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Abstract 

This paper gives an overview of subre- 
cursive hierarchy theory as it relates to 
computational complexity and applies some 
of the concepts to questions about the size 
of programs in subrecursive programming 
languages. The purpose is three-fold, to 
reveal in simple terms the workings of sub- 
recursive hierarchies, to indicate new re- 
sults in the area, and to point out ways 
that the fundamental ideas in hierarchy 
theory can lead to interesting questions 
about programming languages. A specific 
application yields new information about 
Blum's results on the size of programs and 
about the relationship between size and 
efficiency. 

J 
Programming languages, ~ , can be de- 

signed which express algorithms only for 
the functions in a subrecursive class ~ . 
These languages have been based on the 
logicians' formalisms for special classes 

like ~i In 1965 Cleave [5] designed a 

language for 6~ 1 based on ideas in 
Grzegorczyk [12] (1953) while Meyer & 
Ritchie [18] (1965) designed another such 
language based on the ideas of R.M. Robin- 
son [22] (1947) and P. Axt [2] (1963). 

Constable designed languages for ~n (de- 
fined below) based on the notion of a 
stack [8] and of restricted program modifi- 
cation [7]. 

The subrecursive languages have several 
virtues. All programs terminate so there 

§ 1 Introduction is no "halting problem". A bound for the 
Consider a programming language ~ such running time of a program can be determined 

as reference Algol or LISP capable of ex- 
pressing algorithms for all partial recur- 

sive functions ~ : ~m + ~ where 
= {0,1,2 .... } . It is well-known that 

such languages have the capacity to express 
algorithms which produce astronomically 
large computations. In other words, 
contains algorithms for functions whose 
computation at any input would exhause all 
imaginable computing resources. Letting 

denote the class of all (total) recur- 
sive functions,this fact means that the 
functions "actually computed" belong to 
subrecursive classes, ~ c 6q . For in- 
stance there is reason to believe that all 
functions actually used in computing belong 

to ~i the class of primitive recursive 
t functions. 

t One can argue that only finite functions 
are "actually computed". However, for 
reasons of mathematical application a first 
approximation to actual computing should 
allow for the computability of infinite 
functions such as x+y , x.y , xY , etc. 
See Elgot & Robinson [i0] and McCarthy [16] 
for a discussion of this point. It is in 
fact one of the tasks of computing theory 
to discover a class or classes of functions 
which adequately represen~ the functions 
actually computed. The class ~ of ele- 
mentary functions may be a more reasonable 
candidate than ~i 

from the input and syntax. The conceptual 
structure of programs is simpler than the 
structure of general recursive programs. 

Computational efficiency is not sacri- 
ficed for these advantages. In a forth- 
coming article, the author and Allan Boro- 
din [9] show there is no significant loss 
of computational efficiency caused by com- 
puting with certain subrecursive languages. 
In Cleave's language the loss is at most a 
constant factor c of the total running 
time. In the case of various modifications 
of the "Loop" language of Meyer & Ritchie 
the loss is again at most a linear factor 
c F and for their original language the 
loss is at most a square factor. 

What are the disadvantages of subrecur- 
sive languages? Blum [3] has shown that 
program compactness is sacrificed. He de- 
fines the notion of program size axiomati- 
cally. If i is a program, let lil be 
its size. One valid measure of size is 
the length of a program (number of cards 
in the deck). Blum shows that if f is 
any recursive function, there is a primi- 
tive recursive function f. whose minimum 

1 
length subrecursive program, say i ° , 

satisfies 
f(lJl) < Jiol 

for j some general recursive program for 
f. So for f(x) = i00 • x , there is 
l 

some primitive recursive function whose 
shortest subrecursive program is 100 times 
longer than one of its general recursive 
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programs. Furthermore, Blum shows that 
the computational complexity: say run-time, 
of j is nearly the same as that for i 
except on a finite set. 

Blum's result seems to indicate that 
general recursiv.~ Erogramming languages 
have a decided advantage over subrecursive 
languagec. He argues this by saying "in 
order for programs to be of economical 
size, the programming language must be pow- 
erful enough to compute arbitrary general 
recursive functions" 

In this paper Bium's result is examined 
further, and it is simply shown that there 

is a language for ~ (or for ~i ) such 
that any program which can be significantly 
compressed without drastically degrading 
computational efficiency must be a compu- 
tationally complex program. The same re- 
sults apply all through the known subre- 

cursive hierarchies, ~ , and they apply 
to the interesting languages such as Meyer 
& Ritchie [18]. The result also shows 
that there is a trade-off relationship be- 
tween size and computational complexity 
(measured without an a.e. condition). 
Such facts can be construed to mean that 
for the purposes of working in the usable 
levels of the elementary functions, there 
is a subrecursive language capable of ex- 
pressing all elementary functions and there 
is a size measure on that language such 
that the usable functions cannot be sig- 
nificantly compressed without degrading 
efficiency. 

These results indicate some of the uses 

of hierarchies. The classes ~ _ ~i are 
not of interest because their functions 
will be used in computing but because they 
serve to measure the capabilities of lan- 
guages and computing systems. Moreover, 
the specific principles on which the hier- 

archies ~ are constructed provide a 
fundamental description of recursive func- 

tions. Each function f E ~ can be re- 
presented in a normal form, 
f( ) = E[f ( )] where E[ ] is an ele- 

mentary operator and f ( ) is an element 

of a sequence of functions defining a sub- 
recursive hierarchy. % The complexity of 
f( ) has two components: its heiqht re- 
presented by e and its width represented 
by the elementary operator E[ ] (defined 
below). 

In the sections that follow, two speci- 
fic programming languages, G and P , 

t The notation "f( )" is used to indi- 
cate a function when the number of argu- 
ments is unimportant and when a single 
letter f might be construed as an integer 
or an algorithm. Operators from functions 
to functions are denoted by E[ ]. So 
E[f( )] (x) is the value of the image of 
f( ) at x . 
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will be defined and used to investigate 
the size results and to outline the deve- 
lopment of subrecursive hiera~2chies. In 
addition, the subject will be treated from 
the viewpoint of abstract computational 
complexity. Hopefully such a treatment 
provides an easily intelligible overview 
of the subject, laying bare tire methods 
and open problems. 

§ 2 Programming Languages 

General Recursive Language. 

The main results will be developed 
first for specific computing systems (lan- 
guage and machine) and later for acceptable 
indexings and Blum measures. The particu 
lar programming languages used are based on 
Shepherdson & Sturgis [26] and Cleave [5]. 
The language G , for General recursion, 
is defined as follows: 

<constant> ::= oIiI... InI... 
<letter> ::= alblcl...Ix~yJz 
<Letter> ::= AIBIC[...IXIYIZ 
<variable> ::= <Letter>l<Letter><constant>%% 
<binary operator> ::= +i x 
<unary operator> :: = +iI~l 
<term> ::= <variable>i<constant>i<term> 

<binary op><term>I<term><unary op> I 
(<term>) 

<assignment> ::= <variable>÷<term> 
<conditional> ::= if<variable>=0 then go 

to <label> else go to next statement. 
<label> ::= <constant>I<letter>i<letter> 

<label> 
<statement> ::= <assignment>; I 

<conditional>; 
<program> ::= <statement>i<label><state 

ment>i<program><program> 

The conditional is usually abbreviated 
to "if then <label> " leaving the "go 
to" and--~go to next statement:" understood. 
For convenience, the conditional expres- 
sion is used informally. The rule is 

<conditional exp.> ::= if <logical> then 
<term> else <term> where <logical> infor- 
mally represents a true or false state- 
ment. 

Examples: The following are G-programs. 

Z÷0 
S ÷X 

1 if S = 0 then 2 
X ÷X + 1 
S ÷ S -' 1 
if Z = 0 then 1 

Z÷ 0 
N ÷ 1 

S ÷ X 
K ÷ 1 

1 if S =: 0 then 2 
K ÷K + 1 
N ÷N • K 

S ÷ S -" 1 
if Z = 0 then 1 

The first program doubles the contents of 
X , the second computes X! . Notice that 
programs halt when they attempt to branch 
to an unlabeled statement. Also recall 

%% This notation takes liberties with BNF 
by allowing subscripts. 



x ± = if x<y then 0 else x-y. 
YIt is assumed that the reader knows the 

semantics of such a language from sources 
such as [26], [i0] or [25]. It is inter- 
preted on a register machine (named for 
the fact that the computer words which are 
the interpretations of the variables, can 
be used for arithmetic directly without 
the intervention of special registers). 

Subrecursive Lan~ua@e 
The subrecursive language relies 

heavily on its semantics. Consider the 
sequence of functions defined by 

Def. 2.1 f0 (x) = x+l and 

(x) 
fn+l(X) = f (x) n 

where for any function f : ~ ÷ ~, the 

iterate of f is defined by f(0) (x) = x, 

f(n+l) (x) = f(f(n) (x) ). These functions 
have a particularly simple structure in 
terms of the standard high level iterative, 
such as the PL/i DO,END pair. For in- 
stance, for an arbitrary G-program ~ let 
the code 

DO N 

END 
exit 

be interpreted as 

S÷N 

1 if S = 0 then exit 

S ÷ S -" 1 
go to 1 

where S does not appear in the program ~. 
Thus for instance 

DO N 
N÷N + 1 
END 

will double the contents of N. 
The functions f () are computed in a 

n 

canonical manner by the programs: 
f0 is X ÷ X + 1 and fn+l is 

DO X 
f 
n 

END. 
The syntax for the subrecursive language P 
is obtained by adding a "clock" to programs 
in G. Specifically 

<clock> : := (<constant>,<constant>) 
<P-program> ::= <clock>;<G-program>. 
The language P is interpreted on a J- 

limited register machine as defined in 
Cleave [5]. Briefly the machine uses a 
special clock register J inaccessible to 
the program. When the program starts 
executing, J is given a positive value; n, 
and on every step J is decreased by one 
until either the program halts or J reaches 
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0. In the later case the program halts ab- 
normally, the output being whatever is in 
the output register at termination. 

A P-program with clock (n,p) will start 

on input x with J = f(P) (x) (or 
n 

J = fn(P) (max{xl'''''Xn}) on input 

= <x I ..... Xn > ~ n). 

Let ~0,~l,...,#n,... be a standard 

enumeration (more generally an acceptable 
indexing in the sense of Rogers[23]) of all 
G-programs and e0,el,...,en,.., an enumer- 

ation of all P-programs. Let ~#i(x) and 

cei(x) be the number of steps taken by 

~i and ~i respectively on input x. Let 

#i(x)+ abbreviate the fact that ~i halts 

on input x, then ~i(x)+ means it does not 

halt. So ~i(x) = if ~i(x)+ then (number) 

of steps) else (undefined). By convention 
let ~i = <(ni'Pi'Si > 

(so that 8 i = ~j for some j). Then 

notice 
~I (x) min{ - (Pi) (x) ~i (x) } 

• = rn. , • 
l 

The symbol sigma, ~, represents a 
measure of complexity on {$i } or {ai }- 

The list E$ = {~$i } is a complexity 

measure in the sense of Blum [4] (a Blum 
measure). 

§ 3 Subrecursive Hierarchies 
Algebraic Approach 

One of the oldest and most influential 
subrecursive hierarchies is the 
Grzegorczyk hierarchy first presented in 
[12] in 1953. This hierarchy has since 
been defined in several different ways, see 
[i], [2], [7], [18], [21]. Crucial to the 
definition is the concept of the set of 
functions elementary in f , ~ (f) . The 
definition is sketched intuitively below 
so that the reader unfamiliar with the con- 
cept can see approximately what is invol- 
ved. Let ~ be the set of rational num- 
bers, ~ = {0,±1,±2,±1/2,±3,±1/3,±2/3,...}. 
Let ~Q be the field of rational functions 

under + and • . Notice that the field 
is closed not only under + and • but 
also under the operation of substitution 
of functions for variables. Denote the 
operation of substitution by 0 ~s. Now 
extend the field ~ by closing under the 

infinitafy rin9 operations 

S ( X l , . . . , X n , Y )  = q ( x l , . o . , X n , i )  
i=0 



[y] 

p(x i ..... Xn,Y) = H q(xl,. • .,Xn,±) 
I=0 

for i an integer variable. 
For brevity let B be any set of func- 

tions and 0 l,...,0p any operators 

B n + B , then [B;01,...,0 p] is the least 

class containing B and closed under 0. 
1 

The class of clementary functions over the 
rationals ~ , is [~;0s,~,~] (a super- 

field of ~ ). The class of elementary 

functions over ~ , denoted simpl~. ~ , is 
obtained by relativizing 6~, to ~ . 

Succinctly defined, the class ~ is given 
by letting 

b_l(X) = 0 , b o(x) = x + 1 , 

bl(X,y ) = x + y , b 2 (x,y) = x.y, 

b3(x,y ) = x y , B i = {b_l, .... b i} 

Then ~ = [B2;0s,Z,H] = [B3;0s,Z] and 

~(f) = [B2,f;0s,Z,H ] 

It is an open question of considerable 
interest whether ~ can be obtained from 

~ using only 0s and a sequence of new 

base functions, i.e. by a sequence of 
transcendental elements over the field 

The algebraic way of extending the class 

to the larger class ~i is to use a 
sequence of "transcendental extensions" 
of ~ by functions h i A sequence of 

such extending functions, ho,hl,.., will 

be called a spine for a hierarchy up to 

if U ~ (hi) = . For the sequence 
i=0 

f • of Def .2.1 T 
1 

Theorem 3.1: ~(fn ) c ~(fn+l ) for all 

n > 2 
Letting ~n = ~(fn ) for n > 3 

%Grzegorczyk used a different sequence of 
functions, go(x,y) = y+l , gl(x,y) = x+y 

g2(x,y) = (x+l).(y+l) and for n > 2 

gn+l(0,y) = gn(Y+l,y+l ) and 

gn+l(X+l,y) = gn+l(X,gn+l(x,y)) His 

classes ~o c ~i c ~2 c ~3 =~ are de- 
fined by 0S and limited recursion from 

gi ( ) For i < 3 the ~i are not of 

interest here because they are not of the 
form ~ (f) 

Theorem 3.2: U 6n =~i 
n=3 

These theorems are proved by routine 
rate of growth arguments. A function f 
is said to majorize a class ~ (written 
f > ~ ) iff for all g 6 ~ there is a p 
such that g(xl,...,x n) < 

fn (p) (max{x l,...,x n}) The notation f <~ 

means there is a g 6~ and f(x) < g(x) 
for all x . It is shown by an inductive 
analysis of the definition of ~(fn ) that 

fn majorizes 6 (fn) It follows that no 

one argument function in ~ (fn) can grow 

as fast as fn+l(X) = fn(X) (x) Thus 

fn+l ~ ~n 

Containment, ~n ~ ~n+l , is shown by 
giving an elementary scheme for defining 
fn from fn+l " A more intuitive approach 

to this step is discussed later. 
To prove the equality of Theorem 3.2, 

Grzegorczyk used a formulation of ~i in 
terms of iteration, due to R.M. Ribinson 
[22]. The functions fn mirror the depth 

of nested iteration and this makes the 
argument straight forward. Once this 
theorem is available and the computational 

approach to ~n developed, as below, it 
becomes an easy matter to relate other 

hierarchies to ~I . 

The Grezegorczyk hierarchy ~n was 
first given a computational interpretation 
by Cleave [5] and later by Meyer & Ritchie 
[18]. It was related to the Kleene subre- 
rursive hierarchy [15] and to the depth of 
nesting of primitive recursion by Art [i] 
and [2]. 

The class ~I is but the first level in 
the oldest subrecursive hierarchy, P4ter's 

[19] n-fold recursive functions ~n . It 
was natural to ask whether Grzegorczyk's 

approach could be extended to ~n . Rob- 
bin [21] answered the question for Grze- 
gorczyk's hierarchy and Constable [7] ans- 
wered the question for Cleave's computa- 
tional version. 

In terms of the algebraic approach, an 
extension procedure is quite naturally sug- 
gested. Simply consider a transfinite 
sequence of "transcendental elements'!. 
Thus for an ordinal ~ let ~n ÷ ~ be a 

fundamental sequence to e , e.g. n ÷ ~ , 
2 

• n + ~ , etc. Then new 'Ilonger" 
sequences are defined by the condition 

f (x) f~ (x) for ex 
X 

Given the standard fundamental sequences 
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for ordinals e < e it is shown in Con- 
o 

stable [7] that for ~ = ~(f ) ~ < e ° 

Theorem 3.3: ~e c ~8 if ~ < 8 < e O 

Robbin [21] showed that % 

Theorem 3.4: U ~ = ~n 
e<n 

In both of these results, the properness 

condition, f ~ ~8 if e < 8 , is shown 

by a simple application of the growth rate 
arguments that Grzegorczyk used. The cri- 
tical lemma is that f is strictly in- 

creasing for all e and all x . 

To prove that ~ ~ ~8, a computational 
analysis is used rather than a syntactic 
analysis of recursion schemes. (The syn- 
tactic method would result from a direct 
attempt to generalize Grzegorczyk's me- 
thods.) A computational approach appears 
necessary when the functions reach the 
complexity of f The next section will 

consider the relationship between the Ex- 

tended Grzegorczyk classes ~ ~ and mea- 
sures of computational complexity. 

Computational Approach 

Principle II; If ~i < ~(f) , then 

~i £ ~(f) 

This principle asserts that if there is 
a way to compute g( ) which is bounded 
by an elementary in f amount of time, 
then the function is elementary in f . 
This is less obvious than I. It was first 
noticed by Kleene for the notion of "pri- 
mitive recursive in". Indeed, it is a 
direct consequence of the Kleene Normal 
Form Theorem (NFT) [14] or [24] which as- 
serts that any ~i 6 ~ satisfies 

~i(x) = U(~yT(i,x,y,)) x E ~n 

where U( ) 6 ~ and the "T-predicate" is 
elementary. Principle II follows from the 
fact that although the operation of mini- 
mum, ~ , is not elementary, the operation 
of limited minimum, ~ < , is. Therefore 
showing that ~i < ~(fY implies that 

~i 6 ~(f) , since all the operations in- 

volved are elementary in f . 
The fundamental fact behind the NFT is 

that the operation of the computing system 
can be~described in an elementary manner. 
It is difficult to imagine a real computing 
system which does not posses an elementary 
description. See Cobham [6] for a discus- 
sion of this point. 

The computational method of analyzing The two principles apply to the analysis 
hierarchies depends on two basic principles, of the Extended Grzegorczyk hierarchy, 
They are stated first for the time measure, 

, and later generalized to restricted 
Blum measures. 

Given f( ) , let ~f be a specific 

G-program for f( ) 

Principle I: If g E ~(f) , then there is 
a program ~g for g and an elemen- 

tary operator E[ ] such that %% 
~g(X) < E[~f( )] (x) for all x 

This principle asserts that the com- 
puting system T~ operates in an elemen- 
tary manner, is, if g() can be de- 
fined by a sequence of elementary oper- 
ations, then the computing system can 
mimic those operations so that the cost 
is within an elementary operation of the 
cost of some specific algorithm for f(). 
This principle is true for all existing 
models of computing systems, such as one- 
tape or multi-tape Turing machines or 
Register machines. Indeed it is a good 
criterion by which to judge the system, 
"does it do elementary arithmetic in an 
elementary manner?" 

% Robbin used a different set of functions, 

Wo(X) = 2 x and W +l(X) = w(X) (i) 

%% 
E[ ] is an elementary operator if 

E[f( )] E ~(f()) for all f( ) 6 ~ . 

~ in the following manner. Suppose each 
f has the property 

Operator Honesty Property: There is an al- 
gorithm, f , for f( ) and an elementary 
operator E2[ ] such that 

~f(x) < E 2[f( ) ] (x) for all x . 

Then ovserve that for such f 

g E~(f)implies o~x ) < EI[E2[f( )]] (x) 

for all × (by Honesty ann I). 
So g 6~f) implies ~i < ~(f) " 

Now by II ~i < ~(f) implies ~i 6 ~(f) 

Hence 

Theorem 3.5: For f as above, g E 6(f) 
iff ~g < ~(f) 

As long as f has the (operator) Hon- 

esty Property and principle II holds, the 

question of membership in ~e = 6(f~) is 

reduced to a question of estimating bounds. 

A crucial step in proving ~ c 68 is the 
verification of honesty. Once this is ac- 
complished, then the hierarchy can be ana- 
lured by the simple technique of comparing 
growth rates, in particular showing that 

f majorizes ~e 

-5- 



It is easy to see that the run-time 
functions ~i satisfy a stronger honesty 

condition. First define 

Def. 3.1: f is h-honest iff ~¢i = f 

and c~i(x) < h(~i(x)) for all x . f 

is elementary-honest iff h 6 ~ . 

The c~i are elementary honest. This 

allows 

Theorem 3.6: If f has the (operator) 
Honesty Property, then 
g E ~(f) iff ~g £ ~ (f) 

The proof follows by noticing that 
a%g < ~(f) and that honesty for a~g 

implies that there is a ~j = a~i and 

o~j < ~(f) 

Abstract Computational Approach 

The abstract approach to computational 
complexity can be used to cast the pre- 
vious observations in a more general set- 
ting. The abstraction begins with an 
acceptable indexing, {~i } , as the gene- 

ralization of a particular general recur- 
sive computing system. See Rogers [23] 
for a treatment of these indexings. Given 
{~i } , a Blum measure of computational com- 

plexity is defined as a list of functions 
= {~i } such that there is a 0,l-valued 

recursive function M , and the following 
axioms are satisfied: 

Axiom I: ~i(x)+ iff ~i(x)+ 

Axiom 2: M(i,x,y) = 1 iff ~. (x) = y 
1 

Example: The list E = {o~ i} is a Blum 

measure. 
The kinds of classes of interest here 

are the complexity classes of Hartmanis & 
Stearns [13] and their "everywhere" coun- 
terparts. 

= {total ~iJ~i(x) _< t(x) Def. 3.2: ~t 

a.e.x} 

~$ = {total ~iJ~i(x) t(x) for all x} ! 

The a.e. (almost everywhere, i.e. except 
for a finite set) classes, ~t ' are most 

Axiom 3; If ~i 6 6(#j) then there is an 

elementary operator E[ ] and a ~k = ~i 

such that ~k(X) <_ E[~j( )] (x) for all 

x . 

Axiom 4: ~i < ~(~j) implies ~i 6 ~(~j) 

Axiom 5: #i are elementary honest, i.e. 

there is an h E ~ such that for all 
i there is a ~q( ) = ~i ( ) , and if 

#i(x)+ then ~q(X) < h(~i(x) ) 

Def. 3.3: Given an elementary machine 
class (emc), <~i,~i > , call an ordinally 

indexed sequence of recursive functions, 
{h e } , an (elementary) spine iff 

(i) each h is strictly increasing a 
(ii) each h is elementary operator 

a 
honest 

(iii) ha(x) < hE(x) for all x > N a if 

e < 8 

Theorem 3.7: If {h e } is an (elementary) 

spine, then g 6 6 (h e ) iff :~g = g and 

@g E ~,, (h e ) 

Def. 3.4: Call an (elementary) spine nor- 

mal iff ha+l(X) = h (x) (x) for all x . a 

Note, supplying the initial value 
ho(X) = x + 1 generates the normal Grze- 

gorczyk sping up to 

Theorem 3.8: If {h a} is a normal spine 

over an emc, then 
~(h ) c ~(hs) for 3 < a < 8 

The proof of this theorem requires pro- 
perties (i) - (iii) of fa ' Axiom 4 (prin- 

ciple II) and the standard techniques of 
growth rate analysis. 

Given this theorem the question of whe- 
ther an Extended Grzegorczyk type hierarchy 
exists up to an ordinal a is reduced to 
the question of whether a normal spine 
exists up to a 

Theorem 3.9: If h ° 6 ~i and {h a} is a 

normal spine, then 

U ~ (he) = ~i 

common in the literature of complexity a<~ 
theory, but the "everywhere" classes, ~t ' Def 3.5: 

will also be useful here. 
Following Blum, call the pair <#i,~i > 

a machine class. Call the machine class 
elementary if the following additional ax- 
ioms are satisfied for #i and ~. total 

functions. 3 

Call {h e } e < y an e o -stan- 

dard spine if h (x) = h (x) for e ÷ e 
e a n 

x 
the standard fundamental seq~Lence to 

e < Eo 

Theorem 3.10: If h O E ~ 1 and {h e } is 

a normal eo-Standard spine, then 

-6- 



u e) = 
e<0~ 

Interesting relationships exist between 
elementary classes, ~(f) , and g-comple- 
xity classes over an emc. For instance r if 
f is strictly increasing and f > ~ , then 
f will majorize £ (f) . In fact a genera- 
lized Ritchie theorem holds. 

Theorem 3.11: If f is strictly increas- 
ing, elementary operator honest over an emc 
and f > ~ , then ~(p) c %(p+l) and 

= 

Cor. 3.12: If {he} is an elementary 

spine and ~ = ~(he) then if h >~ , 
S ' e 

then U ,~h (p) = ~e 
p=0 e 

All of these results follow by applying 
the general principles I and II (axioms 3 
and 4) as they have been applied in the 
literature for the special cases. The dif- 
ficult matter of showing that relatively 
long spines exist is put aside. 

Another relationship between complexity 
classes and Grzegorczyk type classes is 
given by the Union Theorem of McCreight & 
Meyer [17]. Putting ~n = ~(he+n ) and 

co 

~e = n- -U0~n the theorem asserts 

Theorem 3.13: For {hc~} a normal spine 

over an emc, and ~e = ~(he ) there are 

and u s such that ~e =~ and t 
e 

e 

From the recent work of McCreight & 
Meyer [17] a very interesting type of spine 
emerges. It could be considered a "mini- 
mal" spine. First it follows from Blum 

[4] that any complexity class ~ named 

by an honest t can be extended by apply- 
ing a "jump function" h( ) to t , i.e., 

~ c ~hot " The situation can be arranged 

so that 
(i) tn(X) < tn+l(X) a.e. x and 

~t c 
n ~tn+l 

(ii) tn+l(X) < hl(tn(X)) a.e.x hl( ) 

hl( ) E ~ , hl ( ) strictly increas- 

ing and h2(tn(X)) < tn+l(X) a.e.x; 

(iii) each t is h honest for h E ~ . 
n 

At the limit stage the union theorem 

= ~ for some Guarantees that U ~t u 
n=0 n 

increasing u . 
The McCreight & Meyer [17] honest theo- 

rem guarantees that there is a measured 
set of functions F which can name every 
complexity class. In particular then 
there is an honest ~ such that ~u = ~ o 

The h in (ii) is taken to be an h for 
which F is h-honest. 

It appears possible that for u's con- 
structed from an increasing sequence of 
the type t n , ~ can be made strictly 

increasing. If this is the case, let t 
t = strictly increasing ~ . Then for 

each ordinal y a mfnimal spine up to y 
can be selected simply by choosing funda- 
mental sequences for ordinals < y . In 
particular there exists an e -standard 

O 

minimal spine. Let ~ be the hierarchy 

produced by the minimal spine. 
Unfortunately as the author has shown, 

even if minimal spines constructed via the 
McCreight-Meyer procedure do exist, they 
are so fine that 

Theorem 3.14: If t o E ~ , then for every 

constructive ordinal y 

~<y ~e 

§ 4 Size of Programs 

According to Blum [3] the notion of pro- 
gram size can be abstractly defined 
cifying a size function I] : ~ ÷ ~Y 

b spa- 

which satisfies 
condition i: I I : ~ ÷ ~ is recursive 

condition 2: Iyl -I is finite for all y 
condition 3: there is a recursive function 

b such that b(y) is a bound on the 

cardinality of Iyl -I . 
Given a programming language (formalism) 
{~i } , the size of a program (index) i 

is simply Iil , the value of the size 
function. 

As an example of a size function consi- 
der the following inductive definition o# 
the length of a G-program. in 
(<Letter>) = 1 , in(<Letter> n) = 

in(<variable>) = n + 1 . If t is a term, 
say t = (a<operator>b) where a and b 
are terms, then in(t) = in(a) + in(b) + 1 
For assignment statements, 
in(<variable>÷<term>) = In(<variable>) + 
in(<term>) + L . If L is a label formed 
by concatenating the labels L 1 and L 2 

then in(L) = in(Ll) + in(L2) , and 

in(<letter>) = 1 , in(n) = n . Finally 
in(if<variable> = 0 then <label>) = 
in(<variable>) + in(<label>) + 2 The 

-7- 



length function, In( ) , is a valid size I~jl > I~il , so d : (I~j " I~il) > 0 

function. From here on let I I be the 

in( ) size function, and s + d = Pi " 

The results of the hierarchy section Observe that for fixed p , say a p 

show that "clock-bounded" formalisms simi determing the limit of the usable levels 

lar to P can be defined for all classes of ~ , the value q required to satisfy 

, more generally for any class ~t In f~P) (x) < f(q) (x) decreases monotonically 

particular, the clocks f~P) ( ) can be n 

used to define a c.b. (clock-bounded) lan- 

guage for ~ . The programs have the form 

<clock,G-program> where the clock is 

(3,p) Let ~o,~i, .... be an enumeration 

of these programs (say E-programs), and 

let e i = <(3,Pi),Si > where 8 i = ~j for 

some G-program ~j 

A reasonable size function on E-program 

is 

l if3 = Pi ÷ I if 

(notice there is a c , c = If31 , such 

IZil 3 + c = l~il where q is the G-pro- 

gram which first computes f~P) (x)" and 

then behaves like i. .) 
l 

as n increases. Therefore there is an 

np such that f~P) (x)" < fnp(X) for all 

x . In the clock formalism for ~(f ) 
n 
P 

with the size measure ]I n , the programs 

P 
of ~f3(p ) cannot be shrunk by any G-pro- 

gram without loss of efficiency. The same 

results apply to any level of the hierarchy 

~ defined earlier. 

These ideas can also be used to formu- 

late a conservation or "trade-off" princi- 

ple. Notice that if the level p of the 

Ritchie hierarchy, U~3(p ) can be enume- 

rated, say po,Pl, .... Then by Blum's re- 

Because ~ is recursively enumerable sult there is a G-program 

and because all E-programs halt, it is poe- shrink the size of some 

sible to enumerate the shortest E-programs 

for ~ Let mo,ml,.., be an enumeration 

of the shortest programs (thus mo(), 

ml( ) .... is an enumeration of ~ ). Ac- 

cording to Blum [3], for each function 

f(x) = x + s s 6 ~ there is some m. 
1 

and ~j such that mi( ) = ~j( ) and 

f(I#jl) ~ Imil 3 • Without loss of genera- 

lity assume f(l~j I) = Imil 3 , i.e. 

I~jl + s = }mil 3 Say that ~j shrinks 

m i b[ s 

Call an E-program p-complex iff p is 

the least j such that ~ii(x) < f~J) (x) 

for all x . 

Theorem 4.1: Suppose that the program #j 

shrinks m i by s without loss of effi- 

ciency, then m i is at least s-complex. 

The proof is simple. Since m. is the 

shortest E-program and #j is efficient, 

the only way ~j can shrink m i is by 

removing the clock. Thus the clock must 

be of size s , so s ~ Pi That is, 

I~jl + s = Imil 3 = Pi + l~il If 

l~jl < 18ii then <(3,pi),~j> would be a 

shorter E-program for mi( ) because 

~¢j(x) < f~Pi) (x) for all x . Thus 

which can 
Pi by s , even 

for s >> p . Moreover this can be done 

without loss of efficiency except on a 

finite set S . According to Thm, 4.1, 

Blum's s~tement cannot be strengthened 

to hold everywhere. Stated in other terms 

Theorem 4.2: Programs in a fixed level p 

of the (generalized) Ritchie hierarchy for 

~ cannot be shortened with respect to 

I I~ more than p without loss of effi- 

ciency at least on a finite set S . For 

any s there are programs which can be 

shortened by s with a loss of efficiency 

equal to (s - p) , i.e. the shorter pro- 

gram must be (s-p)-complex at least on a 

finite set S . 

Thus when computational complexity is 

measured by an everywhere condition, a con- 

servation principle holds between size and 

efficiency. 

Acknowledgments 

The author would like to thank Dr. Allan 

Borodin for his helpful discussions about 

this paper, especially for his help and 

independent conclusions on minimal spines. 

Special thanks go to Pat Hauk for her ex- 

cellent typing work. 

-8- 



i]. 

2]. 

3]. 

4]. 

5]. 

6]. 

7]. 

8]. 

9]. 

i0] . 

ii] . 

12] . 

13] . 

14] . 

15]. 

References 

Axt, Paul "Enumeration and the 
Grzegorczyk hierarchy," Z. Math Logik 
Grund.Math 9 (1963), 53-65. 16]. 

Axt, Paul "Iteration of primitive 
recursion," abstract 597-182, Notices 
A.M.S., Jan. 1963. 

Blum, M. "On the Size of Machines," 17]. 
Information and Control, II, (1967), 
257-265. 

Blum, M. "Machine-Independent 
Theory of the Complexity of Recur- 
sive Functions," JACM, 14, (1967), 
322-36. 

Cleave, John P., "A Hierarchy of 
. . . . .  ns " Prlmltlve Recurslve Functlo , 

Zeitschr. F. Math Logik and Grund. 
D. Math., 9, (1963), 331-345. 

20]. Cobham, Alan "The Intrinsic Com- 
putational Difficulty of Functions," 
Logic, Methodology and Philosophy of 
Science, Amsterdam, 1965. 

Constable, Robert L. Extending and 
Refining Hierarchies of Computable 
Functions. Comp. Sci. Tech. Report 22]. 
#25, Univ. of Wisc., 1968. 

Constable, Robert L. "Subrecursive 
programming languages for ~n,,, 23]. 
Comp. Sci. Tech. Report 70-53, 
Cornell Univ., 1970. 

Constable, Robert L. and Allan B. 
24]. Borodin "On the efficiency of pro- 

grams in subrecursive formalisms," 
Comp. Sci. Tech. Report 70-54, 
Cornell Univ., 1970. 25]. 

Elgot, C. C. and A. Robinson 
"Random-Access Stored Program Ma- 
chines, An Approach to Programming 
Languages," J.A.C.M., ii, (1964), 26]. 
pp. 365-399. 

Fabian, Robert J. Hierarchies of 
~eneral recursive functions and 
ordl~ recursion, Ph.D. Diss~ 
Case Inst. of Tech., 1965. 

Grzegorczyk, A. "Some Classes of 
Recursive Functions," Rozprawy 
Matematcyzne, (1953), 1-45. 

Hartmanis, J. and R. E. Stearns 
"On the Computational Complexity of 
Algorithms," Trans. AMC, 117, 5, 
(1965), 285-306. 

Kleene, S.C. Introduction to 
Metamathematics, Princeton, 1952. 

Kleene, S. C. "Extension of an 

Effectively Generated Class of Func- 
tions by Enumeration," Collog, Math. 
6, (1958), pp. 67-78. 

McCarthy, John "A Basis for a 
Mathematical Theory of Computation," 
Computer Programming and Formal 
Systems, Amsterdam, 1963, pp. 30-70. 

McCreight, E. M. and A. R. Meyer 
"Classes of computable functions d~- 
fined by bounds on computation," 
ACM Symp. on Theory of Computing, 
1969, 79-88. 

18]. Meyer, A. R. and D. M. Ritchie 
"The complexity of Loop programs," 
Proc. 22 National ACM Conf. (1967), 
465-470. 

19]. P~ter, Roze Recursive Functions, 
3d ed., New York, 1967. 

Ritchie, Robert W. "Classes of 
Predictably Computable Functions, 
Trans." A.M.S., 106, 1963, pp. 139- 
173. 

21]. Robbin, Joel Subrecursive hier- 
archies, Ph.D., Diss, Princeton, 1965. 

Robinson, R.M. "Primitive recur- 
sive functions," Bull AMS, 53, (1947), 
915-942. 

Rogers, H. "G6del numberings of 
partial recursive functions," J.SL, 
23, 3, (1958), 331-341. 

Rogers, Hartley Jr. Theory of Re- 
cursive Functions and Effective Com- 
putability, New York, 1967. 

Scott, Dana Some Definitional 
Suggestions for Automata Theory, 
J. Compts., & Syst. Sci., i, (1967), 
pp. 187-212. 

Shepherdson, J. C. and H. E. Sturgis 
"Computability of Recursive Func- 
tions," J.A.C.M., i0, 1963, pp. 217- 
255. 

-9- 


