
UNSOLVABILITY CONSIDERATIONS IN COMPUTATIONAL COMPLEXITY

F. D. Lewis

Department of Computer Science
Cornell University
Ithaca, New York

O. ABSTRACT

The study of Computational Complexity
began with the investigatio~ of Turing
machine computations with limits on the
amounts of tape or time which could be
used. Latter a set of general axioms for
measures of resource limiting was presen-
ted and this instigated much study of the
properties of these general measures.
Many interesting results were shown, but
the general axioms allowed measures with
undesirable properties and many attempts
have been made to tighten up the axioms so
that only desirable measures will be de-
fined.

In this paper several undecidability
aspects of complexity classes and several
sets associated with them will be examined.
These sets will be classified by their de-
gree of unsolvability and restrictions will
be placed on measures so that these degrees
are identical. This gives rise to a new
crLterion for the "naturalness" of measures
and to suggestions for strengthening the
measures of complexity.

i. INTRODUCTION

The aim of computational complexity is
to classify and study the functions which
are computable. This is usually done by
placing them into some context using an
important characteristic of the function.

Sub-recursive hierarchies were first
used to divied these functions into classes
and exhibit some of their properties.
Examples of this are Grzegorczyk's hier-
archy of the primitive recursive functions
[6] and the nested recursive functions of
P4ter [13]. These methods classify func-
tions by their structure, placing limits
on the operations which are used to build
functions.

In automata theory the recursive func-
tions were classified by limiting some
basic resource used in computation. This
resource-bounded complexity began with the
consideration of Turing machine computa-
tions using a limited amount of tape [ii,
18] or time [7].

All of the recursive functions were
placed in complexity classes according to
how difficult they were to compute, or how
much of a "natural" resource they used.
These classes exhibited many interesting

properties and were studies extensively for
a number of years. A result, due to Ritchie
[14], combined with the Union Theorem
[9] indicates that the sub-recursive hier-
archies are reproduced in the complexity
hierarchies when tape length and time are
used as measures.

Later a general set of axioms for
measures of computation [i] was presented.
This involves taking some admissiable
enumeration [].6] of Turing machines (or
partial recursive functions) denoted by:
Mo,Mi,M2,... and assigning a measure or

step counting function ~o,~i,~2,... to

each machine. The set of measures is de-
signated as ~ and these measures must
obey the following two rules:

i) Mi(x) halts <=> #i(x) halts

2) There is a recursive function C
such that for all i , m , and n :

/i if #i(m) = n

C (i,m,n) [0 otherwise .
This first axiom indicates that whenever
some function computes a value, then a cost
of computation can be associated with it.
And according to the second rule, the ques-
tion "Does it cost n to compute Mi(m)?"

is ~lways recursive.
These axioms allow a very general set

of measures for which many interesting
results have been derived. The complexity
classes formed from the general measures
have been studied extensively in regard to
their structural [9,3] and naming proper-
ties [2]. Also the properties of operators
[4,10] have been noted.

Unfortunately, many of the measures
allowed under the axioms are so general
that not all of the intuitively derivable
properties are preserved. Under time and
tape as measures, complexity classes are
recursively enumerable (r.e.) but measures
can be defined so that some of the classes
are not. Other properties such as finite
invariance and infiniteness are not pre-
served by measures either.

Therefore some condition must be added
to the original two axioms to preserve
properties throughout the complexity clas-
ses and if possible eliminate the undesir-
able properties. It is reasonable to ex-
pect complexity classes to be r.e. and to

This research was supported in part by National Science Foundation Grants GJ-155 and
GJ-57 9.

-22-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800161.805145&domain=pdf&date_stamp=1970-05-04

conform by possessing the same properties.
This notation will be formalized below.

2. STATE OF THE ART (WITH TWO AXIOMS)

2.1 Complexity Classes

Most of the interesting results in com-
putational complexity have been about the
complexity classes or the classes of t-
computable recursive functions. These
classes are defined as follows:

Definition: The class of t-computable
functions is:

R t~ = {total f]there is some M.i = f such

that ~i(x) ~ t(x) almost every-

where} .

These classes have been studied in de-
tail for time and tape measures [7,18] and
some of the desirable properties which were
found carry over to complexity classes de-
fined from general measures. When measures
were restricted slightly, then more proper-
ties of the natural measures carried over.

One important property of complexity
classes under the "natural" measures was
the fact that the classes were r.e. In
[19], Young wondered if this were true for
classes defined from general measures.
Regretfully it is not, and this result is
presented here and also has been shown in-
dependently by Robertson and Landweber [15].
Before this can be show, however, some pre-
liminaries are in order.

To describe classes and their members
more intuitively a set of algorithms for
computing them must be given. This set
"presents" the class and is defined:

Definition: The set A is a presentation
for the class: C iff A contains an in-
dex for each member of C and all elements
of A are indices for members of C

The presentation which immediately comes
to mind is the complete presentation or
index set for a class.

Definition: The set A is the index set
for the class C iff:

A = {iIMi = f ~ ~}

Usually the index set for the class of func-
tions C will be designated ~C . (~C is
used fo~ classes of functions rather than
8C since 8 has been used in the litera-
ture for classes of sets.)

Definition: A class is r.e. iff it has an
r.e. presentation.

An interesting type of class is one
where an algorithm for any member of the
class can be matched with an element of
some standard presentation for the class.
These classes are used below and are de-
fined as follows.

Definition: C is a matchable class iff

there is a recursive g and recursive pre-
sentation A such that:

i 6 ~ => g(i) E A and M i = Mg(i)

Examples: a) Const = {the constant func-
functions} Let A = {ao,al,a 2 }

where VX[Mak(x) = k] and for any x de-

fine g(i) = aM. (x)
1

b) C = {fn } for some recur-

sive set of functions such that

VX[fn(X) < fn+l(X)]

c) C = {fn } for some recur-

sive set of functions such that
Yn[fn(O) = n]

Now a measure will be constructed using

from a matchable class so that an R t

this new measure is not r.e. Any of the
examples will work, but (a) will be used
for reasons of clarity.

Theorem 2.1: For any recursive t there
¢

is a measure $ such that R~ is not r.e.

Proof: Let A = {ao,al,...} be a recur-

sive presentation of the class Const where
for all x , Mak(x) = k . Then for any

measure # , consider:
0 if i = a k and Mk(k) does

| not halt in x steps
(x) <

~i It(x) + %i(x) + 1 otherwise .

R ~ and Note that Rt = o

Mak £ R ° <=> Mk(k) n e v e r h a l t s .

a) $ is a measure since:
i) $i(x) halts <=> Mi(x) halts since

all M are total and ~ is a
a k

measure
2) C(i,m,n) H $i(m) = n is recursive

since is can be described:
'C (i,m,n-t (m)-l) if

n > t(m) + 1 and
a)--i ~ A or
b) i = a k and Mk(k)

halts in m steps
C(i,m,n) = 1 if n = 0 , i = a k

and Mk(k) doesn't

halt in m steps
0 otherwise

is not r.e. b) R = R o

Assume R~ is r.e. and let

B = {bo,bl,...} be an r.e. presenta-

tion of it. Due to the construction of

-23-

all

functions and in fact:
Mb (x) = k <=> = . l Mbi Mak

Therefore the set {aMb (x),aM (x),...}

o bi
is an r.e. set and is exactly the set

{akIMk(k) never halts} e

This set is obviously recursively iso-
morphic to the well known set K = {k I
Mk(k) never halts} which is not r.e.

So from this contradiction, it can

is not r.e be concluded that R t

In the previous proof the productive
set K was used in order to produce the

This class is pro- non-r.e, class R t

ductive [5] but if some set other than
is used then an immune (contains no infi-
nite r.e. subclasses) class would have
been formed.

b k must be indices for constant cribe sets very precisely, but almost no
intuitive information about a set is given

2.2 Isomorphism Types

Most of the important properties in
automata theory are preserved under iso-
morphisms. These are the recursively in-
variant properties and when sets are clas-
sified under recursive isomorphisms, all
the sets in any isomorphism type possess
the same properties. These concepts are
defined:

Definition: P is a recursively invariant
iff for any i-i, onto, recursive function
f , if the set A has P then so does
f (A)

Definition: A is recursively isomorphic
to B (A ~ B) iff there is a i-i, onto,
recursive f such that B = f(A)

By a theorem of Myhill [12], the isomor-
phism types (sets equivalent under isomor-
phisms) are the same as the equivalence
classes (or 1-degrees) under i-i reduci-
bility. The reducibilities used here are
defined as follows.

Definition: A is i-i reducible to B
(A ~i B) iff there is a i-i, recursive

function g such that for all x :
x £ A <=> g(x) E B

Definition: A is i-i equivalent to B
(A Hi B) iff A ~i B and B ~i A .

Definition: A is Turin~ reducible to B
(A ~T B) iff there is a machine with B

written on one tape which can decide mem-
bership in A .

Definition: A is Turin@ equivalent to B
(A HT B) iff A ~T B and B ~T A

Hierarchies which result from the reduci-
bilities outlined above can be used to des-

by its place in the hierarchy. Therefore
another hierarchy, the Arithmetical Hier-
archy, will be used in conjunction with
the 1-degrees. This hierarchy reflects the
structure of a set according to the number
of alternating quantifiers in the expres-
sion of its membership problem. The mem-
bership problem for a Zn set will begin

with a "Z" and contain n alternating
quantifiers, while a K n set begins with
a "V"

A pictorial representation of the Ari-
thmetical Hierarchy appears below. The
lines slanting down towards tlhe right de-
note the upper boundaries of the Zn areas,

while the lines slanting down to the left
from the top of the Hn areas.

Figure i.

The locations of the following well-known
index sets are indicated in the diagram.

a) 0~ = {ilS i never accepts}

b) @Finite = {ilM i accepts a finite

set}
c) ON = {ilM i accepts everything}

= ~Total
= {i M ~ i~ a total function}

d) ~Bound = {ilthe range of M i is

bounded}
= {ili 6 8N and

ZkVx[Mi(x) ~i k]}

e) 8Cofinite = {ilM i accepts a

cofinite set}
These sets are all complete or maximal in
their respective locations in the hierarchy
when ordered by 1-degrees.

2.3 Index Sets of Complexity Classes

Now the total presentations for the com-

plexity classes R~(~R~) will be classi-

-24-

fied by the methods outlined above. This
classification will be used to suggest a
criterion for measures and possibly help
to discover method for strengthening the
axioms.

First, the index sets of complexity
classes formed from the "natural" measures
qill be classified. This will be done for
time (the number of steps in a computation)
but the proof may be done more elegantly
via two theorems in section 3, but it is
presented here to emphasize that the r.e.-

ness of R t and the fact that each R t

contains all finite variants for some func-
tion are important properties of time as a
measure.

Theorem 2.2: ~R~ ~ ~Bound for time.

Proof: a) ~R~ ~i ~Bound

is an r.e. class [7] for time Since R t

as a measure, let A = {ao,al,...} be an

Then for any r.e. presentation for R t .

M i define the machine Mg(i) as follows:

I = (0) 0 if Mi(0) Mao

= ~ . (o) Mg(i) (0) 1 if Ml(0) ~ Mao
!
~diverge if Mi(0) diverges.

Then assuming that for input n - 1 :

f j if S i(k) = Saj (k)

Sg(i) (n-l) = ~j+l if M i(k) ~ Maj (k)

~diverge if M i diverges for

any x < k .
Then if Mi(k) = Ma (k) and consequently

3
M. agreed with M on all x < k let:
1 a. --

j if M i(k+l) = Maj (k+l)

Mg(i) (n) = j+l if S i(k+l) ~ Ma3 (k+l)

Idiverge if M i diverges for

k any x < k+l .
If, however, Mi(k) ~--Ma. (k) , then start

3
the comparison over with M as fol-

aj+l
lows:

Ij +l if M i(0) = S (0)
aj+l

= ~ (o) Mg(i) (n) j+2 if M i(0) ~ Ma9+l

kdiverge if Mi(0) diverges

Therefore Mg(i) is total only if M i

is total and if for some aj E A , M i = Ma.
3

then for all X:Mg(i) (x) ~ j Thus:

i E ~R~ <=> g(i) E aBound

b) ~Bound <i ~R~ .

there is a function For any r.e. R t

b which majorizes the class [2]. Also,

contains for time as a measure, every R t

at least one function and all its finite
variants. Therefore, select some f in

R t so that all of its finite variants are

and for any M. define: also in Rt ' l

~f(x) if Mi(x) ~ max[Si(0),...,

M i (x-l)]

Mg(i) (x) = b(x)+l if Mi(x) > max[Mi(0) ,

• . . ,M i (x-l)]

diverge if any of M i(0) ,...,

Mi(x) diverge

Therefore, Mg(i) is total if M i is

total, and if M i is bounded then Mg(i)

will be a finite variant of f and there-

fore a function in R t .

An interesting property of time as a
measure is indicated by this result. All
of the index sets of the complexity clas-
ses fall into the same 1-degree; in fact,
the 1-degree of ~Bound . This means that

all of the ~R~ possess exactly the same

properties. The following condition on
measures is suggested by this fact.

Definition: @ conforms (on ~R~) iff

for all recursive t I and t 2 ,

This definition can be extended to Turing
reducibility in the obvious manner• (Since
all index sets are cylinders, m-conformity
is the same as conformity•) An interesting
fact is that all measures T-conform.

Theorem 2.3; Every @ T-conforms (on

~R~) .

Proof: The "oracle machine" ~Equal
which has
~E u ~ = {<i,j>IVx[Mi(x) = Sj (x)]}

(or all pairs of identical machines)
written on its reference tape will be used
in this proof. ~Equal is a well known
K2-complete set, and therefore can decide

membership problems in the Turing degree
containing (b), (c), and (d) in Figure i•

Also, the following two presentations
are used;

@
A = {aoral,...} = presentation of R t

-25-

B = {bo,bl,...} = presentation of

03 - R t

where ~D is the class of all partial re-
cursive functions.
The set A used will be defined later as

I t , and is in Z2 , while the set B can

be r.e. [15]. Therefore, A and B can

be listed by M ~Equal
This machine operates (when given input

This set is contained in Z2 since its

membership problem is easily written in Z2

form.
When tape and time are used as measures,

for t(x) = constant are recur- the I t

sive (this allows minimal growth rate [2]),

becomes while for increasing t(x) , I t

H 0Finite) By slight Z2-complete (or I t

modification these measures can be forced

i) by listing the sequence

and checking the pairs <ao,i> , <bo,i> ,

etc. against the pairs on the reference
list.

Sooner or later some <am,i> or <bn,i>

will match a pair on the reference tape
and then the machine halts and outputs:

M~Equal(i) = t l if <am,i> E ~E~ual
if <bn,i> E ~Equal

Therefore ~R~ _ ~T ~Equal and since

~Equal ~ 0N ~I ~R~ (shown below), the re-

sult follows.

This result indicates that the general
measures conform in rather a rough way.
Unfortunately, Turing reducibility is
fairly crude and allows sets with differing
properties to be included in the same de-
gree. On the other hand, 1-reducibility
is much stricter and as was pointed out
above, sets in the same 1-degree possess
the same recursively invariant properties.
However, general measures do not conform,
and this fact is shown in the following
sequence of results.

Fact: For any recursive function t and
r.e. class of total functions C , there
is a measure % such that:

R t =

Corollary: There are measures ~ which

do not conform (on ~R~).

Proof: Immediate from the above fact and
the existence of r.e. classes of total
functions whose index sets are not in the
same 1-degree.

2.4 Efficient Presentations of Complexity
Classes

Another interesting set defined from
measures is the set of algorithms which
are t-computable; the efficient presenta-

tion for R t .

Definition: The set of t-computable algor-
ithms is defined:

= {JIM i is total and I t

~i(x) ~ t(x) almost everywhere} .

The changes are quite ao'bo'alrbl'''" to conform on I t .

reasonable and involve making each machine
read or copy its input.

Theorem 2.4: For M. which copy their in-
1

puts, and ~ = tape length, <> conforms

(on I t).

Sketch of Proof: The reduction of 0Finite

is achieved by constructing a to I t

machine Mg(i) which copies down its input,

then simulated M. upon this amount of
l

tape. If M. accepts anything new, then
l

Mg (i) exceeds t (x) tape. [?herefore, if

M i accepts a finite set, then Mg(i)

stays within the amount of tape the input
takes up almost everywhere.

Since there are measures which have both

recursive and ~2-complete I , even T-

conformity is out of the question for
general measures. The following result
(shown without proof since the technique
is similar to that of Theorem 2.1) shows

is that measures can be found where I t

in various 1-degrees.

Lemma: For any set A and some infinite,
recursive B = {bo,bl,...} the set:

C = {bili E A} =-m A Q

Theorem 2.5 : For an~ recursive t and
r.e. set A there is a measure # such

- A that It =m "
An extension of the techniques used in

Theorem 2.1 and 2.5 can be used to produce
a measure where for every m-degree in
E 1 U Hi there is some t such that I t

is in that m-degree. This gives a rather
ugly, layered structure to the complexity
classes.

2.5 Limits on Irre@ularities

Even though measures exist: with irregu-
larities or undesirable properties, these
phenomena exist only in the c~omplexity
classes at the bottom of the hierarchy.
An example of this is that as soon as the
functions of finite support become t-com-
putable (as they must sooner or later),

-26-

then the complexity classes become r.e.
[2]. As one would expect, all measures
exhibit conformity above some point in the
complexity hierarchy.

Definition: ~ conforms above t (on

~R~) iff for all recursive s > t :

Theorem 2.6: For every ~ there is a re-
cursive function t such that # con-

o

forms above t o (on ~R~)

Proof: The desired t is that such that
o

contains the functions of finite sup- R t
o

port. Then the proof proceeds like Theo-
rem 2.2.

In order to show conformity to I ~ a
t

result due to Blum [i] is required.

Theorem 2.7 (Blum) : For any "~ea~ures
and ~" there is a recursive function f
such that for almost all x and all i :
#i(x) ~ f(x,~i(x)) and

~i (x) ~ f(x,~i(x))

Theorem 2.8: For every # there is a re-
cursive function t such that ~ con-

o
forms above t o (on I t).

Sketch of Proof: The required to(X) =

f(x,x) from Theorem 2.7. The result fol-
low quite easily.

3. EVOLUTION OF A NEW AXIOM

From the evidence in the last section
and in the literature it could be assumed
that the original two axioms are too weak
to characterize the natural measures of
computation. Some new requirement must be
added to the axioms in order to eliminate
measures with undesirable properties.

In this section constraints will be
placed upon measures to force conformity.
This is done for the complexity hierarchies
of recursive functions and primitive re-
cursive functions. The theorems below will
be stated without proof since they involve
reductions which are similar to those exhi-
bited above, or are rather straightforward.

3.1 Measures for Recursive Functions

These results are suggested by Theorem
2.2 and progress gradually towards confor-
mity.

Theorem 3.1: If C is a non-trivial class
of total functions~ then ON !l ~ •

When paired with the T-conformity theo-
rem (Theorem 2.3), this result provides

maximal bounds for the location of ~R~

in the arithmetical hierarchy. This is
pictured in Figure 2 and represents where

the ~R~ are located for general measures.

Tq

Figure 2.

The next step is to require that all
complexity classes be r.e., which seems to
be a reasonable restriction.

Theorem 3.2: If C is an r.e. class of
total functions, then ~C <I ~Bound .

Combined with Theorem 3.1, this result

location of ~R~ to the restricts the

shaded area in Figure 3. Conformity has
not been achieved yet, so just making the
complexity classes r.e. does not seem to
be an adequate restriction.

Figure 3.

Theorem 3.3: If C is an r.e. class of
total functions containing all finite vari-
ations of some function, then
~Bound <i ~

When these classes are complexity clas-
ses, then containing finite variations im-

plies r.e.-ness. At last ~R~ has been

confined to a single 1-degree as is shown
in Figure 4. Of course, this degree con-

tains all of the ~R~ for tape and time

as measures.

-9-

Figure 4.

3.2 Measures for Primitive Recursive Func-
tions

Much of the work in automata theory has
been concerned with the functions which
are frequently computed| not with all of
the computable functions. In this section
the primitive recursive functions are de-
noted po,Pl,.., and the step counting

functions Po,Pi,... are assigned to them.

P The complexity classes R t are defined

similarly to the R t

Several important index sets for clas-
ses of primitive recursive functions are
defined:
a) ~Zero = {functions with zero in range}

-- = {ilZx[Pi(X) = 0]}

b) ~Even = {even functions}
~ = {iIVx[Pi~x) is even]}

c) ~Zero N ~Even
d) ~F~up =--~nctions of finite support}

{ilZkYx[x > k => Pi(X) = 0] }

and the location of each of these sets is
indicated in Figure 5.

Figure 5.

The original Blum axioms for measures
do not translate freely to the primitive
recursive functions and so a series of re-

strictions will be placed on the measures.
Several facts are in order at this point.

Facts~ a) There is no non-t]:ivial index
set which are finite or cofinite.

b) ~R[is a ~2 set .

Initially the measures considered are
required to be primitive recursive. This
is reasonable since a function's cost of
computation should be the same kind of
function as the one being com]puted. This

~R~ to fall in the shaded permits area

of Figure 6. Unfortunately, this restric-

-28-

Figure 6.

tion does not necessarily even produce a
hierarchy, since all functions can be
assigned to the same complexity class.

Making a relationship between a func-
tion and its cost mandatory is the next
restriction to be placed on measures.

Definition: f is a speed limit for P
iff for all i , f (x) > Pi (x)/Pi (x) aT-

most everywhere

Theorem 3.4: If P has a primitive re-

cursive speed limit then ~Even <--i ~R[

This speed limit can be measured in units
of digits printed per cost. For time and
tape on Turing machines the speed limit is
between log(x) and 1 , depending on how
they are defined.

This new restriction allows ~R[to

range within the shaded area indicated on
Figure 7. At last a hierarchy is assured,
but the complexity classes do not have to
be r.e.

Figure 7.

If instead of speed limits, a restric-

P and tion such as: for some f £ R t

P if h is defined as: g ~ R t ,
Ig(x) if x < n

h(x) = ~f(x) if x > n

for some n then this implies ~hat

P then ~Zero <i ~R~ by the obvious h £ R t

reduction. This forces the index sets for
complexity classes to be in the area de-
signated in Figure 8. No hierarchy is

P does not have to be r.e. assumed, and R t

as of yet.

Figure i0.

In fact, the complexity classes are r.e.
also.

Figure 8.

Figure 9 indicates the result of com-
bining the three restrictions mentioned
above. This follows from the reduction

~Even D ~Zero <~ ~R~ . The complexity

4. CONCLUSION AND OPEN PROBLEMS

The major problem with general measures
is that the desirable properties which
some measures possess are not found in all
measures. Therefore, it is desirable to
isolate those measures which are natural
and do not have any pathological properties.

One way to do this is to require that
the complexity classes defined from mea-
sures all have identical properties. This
was the rationale behindthe definition of
conformity, and therefore conformity seems
to be a reasonable criterion for measures
or any other axiom system.

From the phenomena exhibited previously,
it would seem that a new axiom is needed.
If this axiom were that every complexity
class contains all the finite variants of
at least one function~ then conformity will

classes are not all r.e. yet, but naturally be achieved. However, it may be possible
there is a hierarchy, to achieve conformity with some other axiom

Figure 9~

Conformity is finally achieved in the
next result

Theorem 3.5: If P has a primitive recur-

P contains all fi- sive speed limit and R t

nite variants of some function, then

~FinSup !l ~R~ .

The speed limit restriction is necessary
to have a hierarchy. At last conformity
has been provided for the primitive recur-
sive functions, as is indicated in Figure
i0.

which is more subtle than the one proposed
here.

Whenever pathological problems exist in
complexity hierarchies, it has been shown
that they exist only in the lower levels
of the hierarchy. This means that almost
all of the complexity classes for any mea-
sure belong to the same 1-degree, and that
the measure conforms "almost everywhere".
Conditions that occur in all but a finite
number of places are accepted in automata
theory as being desirable in most cases.
In fact, the definition of the complexity

contains an "almost every- classes R t

where" clause.
But, in complexity hierarchies, the

functions which are easiest to compute,
and that are computed most often, occur at
the bottom. These very functions are the
ones computed in "real life" and therefore
are quite important. Facts about their
complexity should be meaningful, and so
measures used should not have any patholo-
gical properties, even for a few classes at
the bottom of the hierarchy.

Some open problems and areas for further
study are as follows.

-29-

and P should a) Conformity on I t I t

be studied by placing restraints on the
axioms for measures.

b) Define the class:
Best = {flthere is a "fastest" program

for f}
= {fI~i[M i = f A ¥j (M i = Mj

=> #i ~ ~j)]}
and study ~Best with respect to confor-
mity.

c) Speed limits, defined in the last
section, should be investigated with re-
gard to their effect on conformity and
other properties of measures.

d) Possibly some properties of classes
of recursive functions (along the lines of
those in Dekker and Myhill) could be for-
mu]ated which would have some significance

when applied to R t .

e) The criterion of conformity might
be profitably applied to axiom systems in
other areas of automata theory.

Acknowledgements

The author wishes to thank Professors
J. Hartmanis and R. Constable for their
patient encouragement and assistance dur-
ing the formulation of these results.

i.

2.

3.

4.

5.

6.

7.

REFERENCES

Blum, M. A Machine Independent Theory
of the Complexity of Recursive Func-
tions, JACM (1967), pp. 322-336.

Borodin, A. Complexity Classes of Re-
cursive Functions and the Existence of
Complexity Gaps, ACM Sym t on Theory of
Cqmp., (May 1969), pp. 67-78.

, Constable, R., and Hopcroft,
J. Dense and Non-Dense Families of
Complexity Classes, Tenth Ann. Sym. on
Switching and Automata Theory, IEEE
(October 1969).

Constable, R. The Operator Gap, Tenth
Ann. Sym. on Switching and Automata
Theory, IEEE (October 1969)

Dekker, J.C.E. and Myhill, J. Some
Theorems on Classes of Recursively
Enumerable Sets, Trans. AMS, Vol. 89
(1958), pp. 25-59.

Grzegorczyk, A. Some Classes of Recur-
sive Functions, Roz~raw~ Matematiyczne,
1953, pp. 1-45.

Hartmanis, J. and Stearns, R• On the
Computational Complexity of Algorithms,
Trans. AMS, Vol. 117 (1965), pp. 285-
306.

8. Lewis, F.D. The Classification of
Unsolvable Problems in Automata Theory,
Cornell Tech. Report 70-49 (January
1970).

9. McCreight, E. and Meyer, A. Classes
of Computable Functions Defined by
Bounds on Computation, ACM S!nn. on
Theor[of Com~. (May 1969] , pp. 79-88).

i0. Meyer, A. and Fischer P. On Computa-
tional Speedup, Ninth Ann. Sym. on
Switching and A_utomata Theor[, IEEE
(October 1968), pp. 351-355.

ii. Myhill, J. Linear Bounded Automata,
University of Pennsylvania, Report
No. 60-22 (June 1960).

12. • Creative Sets, Zeit fur Math.
Logik und Grund der Math., Vol. 1
(1955), pp. 97-108.

13. P~ter, Roza. Recursive Functions, 3d
Edition, New York, 1967.

14. Ritchie, R. Classes of Predictably
Computable Functions, Trans.AMS, Vol.
106 (1963) , pp. 139-173~-

15. Robertson, E.L. and Landweber, L.H.
On Recursive Properties of Complexity
Classes, these proceedings.

16. Rogers, H.G. Godel Numberings of
Partial Recursive Functions, JSL, Vol.
23 (1958), pp. 331-341.

17. • Theory of Recursive Functions
and Effective Computabilit~ McGraw
Hill, New York 1967.

18. Stearns, R., Hartmanis, J. and Lewis,
P., II. Hierarchies of Memory Limited
Computations, 1965 IEEE Conf. Rec. on
Switching Theory and Log. Design, pp.
179-190.

19. Young, P. Toward a Theory of Enumera-
tions, JAC___M, Vol. 16 (1969), pp. 328-
347.

-30-

