5.8,5, €

oL,
0. Sy ¥ SpSp.s €

Those for G2 are

2
QO: S, = .as,, a/b/e

Sy = .b, a/b/e
92- So —a,s /b/
1t o T a.8,, a/bfe
92' S, — as a/b/e
2° 2 2°°?
92' S, = b., a/b/e
3° 2 *?

Note that FOLLOWY(S,) = {a,b,e}.

To compute Hy we begin with the set
of items

4
S1 —*.Sl, e
Sl - .8282, e
*
iince 82 a} 82 and 82 is In N’ we add to
0
Sy 2 885, a/b/e

82 g .b, a/b/e

Thus Hy = {[Si - .81,el} L/Dé L/Dgo Let

us_now compute GOTO(Hy,X) for X in {3q1,Sp,

a,l}. We obtain

¥ = 6OTO(Hy,8,)) = {[s; -8 .,e]}

%he augmenting operation does not enlarge
lo

M, = GOTO(3,,8,) =27
Since 87 = 8580, e 1s in D%,the augment -
ing operation will add D2 to Hy. con-

tinuing in this fashion,We obt&in the
following sets of items for §.

My = {5y > .5q,e1} wBY U28

¥y = {Is; »8,.,el}

1 2
Hy =27 w2y

2 2
My =25 w2f

2
He =25

A1l these sets of items are consis-
tent (produce no parsing action conflicts),
50 that we can obtain a set of LR(1)
tables for G. These are shown in Fig. 12,
Note that Knuth's algorithm would have
produced ten tables for thls grammar,

a b e S1 82 a b
Ty s 8 X T, Ty T3 Ty
T X X A X X X X
Ty s 8 X X Te Ty Ty
T3 s 8 X X Tg T3 Ty
Ty 3 3 3 X X X X
T X X 1 X X X X
Tg 2 2 2 X X X X
Fig. 11  LR(1) Tables

Theorem 5: The set of tables con-
structed by Korenjak's algorithm is
equivalent to the set of Knuth tables for
the same grammar,

Proof: The proof is similar to that
for DeRemer's method. One finds a func-
tion f which commutes with GOTO, and maps
tables from Knuth's set to those from
Korenjak's set, preserving the core of
the sets of items underlying the two
tables, Unlike DeRemer's SLR method,
Korenjak's can produce two sets of iteﬂi
wlth the same cores.

In a sense, Korenjak's method is a
generalizatlon of DeRemer's, The former
works whenever the latter does, although
DeRemer's algorithm 1s simpler to imple~
ment and works on many naturally occurring

-169-~



grammars, The followlng relationshlp 1s
of interest.

Theorem 6: DeRemer's SLR(1) algor-
ithm Succeeds in producing LR(1) tables
for ¢ = (N,3,P,8) if and only if
Korenjak's algorithm succeeds when the
splitting set N’is N (i.e., all nonter-
minals are made start symbols), The two
sets of tables produced in this case are
isomorphic under renaming.

We close with a comment that nelther
Korenjak's nor DeRemer's algorithms
represent maximal use of the principles
embodied in Algorithms 1 - 3, For
example, the grammar

Sl - SEASEB
32 - al
- b

- cC

- d

A

A

B —ec
B

C »cCf
C

- f

discussed in [2] takes 18 tables by
Knuth's method and 14 by Korenjak's or
DeRemer's, It is possible, by Algorithms
1 - 3 to construct an equivalent set of
10 tables,

References

[1] D. E. Knuth, "On the translation of
languages from left to right," Inf,
Control, Vol. 8, no, 6, 607-639,
1965,

[2] A. J. Korenjak, "A practical method
for constructing LR(k) processors,"”
Comm, ACM, vol 12, no. 11, November
1969 2 613"623 .

[3] F. DeRemer, Practical Translators
for LR(k) Languages, Project MAC
Report MAC TR-b5, October 1969,
Cambridge, Mass.

[4] A and U, The Sensuous Compiler,
Prentice Hall, Englewood CIIiIffs,
New Jersey, to appear.

-170-



