
ON THE SIZE OF PROGRAMS IN SUBRECURSIVE FORMALISMS

Robert L. Constable

Department of Computer Science
Cornell University

Ithacaf N. Y. 14850

Abstract

This paper gives an overview of subre-
cursive hierarchy theory as it relates to
computational complexity and applies some
of the concepts to questions about the size
of programs in subrecursive programming
languages. The purpose is three-fold, to
reveal in simple terms the workings of sub-
recursive hierarchies, to indicate new re-
sults in the area, and to point out ways
that the fundamental ideas in hierarchy
theory can lead to interesting questions
about programming languages. A specific
application yields new information about
Blum's results on the size of programs and
about the relationship between size and
efficiency.

J
Programming languages, ~ , can be de-

signed which express algorithms only for
the functions in a subrecursive class ~ .
These languages have been based on the
logicians' formalisms for special classes

like ~i In 1965 Cleave [5] designed a

language for 6~ 1 based on ideas in
Grzegorczyk [12] (1953) while Meyer &
Ritchie [18] (1965) designed another such
language based on the ideas of R.M. Robin-
son [22] (1947) and P. Axt [2] (1963).

Constable designed languages for ~n (de-
fined below) based on the notion of a
stack [8] and of restricted program modifi-
cation [7].

The subrecursive languages have several
virtues. All programs terminate so there

§ 1 Introduction is no "halting problem". A bound for the
Consider a programming language ~ such running time of a program can be determined

as reference Algol or LISP capable of ex-
pressing algorithms for all partial recur-

sive functions ~ : ~m + ~ where
= {0,1,2 } . It is well-known that

such languages have the capacity to express
algorithms which produce astronomically
large computations. In other words,
contains algorithms for functions whose
computation at any input would exhause all
imaginable computing resources. Letting

denote the class of all (total) recur-
sive functions,this fact means that the
functions "actually computed" belong to
subrecursive classes, ~ c 6q . For in-
stance there is reason to believe that all
functions actually used in computing belong

to ~i the class of primitive recursive
t functions.

t One can argue that only finite functions
are "actually computed". However, for
reasons of mathematical application a first
approximation to actual computing should
allow for the computability of infinite
functions such as x+y , x.y , xY , etc.
See Elgot & Robinson [i0] and McCarthy [16]
for a discussion of this point. It is in
fact one of the tasks of computing theory
to discover a class or classes of functions
which adequately represen~ the functions
actually computed. The class ~ of ele-
mentary functions may be a more reasonable
candidate than ~i

from the input and syntax. The conceptual
structure of programs is simpler than the
structure of general recursive programs.

Computational efficiency is not sacri-
ficed for these advantages. In a forth-
coming article, the author and Allan Boro-
din [9] show there is no significant loss
of computational efficiency caused by com-
puting with certain subrecursive languages.
In Cleave's language the loss is at most a
constant factor c of the total running
time. In the case of various modifications
of the "Loop" language of Meyer & Ritchie
the loss is again at most a linear factor
c F and for their original language the
loss is at most a square factor.

What are the disadvantages of subrecur-
sive languages? Blum [3] has shown that
program compactness is sacrificed. He de-
fines the notion of program size axiomati-
cally. If i is a program, let lil be
its size. One valid measure of size is
the length of a program (number of cards
in the deck). Blum shows that if f is
any recursive function, there is a primi-
tive recursive function f. whose minimum

1
length subrecursive program, say i ° ,

satisfies
f(lJl) < Jiol

for j some general recursive program for
f. So for f(x) = i00 • x , there is
l

some primitive recursive function whose
shortest subrecursive program is 100 times
longer than one of its general recursive

This research was supported in part by National Science Foundation Grant GJ-579.

-]-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800161.805143&domain=pdf&date_stamp=1970-05-04

programs. Furthermore, Blum shows that
the computational complexity: say run-time,
of j is nearly the same as that for i
except on a finite set.

Blum's result seems to indicate that
general recursiv.~ Erogramming languages
have a decided advantage over subrecursive
languagec. He argues this by saying "in
order for programs to be of economical
size, the programming language must be pow-
erful enough to compute arbitrary general
recursive functions"

In this paper Bium's result is examined
further, and it is simply shown that there

is a language for ~ (or for ~i) such
that any program which can be significantly
compressed without drastically degrading
computational efficiency must be a compu-
tationally complex program. The same re-
sults apply all through the known subre-

cursive hierarchies, ~ , and they apply
to the interesting languages such as Meyer
& Ritchie [18]. The result also shows
that there is a trade-off relationship be-
tween size and computational complexity
(measured without an a.e. condition).
Such facts can be construed to mean that
for the purposes of working in the usable
levels of the elementary functions, there
is a subrecursive language capable of ex-
pressing all elementary functions and there
is a size measure on that language such
that the usable functions cannot be sig-
nificantly compressed without degrading
efficiency.

These results indicate some of the uses

of hierarchies. The classes ~ _ ~i are
not of interest because their functions
will be used in computing but because they
serve to measure the capabilities of lan-
guages and computing systems. Moreover,
the specific principles on which the hier-

archies ~ are constructed provide a
fundamental description of recursive func-

tions. Each function f E ~ can be re-
presented in a normal form,
f() = E[f ()] where E[] is an ele-

mentary operator and f () is an element

of a sequence of functions defining a sub-
recursive hierarchy. % The complexity of
f() has two components: its heiqht re-
presented by e and its width represented
by the elementary operator E[] (defined
below).

In the sections that follow, two speci-
fic programming languages, G and P ,

t The notation "f()" is used to indi-
cate a function when the number of argu-
ments is unimportant and when a single
letter f might be construed as an integer
or an algorithm. Operators from functions
to functions are denoted by E[]. So
E[f()] (x) is the value of the image of
f() at x .

-~-

will be defined and used to investigate
the size results and to outline the deve-
lopment of subrecursive hiera~2chies. In
addition, the subject will be treated from
the viewpoint of abstract computational
complexity. Hopefully such a treatment
provides an easily intelligible overview
of the subject, laying bare tire methods
and open problems.

§ 2 Programming Languages

General Recursive Language.

The main results will be developed
first for specific computing systems (lan-
guage and machine) and later for acceptable
indexings and Blum measures. The particu
lar programming languages used are based on
Shepherdson & Sturgis [26] and Cleave [5].
The language G , for General recursion,
is defined as follows:

<constant> ::= oIiI... InI...
<letter> ::= alblcl...Ix~yJz
<Letter> ::= AIBIC[...IXIYIZ
<variable> ::= <Letter>l<Letter><constant>%%
<binary operator> ::= +i x
<unary operator> :: = +iI~l
<term> ::= <variable>i<constant>i<term>

<binary op><term>I<term><unary op> I
(<term>)

<assignment> ::= <variable>÷<term>
<conditional> ::= if<variable>=0 then go

to <label> else go to next statement.
<label> ::= <constant>I<letter>i<letter>

<label>
<statement> ::= <assignment>; I

<conditional>;
<program> ::= <statement>i<label><state

ment>i<program><program>

The conditional is usually abbreviated
to "if then <label> " leaving the "go
to" and--~go to next statement:" understood.
For convenience, the conditional expres-
sion is used informally. The rule is

<conditional exp.> ::= if <logical> then
<term> else <term> where <logical> infor-
mally represents a true or false state-
ment.

Examples: The following are G-programs.

Z÷0
S ÷X

1 if S = 0 then 2
X ÷X + 1
S ÷ S -' 1
if Z = 0 then 1

Z÷ 0
N ÷ 1

S ÷ X
K ÷ 1

1 if S =: 0 then 2
K ÷K + 1
N ÷N • K

S ÷ S -" 1
if Z = 0 then 1

The first program doubles the contents of
X , the second computes X! . Notice that
programs halt when they attempt to branch
to an unlabeled statement. Also recall

%% This notation takes liberties with BNF
by allowing subscripts.

x ± = if x<y then 0 else x-y.
YIt is assumed that the reader knows the

semantics of such a language from sources
such as [26], [i0] or [25]. It is inter-
preted on a register machine (named for
the fact that the computer words which are
the interpretations of the variables, can
be used for arithmetic directly without
the intervention of special registers).

Subrecursive Lan~ua@e
The subrecursive language relies

heavily on its semantics. Consider the
sequence of functions defined by

Def. 2.1 f0 (x) = x+l and

(x)
fn+l(X) = f (x) n

where for any function f : ~ ÷ ~, the

iterate of f is defined by f(0) (x) = x,

f(n+l) (x) = f(f(n) (x)). These functions
have a particularly simple structure in
terms of the standard high level iterative,
such as the PL/i DO,END pair. For in-
stance, for an arbitrary G-program ~ let
the code

DO N

END
exit

be interpreted as

S÷N

1 if S = 0 then exit

S ÷ S -" 1
go to 1

where S does not appear in the program ~.
Thus for instance

DO N
N÷N + 1
END

will double the contents of N.
The functions f () are computed in a

n

canonical manner by the programs:
f0 is X ÷ X + 1 and fn+l is

DO X
f
n

END.
The syntax for the subrecursive language P
is obtained by adding a "clock" to programs
in G. Specifically

<clock> : := (<constant>,<constant>)
<P-program> ::= <clock>;<G-program>.
The language P is interpreted on a J-

limited register machine as defined in
Cleave [5]. Briefly the machine uses a
special clock register J inaccessible to
the program. When the program starts
executing, J is given a positive value; n,
and on every step J is decreased by one
until either the program halts or J reaches

-3-

0. In the later case the program halts ab-
normally, the output being whatever is in
the output register at termination.

A P-program with clock (n,p) will start

on input x with J = f(P) (x) (or
n

J = fn(P) (max{xl'''''Xn}) on input

= <x I Xn > ~ n).

Let ~0,~l,...,#n,... be a standard

enumeration (more generally an acceptable
indexing in the sense of Rogers[23]) of all
G-programs and e0,el,...,en,.., an enumer-

ation of all P-programs. Let ~#i(x) and

cei(x) be the number of steps taken by

~i and ~i respectively on input x. Let

#i(x)+ abbreviate the fact that ~i halts

on input x, then ~i(x)+ means it does not

halt. So ~i(x) = if ~i(x)+ then (number)

of steps) else (undefined). By convention
let ~i = <(ni'Pi'Si >

(so that 8 i = ~j for some j). Then

notice
~I (x) min{ - (Pi) (x) ~i (x) }

• = rn. , •
l

The symbol sigma, ~, represents a
measure of complexity on {$i } or {ai }-

The list E$ = {~$i } is a complexity

measure in the sense of Blum [4] (a Blum
measure).

§ 3 Subrecursive Hierarchies
Algebraic Approach

One of the oldest and most influential
subrecursive hierarchies is the
Grzegorczyk hierarchy first presented in
[12] in 1953. This hierarchy has since
been defined in several different ways, see
[i], [2], [7], [18], [21]. Crucial to the
definition is the concept of the set of
functions elementary in f , ~ (f) . The
definition is sketched intuitively below
so that the reader unfamiliar with the con-
cept can see approximately what is invol-
ved. Let ~ be the set of rational num-
bers, ~ = {0,±1,±2,±1/2,±3,±1/3,±2/3,...}.
Let ~Q be the field of rational functions

under + and • . Notice that the field
is closed not only under + and • but
also under the operation of substitution
of functions for variables. Denote the
operation of substitution by 0 ~s. Now
extend the field ~ by closing under the

infinitafy rin9 operations

S (X l , . . . , X n , Y) = q (x l , . o . , X n , i)
i=0

[y]

p(x i Xn,Y) = H q(xl,. • .,Xn,±)
I=0

for i an integer variable.
For brevity let B be any set of func-

tions and 0 l,...,0p any operators

B n + B , then [B;01,...,0 p] is the least

class containing B and closed under 0.
1

The class of clementary functions over the
rationals ~ , is [~;0s,~,~] (a super-

field of ~). The class of elementary

functions over ~ , denoted simpl~. ~ , is
obtained by relativizing 6~, to ~ .

Succinctly defined, the class ~ is given
by letting

b_l(X) = 0 , b o(x) = x + 1 ,

bl(X,y) = x + y , b 2 (x,y) = x.y,

b3(x,y) = x y , B i = {b_l, b i}

Then ~ = [B2;0s,Z,H] = [B3;0s,Z] and

~(f) = [B2,f;0s,Z,H]

It is an open question of considerable
interest whether ~ can be obtained from

~ using only 0s and a sequence of new

base functions, i.e. by a sequence of
transcendental elements over the field

The algebraic way of extending the class

to the larger class ~i is to use a
sequence of "transcendental extensions"
of ~ by functions h i A sequence of

such extending functions, ho,hl,.., will

be called a spine for a hierarchy up to

if U ~ (hi) = . For the sequence
i=0

f • of Def .2.1 T
1

Theorem 3.1: ~(fn) c ~(fn+l) for all

n > 2
Letting ~n = ~(fn) for n > 3

%Grzegorczyk used a different sequence of
functions, go(x,y) = y+l , gl(x,y) = x+y

g2(x,y) = (x+l).(y+l) and for n > 2

gn+l(0,y) = gn(Y+l,y+l) and

gn+l(X+l,y) = gn+l(X,gn+l(x,y)) His

classes ~o c ~i c ~2 c ~3 =~ are de-
fined by 0S and limited recursion from

gi () For i < 3 the ~i are not of

interest here because they are not of the
form ~ (f)

Theorem 3.2: U 6n =~i
n=3

These theorems are proved by routine
rate of growth arguments. A function f
is said to majorize a class ~ (written
f > ~) iff for all g 6 ~ there is a p
such that g(xl,...,x n) <

fn (p) (max{x l,...,x n}) The notation f <~

means there is a g 6~ and f(x) < g(x)
for all x . It is shown by an inductive
analysis of the definition of ~(fn) that

fn majorizes 6 (fn) It follows that no

one argument function in ~ (fn) can grow

as fast as fn+l(X) = fn(X) (x) Thus

fn+l ~ ~n

Containment, ~n ~ ~n+l , is shown by
giving an elementary scheme for defining
fn from fn+l " A more intuitive approach

to this step is discussed later.
To prove the equality of Theorem 3.2,

Grzegorczyk used a formulation of ~i in
terms of iteration, due to R.M. Ribinson
[22]. The functions fn mirror the depth

of nested iteration and this makes the
argument straight forward. Once this
theorem is available and the computational

approach to ~n developed, as below, it
becomes an easy matter to relate other

hierarchies to ~I .

The Grezegorczyk hierarchy ~n was
first given a computational interpretation
by Cleave [5] and later by Meyer & Ritchie
[18]. It was related to the Kleene subre-
rursive hierarchy [15] and to the depth of
nesting of primitive recursion by Art [i]
and [2].

The class ~I is but the first level in
the oldest subrecursive hierarchy, P4ter's

[19] n-fold recursive functions ~n . It
was natural to ask whether Grzegorczyk's

approach could be extended to ~n . Rob-
bin [21] answered the question for Grze-
gorczyk's hierarchy and Constable [7] ans-
wered the question for Cleave's computa-
tional version.

In terms of the algebraic approach, an
extension procedure is quite naturally sug-
gested. Simply consider a transfinite
sequence of "transcendental elements'!.
Thus for an ordinal ~ let ~n ÷ ~ be a

fundamental sequence to e , e.g. n ÷ ~ ,
2

• n + ~ , etc. Then new 'Ilonger"
sequences are defined by the condition

f (x) f~ (x) for ex
X

Given the standard fundamental sequences

~4-

for ordinals e < e it is shown in Con-
o

stable [7] that for ~ = ~(f) ~ < e °

Theorem 3.3: ~e c ~8 if ~ < 8 < e O

Robbin [21] showed that %

Theorem 3.4: U ~ = ~n
e<n

In both of these results, the properness

condition, f ~ ~8 if e < 8 , is shown

by a simple application of the growth rate
arguments that Grzegorczyk used. The cri-
tical lemma is that f is strictly in-

creasing for all e and all x .

To prove that ~ ~ ~8, a computational
analysis is used rather than a syntactic
analysis of recursion schemes. (The syn-
tactic method would result from a direct
attempt to generalize Grzegorczyk's me-
thods.) A computational approach appears
necessary when the functions reach the
complexity of f The next section will

consider the relationship between the Ex-

tended Grzegorczyk classes ~ ~ and mea-
sures of computational complexity.

Computational Approach

Principle II; If ~i < ~(f) , then

~i £ ~(f)

This principle asserts that if there is
a way to compute g() which is bounded
by an elementary in f amount of time,
then the function is elementary in f .
This is less obvious than I. It was first
noticed by Kleene for the notion of "pri-
mitive recursive in". Indeed, it is a
direct consequence of the Kleene Normal
Form Theorem (NFT) [14] or [24] which as-
serts that any ~i 6 ~ satisfies

~i(x) = U(~yT(i,x,y,)) x E ~n

where U() 6 ~ and the "T-predicate" is
elementary. Principle II follows from the
fact that although the operation of mini-
mum, ~ , is not elementary, the operation
of limited minimum, ~ < , is. Therefore
showing that ~i < ~(fY implies that

~i 6 ~(f) , since all the operations in-

volved are elementary in f .
The fundamental fact behind the NFT is

that the operation of the computing system
can be~described in an elementary manner.
It is difficult to imagine a real computing
system which does not posses an elementary
description. See Cobham [6] for a discus-
sion of this point.

The computational method of analyzing The two principles apply to the analysis
hierarchies depends on two basic principles, of the Extended Grzegorczyk hierarchy,
They are stated first for the time measure,

, and later generalized to restricted
Blum measures.

Given f() , let ~f be a specific

G-program for f()

Principle I: If g E ~(f) , then there is
a program ~g for g and an elemen-

tary operator E[] such that %%
~g(X) < E[~f()] (x) for all x

This principle asserts that the com-
puting system T~ operates in an elemen-
tary manner, is, if g() can be de-
fined by a sequence of elementary oper-
ations, then the computing system can
mimic those operations so that the cost
is within an elementary operation of the
cost of some specific algorithm for f().
This principle is true for all existing
models of computing systems, such as one-
tape or multi-tape Turing machines or
Register machines. Indeed it is a good
criterion by which to judge the system,
"does it do elementary arithmetic in an
elementary manner?"

% Robbin used a different set of functions,

Wo(X) = 2 x and W +l(X) = w(X) (i)

%%
E[] is an elementary operator if

E[f()] E ~(f()) for all f() 6 ~ .

~ in the following manner. Suppose each
f has the property

Operator Honesty Property: There is an al-
gorithm, f , for f() and an elementary
operator E2[] such that

~f(x) < E 2[f()] (x) for all x .

Then ovserve that for such f

g E~(f)implies o~x) < EI[E2[f()]] (x)

for all × (by Honesty ann I).
So g 6~f) implies ~i < ~(f) "

Now by II ~i < ~(f) implies ~i 6 ~(f)

Hence

Theorem 3.5: For f as above, g E 6(f)
iff ~g < ~(f)

As long as f has the (operator) Hon-

esty Property and principle II holds, the

question of membership in ~e = 6(f~) is

reduced to a question of estimating bounds.

A crucial step in proving ~ c 68 is the
verification of honesty. Once this is ac-
complished, then the hierarchy can be ana-
lured by the simple technique of comparing
growth rates, in particular showing that

f majorizes ~e

-5-

It is easy to see that the run-time
functions ~i satisfy a stronger honesty

condition. First define

Def. 3.1: f is h-honest iff ~¢i = f

and c~i(x) < h(~i(x)) for all x . f

is elementary-honest iff h 6 ~ .

The c~i are elementary honest. This

allows

Theorem 3.6: If f has the (operator)
Honesty Property, then
g E ~(f) iff ~g £ ~ (f)

The proof follows by noticing that
a%g < ~(f) and that honesty for a~g

implies that there is a ~j = a~i and

o~j < ~(f)

Abstract Computational Approach

The abstract approach to computational
complexity can be used to cast the pre-
vious observations in a more general set-
ting. The abstraction begins with an
acceptable indexing, {~i } , as the gene-

ralization of a particular general recur-
sive computing system. See Rogers [23]
for a treatment of these indexings. Given
{~i } , a Blum measure of computational com-

plexity is defined as a list of functions
= {~i } such that there is a 0,l-valued

recursive function M , and the following
axioms are satisfied:

Axiom I: ~i(x)+ iff ~i(x)+

Axiom 2: M(i,x,y) = 1 iff ~. (x) = y
1

Example: The list E = {o~ i} is a Blum

measure.
The kinds of classes of interest here

are the complexity classes of Hartmanis &
Stearns [13] and their "everywhere" coun-
terparts.

= {total ~iJ~i(x) _< t(x) Def. 3.2: ~t

a.e.x}

~$ = {total ~iJ~i(x) t(x) for all x} !

The a.e. (almost everywhere, i.e. except
for a finite set) classes, ~t ' are most

Axiom 3; If ~i 6 6(#j) then there is an

elementary operator E[] and a ~k = ~i

such that ~k(X) <_ E[~j()] (x) for all

x .

Axiom 4: ~i < ~(~j) implies ~i 6 ~(~j)

Axiom 5: #i are elementary honest, i.e.

there is an h E ~ such that for all
i there is a ~q() = ~i () , and if

#i(x)+ then ~q(X) < h(~i(x))

Def. 3.3: Given an elementary machine
class (emc), <~i,~i > , call an ordinally

indexed sequence of recursive functions,
{h e } , an (elementary) spine iff

(i) each h is strictly increasing a
(ii) each h is elementary operator

a
honest

(iii) ha(x) < hE(x) for all x > N a if

e < 8

Theorem 3.7: If {h e } is an (elementary)

spine, then g 6 6 (h e) iff :~g = g and

@g E ~,, (h e)

Def. 3.4: Call an (elementary) spine nor-

mal iff ha+l(X) = h (x) (x) for all x . a

Note, supplying the initial value
ho(X) = x + 1 generates the normal Grze-

gorczyk sping up to

Theorem 3.8: If {h a} is a normal spine

over an emc, then
~(h) c ~(hs) for 3 < a < 8

The proof of this theorem requires pro-
perties (i) - (iii) of fa ' Axiom 4 (prin-

ciple II) and the standard techniques of
growth rate analysis.

Given this theorem the question of whe-
ther an Extended Grzegorczyk type hierarchy
exists up to an ordinal a is reduced to
the question of whether a normal spine
exists up to a

Theorem 3.9: If h ° 6 ~i and {h a} is a

normal spine, then

U ~ (he) = ~i

common in the literature of complexity a<~
theory, but the "everywhere" classes, ~t ' Def 3.5:

will also be useful here.
Following Blum, call the pair <#i,~i >

a machine class. Call the machine class
elementary if the following additional ax-
ioms are satisfied for #i and ~. total

functions. 3

Call {h e } e < y an e o -stan-

dard spine if h (x) = h (x) for e ÷ e
e a n

x
the standard fundamental seq~Lence to

e < Eo

Theorem 3.10: If h O E ~ 1 and {h e } is

a normal eo-Standard spine, then

-6-

u e) =
e<0~

Interesting relationships exist between
elementary classes, ~(f) , and g-comple-
xity classes over an emc. For instance r if
f is strictly increasing and f > ~ , then
f will majorize £ (f) . In fact a genera-
lized Ritchie theorem holds.

Theorem 3.11: If f is strictly increas-
ing, elementary operator honest over an emc
and f > ~ , then ~(p) c %(p+l) and

=

Cor. 3.12: If {he} is an elementary

spine and ~ = ~(he) then if h >~ ,
S ' e

then U ,~h (p) = ~e
p=0 e

All of these results follow by applying
the general principles I and II (axioms 3
and 4) as they have been applied in the
literature for the special cases. The dif-
ficult matter of showing that relatively
long spines exist is put aside.

Another relationship between complexity
classes and Grzegorczyk type classes is
given by the Union Theorem of McCreight &
Meyer [17]. Putting ~n = ~(he+n) and

co

~e = n- -U0~n the theorem asserts

Theorem 3.13: For {hc~} a normal spine

over an emc, and ~e = ~(he) there are

and u s such that ~e =~ and t
e

e

From the recent work of McCreight &
Meyer [17] a very interesting type of spine
emerges. It could be considered a "mini-
mal" spine. First it follows from Blum

[4] that any complexity class ~ named

by an honest t can be extended by apply-
ing a "jump function" h() to t , i.e.,

~ c ~hot " The situation can be arranged

so that
(i) tn(X) < tn+l(X) a.e. x and

~t c
n ~tn+l

(ii) tn+l(X) < hl(tn(X)) a.e.x hl()

hl() E ~ , hl () strictly increas-

ing and h2(tn(X)) < tn+l(X) a.e.x;

(iii) each t is h honest for h E ~ .
n

At the limit stage the union theorem

= ~ for some Guarantees that U ~t u
n=0 n

increasing u .
The McCreight & Meyer [17] honest theo-

rem guarantees that there is a measured
set of functions F which can name every
complexity class. In particular then
there is an honest ~ such that ~u = ~ o

The h in (ii) is taken to be an h for
which F is h-honest.

It appears possible that for u's con-
structed from an increasing sequence of
the type t n , ~ can be made strictly

increasing. If this is the case, let t
t = strictly increasing ~ . Then for

each ordinal y a mfnimal spine up to y
can be selected simply by choosing funda-
mental sequences for ordinals < y . In
particular there exists an e -standard

O

minimal spine. Let ~ be the hierarchy

produced by the minimal spine.
Unfortunately as the author has shown,

even if minimal spines constructed via the
McCreight-Meyer procedure do exist, they
are so fine that

Theorem 3.14: If t o E ~ , then for every

constructive ordinal y

~<y ~e

§ 4 Size of Programs

According to Blum [3] the notion of pro-
gram size can be abstractly defined
cifying a size function I] : ~ ÷ ~Y

b spa-

which satisfies
condition i: I I : ~ ÷ ~ is recursive

condition 2: Iyl -I is finite for all y
condition 3: there is a recursive function

b such that b(y) is a bound on the

cardinality of Iyl -I .
Given a programming language (formalism)
{~i } , the size of a program (index) i

is simply Iil , the value of the size
function.

As an example of a size function consi-
der the following inductive definition o#
the length of a G-program. in
(<Letter>) = 1 , in(<Letter> n) =

in(<variable>) = n + 1 . If t is a term,
say t = (a<operator>b) where a and b
are terms, then in(t) = in(a) + in(b) + 1
For assignment statements,
in(<variable>÷<term>) = In(<variable>) +
in(<term>) + L . If L is a label formed
by concatenating the labels L 1 and L 2

then in(L) = in(Ll) + in(L2) , and

in(<letter>) = 1 , in(n) = n . Finally
in(if<variable> = 0 then <label>) =
in(<variable>) + in(<label>) + 2 The

-7-

length function, In() , is a valid size I~jl > I~il , so d : (I~j " I~il) > 0

function. From here on let I I be the

in() size function, and s + d = Pi "

The results of the hierarchy section Observe that for fixed p , say a p

show that "clock-bounded" formalisms simi determing the limit of the usable levels

lar to P can be defined for all classes of ~ , the value q required to satisfy

, more generally for any class ~t In f~P) (x) < f(q) (x) decreases monotonically

particular, the clocks f~P) () can be n

used to define a c.b. (clock-bounded) lan-

guage for ~ . The programs have the form

<clock,G-program> where the clock is

(3,p) Let ~o,~i, be an enumeration

of these programs (say E-programs), and

let e i = <(3,Pi),Si > where 8 i = ~j for

some G-program ~j

A reasonable size function on E-program

is

l if3 = Pi ÷ I if

(notice there is a c , c = If31 , such

IZil 3 + c = l~il where q is the G-pro-

gram which first computes f~P) (x)" and

then behaves like i. .)
l

as n increases. Therefore there is an

np such that f~P) (x)" < fnp(X) for all

x . In the clock formalism for ~(f)
n
P

with the size measure]I n , the programs

P
of ~f3(p) cannot be shrunk by any G-pro-

gram without loss of efficiency. The same

results apply to any level of the hierarchy

~ defined earlier.

These ideas can also be used to formu-

late a conservation or "trade-off" princi-

ple. Notice that if the level p of the

Ritchie hierarchy, U~3(p) can be enume-

rated, say po,Pl, Then by Blum's re-

Because ~ is recursively enumerable sult there is a G-program

and because all E-programs halt, it is poe- shrink the size of some

sible to enumerate the shortest E-programs

for ~ Let mo,ml,.., be an enumeration

of the shortest programs (thus mo(),

ml() is an enumeration of ~). Ac-

cording to Blum [3], for each function

f(x) = x + s s 6 ~ there is some m.
1

and ~j such that mi() = ~j() and

f(I#jl) ~ Imil 3 • Without loss of genera-

lity assume f(l~j I) = Imil 3 , i.e.

I~jl + s = }mil 3 Say that ~j shrinks

m i b[s

Call an E-program p-complex iff p is

the least j such that ~ii(x) < f~J) (x)

for all x .

Theorem 4.1: Suppose that the program #j

shrinks m i by s without loss of effi-

ciency, then m i is at least s-complex.

The proof is simple. Since m. is the

shortest E-program and #j is efficient,

the only way ~j can shrink m i is by

removing the clock. Thus the clock must

be of size s , so s ~ Pi That is,

I~jl + s = Imil 3 = Pi + l~il If

l~jl < 18ii then <(3,pi),~j> would be a

shorter E-program for mi() because

~¢j(x) < f~Pi) (x) for all x . Thus

which can
Pi by s , even

for s >> p . Moreover this can be done

without loss of efficiency except on a

finite set S . According to Thm, 4.1,

Blum's s~tement cannot be strengthened

to hold everywhere. Stated in other terms

Theorem 4.2: Programs in a fixed level p

of the (generalized) Ritchie hierarchy for

~ cannot be shortened with respect to

I I~ more than p without loss of effi-

ciency at least on a finite set S . For

any s there are programs which can be

shortened by s with a loss of efficiency

equal to (s - p) , i.e. the shorter pro-

gram must be (s-p)-complex at least on a

finite set S .

Thus when computational complexity is

measured by an everywhere condition, a con-

servation principle holds between size and

efficiency.

Acknowledgments

The author would like to thank Dr. Allan

Borodin for his helpful discussions about

this paper, especially for his help and

independent conclusions on minimal spines.

Special thanks go to Pat Hauk for her ex-

cellent typing work.

-8-

i].

2].

3].

4].

5].

6].

7].

8].

9].

i0] .

ii] .

12] .

13] .

14] .

15].

References

Axt, Paul "Enumeration and the
Grzegorczyk hierarchy," Z. Math Logik
Grund.Math 9 (1963), 53-65. 16].

Axt, Paul "Iteration of primitive
recursion," abstract 597-182, Notices
A.M.S., Jan. 1963.

Blum, M. "On the Size of Machines," 17].
Information and Control, II, (1967),
257-265.

Blum, M. "Machine-Independent
Theory of the Complexity of Recur-
sive Functions," JACM, 14, (1967),
322-36.

Cleave, John P., "A Hierarchy of
. ns " Prlmltlve Recurslve Functlo ,

Zeitschr. F. Math Logik and Grund.
D. Math., 9, (1963), 331-345.

20]. Cobham, Alan "The Intrinsic Com-
putational Difficulty of Functions,"
Logic, Methodology and Philosophy of
Science, Amsterdam, 1965.

Constable, Robert L. Extending and
Refining Hierarchies of Computable
Functions. Comp. Sci. Tech. Report 22].
#25, Univ. of Wisc., 1968.

Constable, Robert L. "Subrecursive
programming languages for ~n,,, 23].
Comp. Sci. Tech. Report 70-53,
Cornell Univ., 1970.

Constable, Robert L. and Allan B.
24]. Borodin "On the efficiency of pro-

grams in subrecursive formalisms,"
Comp. Sci. Tech. Report 70-54,
Cornell Univ., 1970. 25].

Elgot, C. C. and A. Robinson
"Random-Access Stored Program Ma-
chines, An Approach to Programming
Languages," J.A.C.M., ii, (1964), 26].
pp. 365-399.

Fabian, Robert J. Hierarchies of
~eneral recursive functions and
ordl~ recursion, Ph.D. Diss~
Case Inst. of Tech., 1965.

Grzegorczyk, A. "Some Classes of
Recursive Functions," Rozprawy
Matematcyzne, (1953), 1-45.

Hartmanis, J. and R. E. Stearns
"On the Computational Complexity of
Algorithms," Trans. AMC, 117, 5,
(1965), 285-306.

Kleene, S.C. Introduction to
Metamathematics, Princeton, 1952.

Kleene, S. C. "Extension of an

Effectively Generated Class of Func-
tions by Enumeration," Collog, Math.
6, (1958), pp. 67-78.

McCarthy, John "A Basis for a
Mathematical Theory of Computation,"
Computer Programming and Formal
Systems, Amsterdam, 1963, pp. 30-70.

McCreight, E. M. and A. R. Meyer
"Classes of computable functions d~-
fined by bounds on computation,"
ACM Symp. on Theory of Computing,
1969, 79-88.

18]. Meyer, A. R. and D. M. Ritchie
"The complexity of Loop programs,"
Proc. 22 National ACM Conf. (1967),
465-470.

19]. P~ter, Roze Recursive Functions,
3d ed., New York, 1967.

Ritchie, Robert W. "Classes of
Predictably Computable Functions,
Trans." A.M.S., 106, 1963, pp. 139-
173.

21]. Robbin, Joel Subrecursive hier-
archies, Ph.D., Diss, Princeton, 1965.

Robinson, R.M. "Primitive recur-
sive functions," Bull AMS, 53, (1947),
915-942.

Rogers, H. "G6del numberings of
partial recursive functions," J.SL,
23, 3, (1958), 331-341.

Rogers, Hartley Jr. Theory of Re-
cursive Functions and Effective Com-
putability, New York, 1967.

Scott, Dana Some Definitional
Suggestions for Automata Theory,
J. Compts., & Syst. Sci., i, (1967),
pp. 187-212.

Shepherdson, J. C. and H. E. Sturgis
"Computability of Recursive Func-
tions," J.A.C.M., i0, 1963, pp. 217-
255.

-9-

