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O. ABSTRACT 

The study of Computational Complexity 
began with the investigatio~ of Turing 
machine computations with limits on the 
amounts of tape or time which could be 
used. Latter a set of general axioms for 
measures of resource limiting was presen- 
ted and this instigated much study of the 
properties of these general measures. 
Many interesting results were shown, but 
the general axioms allowed measures with 
undesirable properties and many attempts 
have been made to tighten up the axioms so 
that only desirable measures will be de- 
fined. 

In this paper several undecidability 
aspects of complexity classes and several 
sets associated with them will be examined. 
These sets will be classified by their de- 
gree of unsolvability and restrictions will 
be placed on measures so that these degrees 
are identical. This gives rise to a new 
crLterion for the "naturalness" of measures 
and to suggestions for strengthening the 
measures of complexity. 

i. INTRODUCTION 

The aim of computational complexity is 
to classify and study the functions which 
are computable. This is usually done by 
placing them into some context using an 
important characteristic of the function. 

Sub-recursive hierarchies were first 
used to divied these functions into classes 
and exhibit some of their properties. 
Examples of this are Grzegorczyk's hier- 
archy of the primitive recursive functions 
[6] and the nested recursive functions of 
P4ter [13]. These methods classify func- 
tions by their structure, placing limits 
on the operations which are used to build 
functions. 

In automata theory the recursive func- 
tions were classified by limiting some 
basic resource used in computation. This 
resource-bounded complexity began with the 
consideration of Turing machine computa- 
tions using a limited amount of tape [ii, 
18] or time [7]. 

All of the recursive functions were 
placed in complexity classes according to 
how difficult they were to compute, or how 
much of a "natural" resource they used. 
These classes exhibited many interesting 

properties and were studies extensively for 
a number of years. A result, due to Ritchie 
[14], combined with the Union Theorem 
[9] indicates that the sub-recursive hier- 
archies are reproduced in the complexity 
hierarchies when tape length and time are 
used as measures. 

Later a general set of axioms for 
measures of computation [i] was presented. 
This involves taking some admissiable 
enumeration [].6] of Turing machines (or 
partial recursive functions) denoted by: 
Mo,Mi,M2,... and assigning a measure or 

step counting function ~o,~i,~2,... to 

each machine. The set of measures is de- 
signated as ~ and these measures must 
obey the following two rules: 

i) Mi(x) halts <=> #i(x) halts 

2) There is a recursive function C 
such that for all i , m , and n : 

/i if #i(m) = n 

C (i,m,n) [0 otherwise . 
This first axiom indicates that whenever 
some function computes a value, then a cost 
of computation can be associated with it. 
And according to the second rule, the ques- 
tion "Does it cost n to compute Mi(m)?" 

is ~lways recursive. 
These axioms allow a very general set 

of measures for which many interesting 
results have been derived. The complexity 
classes formed from the general measures 
have been studied extensively in regard to 
their structural [9,3] and naming proper- 
ties [2]. Also the properties of operators 
[4,10] have been noted. 

Unfortunately, many of the measures 
allowed under the axioms are so general 
that not all of the intuitively derivable 
properties are preserved. Under time and 
tape as measures, complexity classes are 
recursively enumerable (r.e.) but measures 
can be defined so that some of the classes 
are not. Other properties such as finite 
invariance and infiniteness are not pre- 
served by measures either. 

Therefore some condition must be added 
to the original two axioms to preserve 
properties throughout the complexity clas- 
ses and if possible eliminate the undesir- 
able properties. It is reasonable to ex- 
pect complexity classes to be r.e. and to 
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conform by possessing the same properties. 
This notation will be formalized below. 

2. STATE OF THE ART (WITH TWO AXIOMS) 

2.1 Complexity Classes 

Most of the interesting results in com- 
putational complexity have been about the 
complexity classes or the classes of t- 
computable recursive functions. These 
classes are defined as follows: 

Definition: The class of t-computable 
functions is: 

R t~ = {total f]there is some M.i = f such 

that ~i(x) ~ t(x) almost every- 

where} . 

These classes have been studied in de- 
tail for time and tape measures [7,18] and 
some of the desirable properties which were 
found carry over to complexity classes de- 
fined from general measures. When measures 
were restricted slightly, then more proper- 
ties of the natural measures carried over. 

One important property of complexity 
classes under the "natural" measures was 
the fact that the classes were r.e. In 
[19], Young wondered if this were true for 
classes defined from general measures. 
Regretfully it is not, and this result is 
presented here and also has been shown in- 
dependently by Robertson and Landweber [15]. 
Before this can be show, however, some pre- 
liminaries are in order. 

To describe classes and their members 
more intuitively a set of algorithms for 
computing them must be given. This set 
"presents" the class and is defined: 

Definition: The set A is a presentation 
for the class: C iff A contains an in- 
dex for each member of C and all elements 
of A are indices for members of C 

The presentation which immediately comes 
to mind is the complete presentation or 
index set for a class. 

Definition: The set A is the index set 
for the class C iff: 

A = {iIMi = f ~ ~} 

Usually the index set for the class of func- 
tions C will be designated ~C . (~C is 
used fo~ classes of functions rather than 
8C since 8 has been used in the litera- 
ture for classes of sets.) 

Definition: A class is r.e. iff it has an 
r.e. presentation. 

An interesting type of class is one 
where an algorithm for any member of the 
class can be matched with an element of 
some standard presentation for the class. 
These classes are used below and are de- 
fined as follows. 

Definition: C is a matchable class iff 

there is a recursive g and recursive pre- 
sentation A such that: 

i 6 ~ => g(i) E A and M i = Mg(i ) 

Examples: a) Const = {the constant func- 
functions} Let A = {ao,al,a 2 .... } 

where VX[Mak(x) = k] and for any x de- 

fine g(i) = aM. (x) 
1 

b) C = {fn } for some recur- 

sive set of functions such that 

VX[fn(X) < fn+l(X)] 

c) C = {fn } for some recur- 

sive set of functions such that 
Yn[fn(O) = n] 

Now a measure will be constructed using 

from a matchable class so that an R t 

this new measure is not r.e. Any of the 
examples will work, but (a) will be used 
for reasons of clarity. 

Theorem 2.1: For any recursive t there 
¢ 

is a measure $ such that R~ is not r.e. 

Proof: Let A = {ao,al,...} be a recur- 

sive presentation of the class Const where 
for all x , Mak(x) = k . Then for any 

measure # , consider: 
0 if i = a k and Mk(k) does 

| not halt in x steps 
(x) < 

~i It(x) + %i(x) + 1 otherwise . 

R ~ and Note that Rt = o 

Mak £ R ° <=> Mk(k) n e v e r  h a l t s .  

a) $ is a measure since: 
i) $i(x) halts <=> Mi(x) halts since 

all M are total and ~ is a 
a k 

measure 
2) C(i,m,n) H $i(m) = n is recursive 

since is can be described: 
'C (i,m,n-t (m)-l) if 

n > t(m) + 1 and 
a)--i ~ A or 
b) i = a k and Mk(k) 

halts in m steps 
C(i,m,n) = 1 if n = 0 , i = a k 

and Mk(k ) doesn't 

halt in m steps 
0 otherwise 

is not r.e. b) R = R o 

Assume R~ is r.e. and let 

B = {bo,bl,...} be an r.e. presenta- 

tion of it. Due to the construction of 
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all 

functions and in fact: 
Mb (x) = k <=> = . l Mbi Mak 

Therefore the set {aMb (x),aM (x),...} 

o bi 
is an r.e. set and is exactly the set 

{akIMk(k) never halts} e 

This set is obviously recursively iso- 
morphic to the well known set K = {k I 
Mk(k) never halts} which is not r.e. 

So from this contradiction, it can 

is not r.e be concluded that R t 

In the previous proof the productive 
set K was used in order to produce the 

This class is pro- non-r.e, class R t 

ductive [5] but if some set other than 
is used then an immune (contains no infi- 
nite r.e. subclasses) class would have 
been formed. 

b k must be indices for constant cribe sets very precisely, but almost no 
intuitive information about a set is given 

2.2 Isomorphism Types 

Most of the important properties in 
automata theory are preserved under iso- 
morphisms. These are the recursively in- 
variant properties and when sets are clas- 
sified under recursive isomorphisms, all 
the sets in any isomorphism type possess 
the same properties. These concepts are 
defined: 

Definition: P is a recursively invariant 
iff for any i-i, onto, recursive function 
f , if the set A has P then so does 
f (A) 

Definition: A is recursively isomorphic 
to B (A ~ B) iff there is a i-i, onto, 
recursive f such that B = f(A) 

By a theorem of Myhill [12], the isomor- 
phism types (sets equivalent under isomor- 
phisms) are the same as the equivalence 
classes (or 1-degrees) under i-i reduci- 
bility. The reducibilities used here are 
defined as follows. 

Definition: A is i-i reducible to B 
(A ~i B) iff there is a i-i, recursive 

function g such that for all x : 
x £ A <=> g(x) E B 

Definition: A is i-i equivalent to B 
(A Hi B) iff A ~i B and B ~i A . 

Definition: A is Turin~ reducible to B 
(A ~T B) iff there is a machine with B 

written on one tape which can decide mem- 
bership in A . 

Definition: A is Turin@ equivalent to B 
(A HT B) iff A ~T B and B ~T A 

Hierarchies which result from the reduci- 
bilities outlined above can be used to des- 

by its place in the hierarchy. Therefore 
another hierarchy, the Arithmetical Hier- 
archy, will be used in conjunction with 
the 1-degrees. This hierarchy reflects the 
structure of a set according to the number 
of alternating quantifiers in the expres- 
sion of its membership problem. The mem- 
bership problem for a Zn set will begin 

with a "Z" and contain n alternating 
quantifiers, while a K n set begins with 
a "V" 

A pictorial representation of the Ari- 
thmetical Hierarchy appears below. The 
lines slanting down towards tlhe right de- 
note the upper boundaries of the Zn areas, 

while the lines slanting down to the left 
from the top of the Hn areas. 

Figure i. 

The locations of the following well-known 
index sets are indicated in the diagram. 

a) 0~ = {ilS i never accepts} 

b) @Finite = {ilM i accepts a finite 

set} 
c) ON = {ilM i accepts everything} 

= ~Total 
= {i M ~  i~ a total function} 

d) ~Bound = {ilthe range of M i is 

bounded} 
= {ili 6 8N and 

ZkVx[Mi(x) ~i k]} 

e) 8Cofinite = {ilM i accepts a 

cofinite set} 
These sets are all complete or maximal in 
their respective locations in the hierarchy 
when ordered by 1-degrees. 

2.3 Index Sets of Complexity Classes 

Now the total presentations for the com- 

plexity classes R~(~R~) will be classi- 
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fied by the methods outlined above. This 
classification will be used to suggest a 
criterion for measures and possibly help 
to discover method for strengthening the 
axioms. 

First, the index sets of complexity 
classes formed from the "natural" measures 
qill be classified. This will be done for 
time (the number of steps in a computation) 
but the proof may be done more elegantly 
via two theorems in section 3, but it is 
presented here to emphasize that the r.e.- 

ness of R t and the fact that each R t 

contains all finite variants for some func- 
tion are important properties of time as a 
measure. 

Theorem 2.2: ~R~ ~ ~Bound for time. 

Proof: a) ~R~ ~i ~Bound 

is an r.e. class [7] for time Since R t 

as a measure, let A = {ao,al,...} be an 

Then for any r.e. presentation for R t . 

M i define the machine Mg(i ) as follows: 

I = (0) 0 if Mi(0) Mao 

= ~ . (o) Mg(i) (0) 1 if Ml(0) ~ Mao 
! 
~diverge if Mi(0) diverges. 

Then assuming that for input n - 1 : 

f j if S i(k) = Saj (k) 

Sg(i) (n-l) = ~j+l if M i(k) ~ Maj (k) 

~diverge if M i diverges for 

any x < k . 
Then if Mi(k) = Ma (k) and consequently 

3 
M. agreed with M on all x < k let: 
1 a. -- 

j if M i(k+l) = Maj (k+l) 

Mg(i) (n) = j+l if S i(k+l) ~ Ma3 (k+l) 

Idiverge if M i diverges for 

k any x < k+l . 
If, however, Mi(k) ~--Ma. (k) , then start 

3 
the comparison over with M as fol- 

aj+l 
lows: 

Ij +l if M i(0) = S (0) 
aj+l 

= ~ (o) Mg(i) (n) j+2 if M i(0) ~ Ma9+l 

kdiverge if Mi(0) diverges 

Therefore Mg(i ) is total only if M i 

is total and if for some aj E A , M i = Ma. 
3 

then for all X:Mg(i) (x) ~ j Thus: 

i E ~R~ <=> g(i) E aBound 

b) ~Bound <i ~R~ . 

there is a function For any r.e. R t 

b which majorizes the class [2]. Also, 

contains for time as a measure, every R t 

at least one function and all its finite 
variants. Therefore, select some f in 

R t so that all of its finite variants are 

and for any M. define: also in Rt ' l 

~f(x) if Mi(x) ~ max[Si(0),..., 

M i (x-l) ] 

Mg(i ) (x) = b(x)+l if Mi(x) > max[Mi(0) , 

• . . ,M i (x-l) ] 

diverge if any of M i(0) ,..., 

Mi(x) diverge 

Therefore, Mg(i ) is total if M i is 

total, and if M i is bounded then Mg(i ) 

will be a finite variant of f and there- 

fore a function in R t . 

An interesting property of time as a 
measure is indicated by this result. All 
of the index sets of the complexity clas- 
ses fall into the same 1-degree; in fact, 
the 1-degree of ~Bound . This means that 

all of the ~R~ possess exactly the same 

properties. The following condition on 
measures is suggested by this fact. 

Definition: @ conforms (on ~R~ ) iff 

for all recursive t I and t 2 , 

This definition can be extended to Turing 
reducibility in the obvious manner• (Since 
all index sets are cylinders, m-conformity 
is the same as conformity•) An interesting 
fact is that all measures T-conform. 

Theorem 2.3; Every @ T-conforms (on 

~R~ ) . 

Proof: The "oracle machine" ~Equal 
which has 
~E u ~  = {<i,j>IVx[Mi(x) = Sj (x)]} 

(or all pairs of identical machines) 
written on its reference tape will be used 
in this proof. ~Equal is a well known 
K2-complete set, and therefore can decide 

membership problems in the Turing degree 
containing (b), (c), and (d) in Figure i• 

Also, the following two presentations 
are used; 

@ 
A = {aoral,...} = presentation of R t 
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B = {bo,bl,...} = presentation of 

03 - R t 

where ~D is the class of all partial re- 
cursive functions. 
The set A used will be defined later as 

I t , and is in Z2 , while the set B can 

be r.e. [15]. Therefore, A and B can 

be listed by M ~Equal 
This machine operates (when given input 

This set is contained in Z2 since its 

membership problem is easily written in Z2 

form. 
When tape and time are used as measures, 

for t(x) = constant are recur- the I t 

sive (this allows minimal growth rate [2]), 

becomes while for increasing t(x) , I t 

H 0Finite ) By slight Z2-complete (or I t 

modification these measures can be forced 

i ) by listing the sequence 

and checking the pairs <ao,i> , <bo,i> , 

etc. against the pairs on the reference 
list. 

Sooner or later some <am,i> or <bn,i> 

will match a pair on the reference tape 
and then the machine halts and outputs: 

M~Equal(i) = t l  if <am,i> E ~E~ual 
if <bn,i> E ~Equal 

Therefore ~R~ _ ~T ~Equal and since 

~Equal ~ 0N ~I ~R~ (shown below), the re- 

sult follows. 

This result indicates that the general 
measures conform in rather a rough way. 
Unfortunately, Turing reducibility is 
fairly crude and allows sets with differing 
properties to be included in the same de- 
gree. On the other hand, 1-reducibility 
is much stricter and as was pointed out 
above, sets in the same 1-degree possess 
the same recursively invariant properties. 
However, general measures do not conform, 
and this fact is shown in the following 
sequence of results. 

Fact: For any recursive function t and 
r.e. class of total functions C , there 
is a measure % such that: 

R t = 

Corollary: There are measures ~ which 

do not conform (on ~R~ ). 

Proof: Immediate from the above fact and 
the existence of r.e. classes of total 
functions whose index sets are not in the 
same 1-degree. 

2.4 Efficient Presentations of Complexity 
Classes 

Another interesting set defined from 
measures is the set of algorithms which 
are t-computable; the efficient presenta- 

tion for R t . 

Definition: The set of t-computable algor- 
ithms is defined: 

= {JIM i is total and I t 

~i(x) ~ t(x) almost everywhere} . 

The changes are quite ao'bo'alrbl'''" to conform on I t . 

reasonable and involve making each machine 
read or copy its input. 

Theorem 2.4: For M. which copy their in- 
1 

puts, and ~ = tape length, <> conforms 

(on I t ). 

Sketch of Proof: The reduction of 0Finite 

is achieved by constructing a to I t 

machine Mg(i ) which copies down its input, 

then simulated M. upon this amount of 
l 

tape. If M. accepts anything new, then 
l 

Mg (i) exceeds t (x) tape. [?herefore, if 

M i accepts a finite set, then Mg(i ) 

stays within the amount of tape the input 
takes up almost everywhere. 

Since there are measures which have both 

recursive and ~2-complete I , even T- 

conformity is out of the question for 
general measures. The following result 
(shown without proof since the technique 
is similar to that of Theorem 2.1) shows 

is that measures can be found where I t 

in various 1-degrees. 

Lemma: For any set A and some infinite, 
recursive B = {bo,bl,...} the set: 

C = {bili E A} =-m A Q 

Theorem 2.5 : For an~ recursive t and 
r.e. set A there is a measure # such 

- A that It =m " 
An extension of the techniques used in 

Theorem 2.1 and 2.5 can be used to produce 
a measure where for every m-degree in 
E 1 U Hi there is some t such that I t 

is in that m-degree. This gives a rather 
ugly, layered structure to the complexity 
classes. 

2.5 Limits on Irre@ularities 

Even though measures exist: with irregu- 
larities or undesirable properties, these 
phenomena exist only in the c~omplexity 
classes at the bottom of the hierarchy. 
An example of this is that as soon as the 
functions of finite support become t-com- 
putable (as they must sooner or later), 
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then the complexity classes become r.e. 
[2]. As one would expect, all measures 
exhibit conformity above some point in the 
complexity hierarchy. 

Definition: ~ conforms above t (on 

~R~ ) iff for all recursive s > t : 

Theorem 2.6: For every ~ there is a re- 
cursive function t such that # con- 

o 

forms above t o (on ~R~ ) 

Proof: The desired t is that such that 
o 

contains the functions of finite sup- R t 
o 

port. Then the proof proceeds like Theo- 
rem 2.2. 

In order to show conformity to I ~ a 
t 

result due to Blum [i] is required. 

Theorem 2.7 (Blum) : For any "~ea~ures 
and ~" there is a recursive function f 
such that for almost all x and all i : 
#i(x) ~ f(x,~i(x)) and 

~i (x) ~ f(x,~i(x)) 

Theorem 2.8: For every # there is a re- 
cursive function t such that ~ con- 

o 
forms above t o (on I t ). 

Sketch of Proof: The required to(X) = 

f(x,x) from Theorem 2.7. The result fol- 
low quite easily. 

3. EVOLUTION OF A NEW AXIOM 

From the evidence in the last section 
and in the literature it could be assumed 
that the original two axioms are too weak 
to characterize the natural measures of 
computation. Some new requirement must be 
added to the axioms in order to eliminate 
measures with undesirable properties. 

In this section constraints will be 
placed upon measures to force conformity. 
This is done for the complexity hierarchies 
of recursive functions and primitive re- 
cursive functions. The theorems below will 
be stated without proof since they involve 
reductions which are similar to those exhi- 
bited above, or are rather straightforward. 

3.1 Measures for Recursive Functions 

These results are suggested by Theorem 
2.2 and progress gradually towards confor- 
mity. 

Theorem 3.1: If C is a non-trivial class 
of total functions~ then ON !l ~ • 

When paired with the T-conformity theo- 
rem (Theorem 2.3), this result provides 

maximal bounds for the location of ~R~ 

in the arithmetical hierarchy. This is 
pictured in Figure 2 and represents where 

the ~R~ are located for general measures. 

Tq 

Figure 2. 

The next step is to require that all 
complexity classes be r.e., which seems to 
be a reasonable restriction. 

Theorem 3.2: If C is an r.e. class of 
total functions, then ~C <I ~Bound . 

Combined with Theorem 3.1, this result 

location of ~R~ to the restricts the 

shaded area in Figure 3. Conformity has 
not been achieved yet, so just making the 
complexity classes r.e. does not seem to 
be an adequate restriction. 

Figure 3. 

Theorem 3.3: If C is an r.e. class of 
total functions containing all finite vari- 
ations of some function, then 
~Bound <i ~ 

When these classes are complexity clas- 
ses, then containing finite variations im- 

plies r.e.-ness. At last ~R~ has been 

confined to a single 1-degree as is shown 
in Figure 4. Of course, this degree con- 

tains all of the ~R~ for tape and time 

as measures. 
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Figure 4. 

3.2 Measures for Primitive Recursive Func- 
tions 

Much of the work in automata theory has 
been concerned with the functions which 
are frequently computed| not with all of 
the computable functions. In this section 
the primitive recursive functions are de- 
noted po,Pl,.., and the step counting 

functions Po,Pi,... are assigned to them. 

P The complexity classes R t are defined 

similarly to the R t 

Several important index sets for clas- 
ses of primitive recursive functions are 
defined: 
a) ~Zero = {functions with zero in range} 

-- = {ilZx[Pi(X) = 0]} 

b) ~Even = {even functions} 
~ = {iIVx[Pi~x) is even]} 

c) ~Zero N ~Even 
d) ~F~up =--~nctions of finite support} 

{ilZkYx[x > k => Pi(X) = 0] } 

and the location of each of these sets is 
indicated in Figure 5. 

Figure 5. 

The original Blum axioms for measures 
do not translate freely to the primitive 
recursive functions and so a series of re- 

strictions will be placed on the measures. 
Several facts are in order at this point. 

Facts~ a) There is no non-t]:ivial index 
set which are finite or cofinite. 

b) ~R[ is a ~2 set . 

Initially the measures considered are 
required to be primitive recursive. This 
is reasonable since a function's cost of 
computation should be the same kind of 
function as the one being com]puted. This 

~R~ to fall in the shaded permits area 

of Figure 6. Unfortunately, this restric- 
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tion does not necessarily even produce a 
hierarchy, since all functions can be 
assigned to the same complexity class. 

Making a relationship between a func- 
tion and its cost mandatory is the next 
restriction to be placed on measures. 

Definition: f is a speed limit for P 
iff for all i , f (x) > Pi (x)/Pi (x) aT- 

most everywhere 

Theorem 3.4: If P has a primitive re- 

cursive speed limit then ~Even <--i ~R[ 

This speed limit can be measured in units 
of digits printed per cost. For time and 
tape on Turing machines the speed limit is 
between log(x) and 1 , depending on how 
they are defined. 

This new restriction allows ~R[ to 

range within the shaded area indicated on 
Figure 7. At last a hierarchy is assured, 
but the complexity classes do not have to 
be r.e. 

Figure 7. 



If instead of speed limits, a restric- 

P and tion such as: for some f £ R t 

P if h is defined as: g ~ R t , 
Ig(x) if x < n 

h(x) = ~f(x) if x > n 

for some n then this implies ~hat 

P then ~Zero <i ~R~ by the obvious h £ R t 

reduction. This forces the index sets for 
complexity classes to be in the area de- 
signated in Figure 8. No hierarchy is 

P does not have to be r.e. assumed, and R t 

as of yet. 

Figure i0. 

In fact, the complexity classes are r.e. 
also. 

Figure 8. 

Figure 9 indicates the result of com- 
bining the three restrictions mentioned 
above. This follows from the reduction 

~Even D ~Zero <~ ~R~ . The complexity 

4. CONCLUSION AND OPEN PROBLEMS 

The major problem with general measures 
is that the desirable properties which 
some measures possess are not found in all 
measures. Therefore, it is desirable to 
isolate those measures which are natural 
and do not have any pathological properties. 

One way to do this is to require that 
the complexity classes defined from mea- 
sures all have identical properties. This 
was the rationale behindthe definition of 
conformity, and therefore conformity seems 
to be a reasonable criterion for measures 
or any other axiom system. 

From the phenomena exhibited previously, 
it would seem that a new axiom is needed. 
If this axiom were that every complexity 
class contains all the finite variants of 
at least one function~ then conformity will 

classes are not all r.e. yet, but naturally be achieved. However, it may be possible 
there is a hierarchy, to achieve conformity with some other axiom 

Figure 9~ 

Conformity is finally achieved in the 
next result 

Theorem 3.5: If P has a primitive recur- 

P contains all fi- sive speed limit and R t 

nite variants of some function, then 

~FinSup !l ~R~ . 

The speed limit restriction is necessary 
to have a hierarchy. At last conformity 
has been provided for the primitive recur- 
sive functions, as is indicated in Figure 
i0. 

which is more subtle than the one proposed 
here. 

Whenever pathological problems exist in 
complexity hierarchies, it has been shown 
that they exist only in the lower levels 
of the hierarchy. This means that almost 
all of the complexity classes for any mea- 
sure belong to the same 1-degree, and that 
the measure conforms "almost everywhere". 
Conditions that occur in all but a finite 
number of places are accepted in automata 
theory as being desirable in most cases. 
In fact, the definition of the complexity 

contains an "almost every- classes R t 

where" clause. 
But, in complexity hierarchies, the 

functions which are easiest to compute, 
and that are computed most often, occur at 
the bottom. These very functions are the 
ones computed in "real life" and therefore 
are quite important. Facts about their 
complexity should be meaningful, and so 
measures used should not have any patholo- 
gical properties, even for a few classes at 
the bottom of the hierarchy. 

Some open problems and areas for further 
study are as follows. 
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and P should a) Conformity on I t I t 

be studied by placing restraints on the 
axioms for measures. 

b) Define the class: 
Best = {flthere is a "fastest" program 

for f} 
= {fI~i[M i = f A ¥j (M i = Mj 

=> #i ~ ~j)]} 
and study ~Best with respect to confor- 
mity. 

c) Speed limits, defined in the last 
section, should be investigated with re- 
gard to their effect on conformity and 
other properties of measures. 

d) Possibly some properties of classes 
of recursive functions (along the lines of 
those in Dekker and Myhill) could be for- 
mu]ated which would have some significance 

when applied to R t . 

e) The criterion of conformity might 
be profitably applied to axiom systems in 
other areas of automata theory. 
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