
ON BOUNDS ON THE NUMBER OF STEPS TO COMPUTE FUNCTIONS t

by

Giorgio Ausiello

Istituto per le Applicazioni del Calcolo, Consiglio Nazionale
delle Ricerche -Roma, Italia.

September 1969

Abstract

Let f be a partial recursive function defined
in terms of other functions gl,'",gn such that f
converges if and only if some well defined asser-
tions about the convergency of gl,''',gn hold:
then we can find a total function (depending on
the number of steps required to compute gl,''',gn)
that bounds the step counting function of f almost
everywhere f is defined. It is also shown that,
in that cas% to compute the bound to the step
counting function is not much harder than comput-
ing the step counting function itself.

i. Introduction

Notation i: in what follows we assume the reader
to be familiar with the notion of standard index-
ing ~i~i of all partial recursive functions
(p.r.f.). Given any function ~i, we call a
p.r.f.~ i the step counting function (or the com-
plexity measure) of ~i if:

i) ~i(x) converges iff ~i(x) converges
2) the relation #i(x)=y is recursive in

i,x,y.
Besides, when we write (Vx)(f(x)~g(x)), we mean
that f(x)~g(x) for all but a finite number of
values of the argument x.

Given a partial recursive function f defined
in terms of partial recursive functions gl,g2,... ,
gn, it is sometimes possible to find a (total) re-
cursive function r that bounds the number of steps
required to compute f in terms of the number of
steps required to compute gl,''',gn, almost every-
where that f is defined. For example we can prove
the following facts:

Fact i.i Let o be a recursive function of two var-
iables with the property that for all i,j,x,
~(i,j)(x) converges iff ~i(x) and ~j(x) converge.
Then there exists a recursive function r such that,
for all i and j and almost all x:

~i(x) defined & ~j(x) defined ÷

#q(i ") (x)<r (x,max{# i (x) ,¢j (x) })
Proof. "bet ~s define:

t (x,i,j,u) = ~ w~(i'j)(x) if ¢i(x)~u and ~j(x)<u

I 0 otherwise
L

r (x,u) = max {t (x,i,j,u) I i,j!x}

r is a recursive function since t is a recursive
function. Furthermore, #i(x) defined & ~(x) de-
fined ÷ max {~i(x),~(x)} defined ÷ t(x,ilj,max
{@i (x) '#~ (x)}) = ¢o(~ ~(x) ÷ r(x,max{@~(x),#~(x)})
>~o(i,j)~x), provided'~ J> max {i,j}. Hence o~r
~esult-follows for all x--~ max {i,j}.

Fact 1.2 Let ~ be a recursive function of one
variable with the property that for all i,x and
y, ~ (x,y) converges iff ~i(0,y), ~i(l,y)
~i()converge. Then there exists a recursive
function r such that for all i and almost all x

(Vz~x)(¢i(z,y)defined) + (x,y)!
r(x,max{¢i(z,y) i zix}) ~G(i)

Proof. Let us define:

t (x,y,i,u)= ~ ~G[i)(x'y) if(Vzix)(~i(z'Y)<--u)

kO otherwise

r (x,y,u) = max{t (x,y,i,u) I i<x,y}

Then (Vz<x)(#i(z,y)defined) + $o(i)(x,y)~r
(x,y,max~i(z,y) I z<x}) for all f and all x,y~i

Fact 1.3. Let ~ be a recursive function of two
variables with the property that for all i,k and
allx ~(i,k)(X) is defined iff the number of steps
required by the computation of $i(x) is greater
than k. Then there exists a recursive function r
such that for all i and k and almost all x

~i(x)>k + ~c(i,k)(x)!r(x)

Proof. Let us define:

t (x,i,k) ={ ~(i'k)(x) if ~i(x)>k

k0 otherwise

r (x) = max {t (x,i,k) I i,k<x}

Then ~i(x)>k + ~G(~,k)(x)<r (x) for all i and k
and all x~ max[i,k#
Instances and proofs of these types of facts occur
frequently in the literature. For example we have:

+Research sponsored by a Grant from the Italian National Research Council, and the National Science
Foundation Grant GJ-708.

-41 -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800161.805148&domain=pdf&date_stamp=1970-05-04

Blum2: Extended Recursion Theorem

~N,rg~, r monotonically increasing in its sec-
ond variable, such that Vi,eeN

i) ~D(i,e) = ~e(i,~(i,e))

2) (Vx)(~n(i,e) (x) defined ÷ ~n(i,e)(x)

~e (i,n (i, e)) (x))

3) (Vx)(~r i .(x) defined + ~N(i,e)(X) Hk , e)
5r(x'~e(i,n(i,e))(x)))

where 3) holds for all x>max{i,e,~e(i,q
(i,e))}-

Borodin3: Proposition 5

Let ogC~ n be such that, given a set ! = {il,i 2,
...,i n } of indices, for all il,...,ineN

(Vigi)(#i(x) is defined) ÷ ~O(i I in)(X) is
defined.

Then there exists a total function r(x,ul,...,u n)
such that for all x~ max{i I i n }

~ ''" n
(i I .,in)(X)br(x,~il (x) ~i (x)).

2. A General Framework

The tight similarity among the facts proved
in the preceding paragraph, as much as the simi-
larity among the proofs themselves, suggests the
construction of a general framework in which to
prove the existence of a recursive function that
bounds almost everywhere the number of steps re-
quired to compute functions.

In fact, we are interested in producing a
class~ of "assertions about partial recursive
functions," and then showing that, for every as-
sertion A of the class~ the following is true:
"let G be a recursive function such that, for
every tuple of indices ! (of a given enumeration
of partial recurslve functions), and every tuple
of variables x $ (~) is defined iff A[~,~]
holds. Then ~e ~)flnd a recursive function r
and a partial recursive function u~ such that for
all values of i and all but a finite number of
values of E, if A[!,~] holds then u#[i,x] is de-
fined and

~O (!) (~)5r (~' u~ C! ,~]) ""

In this rather informal statement of the
problem the square brackets are to specify that
i and ~ are not arguments of A and u~ but both A
and u~ "depend in some way" on functions (or mul-
tiply composed functions) whose indices and/or
arguments range in ~ and/or ~.

From the preceding paragraph we can take
some example of assertions A and functions r and
u~.

a) from Fact i.i: ! = {i,j}, ~ = {x}
A[!,~] = "~i(x) and ~j(x) defined".

r is the function defined in the proof of
fact i.i

u~[!, ~] = m~x{~i(x), ~j(x)}
b) from Fact 1.3: i = {i,k}, x = {x}

A[!,~] = "~i(x)>k,,

r is as defined in fact 1.3

u#[~,x] = 0 (r depends only on x so we could
have chosen any other value for
u¢)

c) from Blum's Extended Recursion Theorem i =
{i,e}, ~ = {x}

A[i,x] = "~e(i,~[i,e))defined"

r is as defined in E.R.T.

u#[i,x] = ~e(i,n(i,e))(x)
Before giving a formal definition of the

problem and considering the class for which we
will prove the theorem, we need to introduce a
notation to simplify the symbol manipulation job,
and some definitions for objects that we fre-
quently deal with.

a. Notation: we will generally use a prefix
notation so that we can distinguish, by po-
sition, between the operator and an unspe-
cified number of operands. The basic oper-
ators that will appear in our expressions
will be:
#: (~a b c) is interpreted as (~a(b,c): a-th
function in the enumeration, computed with
b and c as arguments;

D: (D a b c) is interpreted as the predicate
"~a(b,c) is defined";~: (~ a b e) is inter-
as ~a(b,c): step counting function for ~a(b,e).

Other operators such as LE (less or
equal), Jk (and), V(or), etc. will be used
and their interpretation is clear.

b. Definitions: the terms out of which we define
assertions will represent functions and step
counting functions whose indices and arguments
are variables or functions. There are two
kinds of terms, viz. <term>, representing
functions, and <s.c. term> representing step
counting functions. Formally:

<i-var>::= i,j,k, (infinite set)

<x-var>::= x,y,z, (infinite set)

<var>:: = <i-var>[<x-var>

<term>::= (~<arg-string>)

Example: (~(~i(~xJ))z) ,i.e. ~i(~x(j))(z)

<arg-strlng>:: = <arg><arg>l<arg><arg-string>

<arg>::= <var>l<term>

<s.c. term>::= (#<arg-string>)
Example: (~x(~i j y)z),i.e. ~x(~i(j,y),z)

We will use the metasymbols ! and ~ to repre-
sent finite (possibly empty) set of i-varia-
bles and x-variables. The metssymbols t and

-42-

will represent terms and finite (possibly
empty) set of terms, respectively.

Let teL: We say t is a term in i and
and we write (t[i,x]) iff any variable occur-
ring in t belongs to ! or to ~. In the same
case if ~ is a finite set of s.c. terms and
TEE we say T is a s.c. term in ~ and ~ and
we write T[~,x].

Our goal is to define a class of asser-
tions as a formal language,~. If AEgis an
assertion we say A is an assertion about
and ~, written A[~,x], iff any variable oc-
curring free in A belongs to ! or to ~.

An assertion A[i,~] will be interpreted
as a statement about the convergency of func-
tions (or about the values of step counting
functions) whose indices and/or arguments
range in i and/or x. The truth-valuation
will be such that K[~,~] is true if and only
if the corresponding statement holds.

Now we are able to give a more formal
statement of

Aim 2.1: we want to define classes of assertions
such that we can prove the following:

"Let A[~,x]e~be an assertion about ~ and
where ! is an n-tuple of i-varlables and ~ an
m-tuple~of x-variables;
let oe~ be a total function such that, for any
! (i.e. for any n-tuple of values of variables of
i) and any

#o(i)(~) is defined ~-+ A[~,~]

then we can find a total recursive function
rECk1_ and a partial recursive function u~ such
that

(V!)(V~x)(A[i,~] + OO(~)(x) ~ r(~,u~(i,~)))"

3. Bounds Relative to Assertions in Disjunctive
Normal Form.

The class of assertions we want to consider
are assertions about the convergency of terms,
closed under conjunction, disjunction and bounded
quantifiers.

The associative and distributive properties
of conjunctions and disjunctions allow us to put
any such assertion in a sort of disjunctive nor-
mal form so that we can give an easy formal def-
inition of~ (see also definitions on page ~).

= {<assertions>} where

<assertion> :: = <D - pred>l<conj>l<b-univ> I
<disj>l<b-exist>

<D-pred> :: = (D<arg-string>)

<conj> :: = (A<D-string>)

<D-string> :: = <D-pred><D-pred>l<D-pred>
<D-string>

<b-univ> :: = (V <var><bound><body>)

<body> :: = <D-pred>l<conj>I<b-univ>

<bound> :: = <var>l<integer>

<disj> :: = (V<body-string>)

<body-string> :: = <body><body>l<body>
<body-string>

<b-exist> :: = (~<var><bound><assertion>)

The interpretation of an assertion of~ is
immediately derived as soon as we interpret a
term as a function and a <D-pred> as the pred-
icate asserting that a function is defined and
the usual interpretation of statements in gtate-
ment Calculus is applied.

Let us give some example of assertions of ~
whose interpretation is given in the first para-
graph.

From Fact i.i: (A (D i x) (D j x))

From Fact 1.2: (V z x (D i z y))

From Blum's E.R.T.: (D(~ e i (~ j i e)) x)
where j is such that n=~j

From Borodin's Prop. 5: (V j n (D (~ e j) x))
where e is such that ~e(O) = i O,

~e(n) = i n

Before proving that iris a class of asser-
tions that satisfies Aim 2.1, we introduce an-
other language t~ # whose words have to be inter-
preted as statements about step counting functions
and their relation with the value of one free
variable (u).

~ = {<~ -assertions>} where

<~ -assertion> :: = <# -relation>l<#-conJ> I
<#-b-univ>l<# -disj> I l<~-b-exist>

<~ -relation> :: = (LE <s.c.term> u)

<~ -conj> :: = (A <0 -string>)

<~ -string> :~ = <~ -relation> <~ -relation> I
<~ -relation><# -string>

<#-b-univ> :: = (V <var><bound><# -body>)

<~ -body> :: = <~ -relation>l<~ -conj>l<#-b-univ>

<~ -disj> :: = (V <~ -body-string>)

<D-body-string> :: = <~ -body><~ -body>I<#-bOdy>
<~ -body-string>

<Q-b-exist> :: = (~<var><bound><#-assertion>)

Now we are ready to prove:

Lemma 3.1: Let AlL,x] e~ be an assertion about
and ~; we have an effective procedure to gen-

erate a # -assertion P[i,x,u] such that

(V !,~) (A[~,~] ÷ (~u) P [i,x,u])

Proof: to generate P from A we have to perform
two steps of symbol manipulation;

Step I:

i. Look for the first <D-pred> in A, from the
left to the right, and call it d;

2. call the first <arg>, of the <arg-string> d,
a;

-43-

3. if a is a <var> go to 6, otherwise (it is a
<term>) make a copy of it, where # is re-
placed by D, and call it d';

4. if d is in the scope of a symbol A go to 5,
otherwise substitute d in A with (/k d) ;

5. put d' immediately after d ;

6. if a was not the last <arg> in the <arg-
string> call the next <arg> a and go to 3,
otherwise go to 7;

7. if there is, still one <D-pred> to the
left of d, call it d and go to 2; otherwise
you are through step i. Call the result A'
and go to step 2.

Step 2:

i. Look for the first <D-pred> in A' from the
left to the right, and call it d;

2. Let <arg-string> be such that d = (D<arg-
string>): substitute d in A' with

(LE (~ <arg-string>) u)

3. look for the next <D-pred> in A', to the
left of d: if there is one, call it d and
go to 2; otherwise you are through step 2.
Call the result P[~,x,u].

Through the first step we make explicit that
if a function is defined, then its index and ar-
guments are defined. Then, if the assertion A
was claiming that, for example, the functions t I
and t 2 are defined, through step 2 we have that
P is claiming that the number of steps to compute
those functions is less than or equal to u: this
is clearly true as soon as u is equal to the max-
imum of the number of steps required to compute
t I and required to compute t 2.

Now we will prove that, in general, for
every ! and ~ such that A[i,K] holds, there exists
a value of u such that P[~,x,u] holds. For this
we will induct on the structure of A[i,~]. Since
step i converts a word in,~ in anothe~ word in

, the actual translation between t2~ and t~ ~
is performed by step 2. Let ! and ~ be such that
A[!,x] holds.
- If A is a<D-pred> then there is a value of u

such that A÷P. In fact in that case A' is a
<D-pred> or is the conjunction of two or more
<D-pred>. So, let ~(~ be the set of all step
counting terms obtained from every <D-pred> by
changing D with ~. Let us take ~ = max -~(*).
Since A[i,x] holds max ~ is defined and

= max ~[~ is a value of u that satisfies every
<q-relation> in the assertion P[i,x,u].

- If A is a conjunction of <D-pred> , suppose we
have found u--1,...,u-- n such that for each <D-pred>

Pi if Pi holds then the corresponding conjunc-
tion of <q-relation> holds with u = ~ :
then we choose ~ = max {Ui } we have that
P[!,x,~] holds.

- If A is an assertion with bounded universal
quantifier and <body>(**) is such that for
each value i of the running variable, from 0
to the bound, if <body> holds then <q-body>
holds with u = ~i, then if we choose ~ = max
{~i }, we have that P[~,~,~] holds.

- If A is a disjuction and if for each <body> of
<body-string> the inductive hypothesis holds
with u = ~i, then if we choose ~ = min {~i },
we have that P[i,x,~] holds.

- If A is an assertion with bounded existential
quantifier and the body (that in this case may
be a D-predicate or a conjunction or a <b-univ>
or a disjunction or even a <b-exist>)(**), is
such that, for each value i of the running
variable, from 0 to the bound, if it holds
then the body of the <Q-assertion> holds with

= ~i, then if we choose ~ = min {u i} we have
that P[i,x,~] holds.

Lemma 3.2: Let All,x] g t~ and P[!,~,u] e ~
be as in Lm 3.1. We can define a partial func-
tion u~ with the property that, for every ! and

such that A[i,x] holds, uq(!,~) is defined and
its value ~ is such that P[i,~,~] holds.

Proof: we have simply to reverse the inductive
argument that we have used in the existence proof
and we get a recursive procedure to produce a
function uq, whose arguments are step counting
functions and whose value satisfies the theorem.

Let us call~ the procedure that, when
applied to the assertion A' e,~ gives the func-
tion u& corresponding to A'. -
- If A T is of the type (~<var><bound><asser-

tion> L
u~ = ~A' = sin {7 <assertion>l<var>
<bound>}

- If A' is of the type (V <body>,...,<body>)
~A' = rain {~ <body> ~<body>}

- If A' is of the type (V <var><bound><body>)
~A' = max {~ <body>l<var> ! <bound>}

- If A' is of the type (A <D-pred> ,..., <D-pred>)
~A' = max {~ <D-pred> ~<D-pred>}

- If A' is of the type (D <arg-string>)
~A' = (~<arg-string>)

By the same argument of the existence proof,
it is clear that ~A' = u~(!,~) is a function
whose arguments are step counting terms on ! and

and such that for every ! and ~ u~ is defined
if A[~,~] holds and its value ~ is such that
P[i,~,~] holds.

For every i and x, max(min) ~ ~consists in com-
puting the steps counting functions corresponding
to the step counting terms in ~and taking their
maximum (minimum). If ~ = ~, max ~ = mln
C~ = 0.

If there are multiple bounded quantifiers of
the same type then induct on the number of quan-
tifiers.

- 4 4 -

Examples:

I) From Fact 1.2:

A[i,~] = (v z x (D i z y))

i = {i} , ~ = {x,y}

A'[!, ~] = (V z x (D i z y))

F[!,x,u] = (V z x (eE (~ i z y) u))

u~(!,~) = ~ax {(¢ i z y) Iz ! x}

2) Let us suppose:

A[!,~] = (V(D(~ i x)x) (D j y))

! = {i,j} , ~ = {x,y}

A'[!,£] = (V(A(D(~ i x)x) (D i x)) (D j y))

P[!,~,u] = (V(A (LE(~(~ i x)x)u)(nE(~ i x)
u)) (LE(~ j y)u))

u~[~,~) = m/n{max{'(~[$i x)x),
(m ix)} , (¢ j y)}
Now we can prove

Theorem 3.1: Let A[!,~] be an assertion of the
class,~ where ! is an n-tuple of i-variables and

an m-tuple of x-variables; let o be a recursive
function in C~n such that

~o(!)(x) is defined ~-+ A[!,~]

then there is a total function r(~,u)e t~m+l and
a partial function u$ such that (V!) (Vx)(A[!,~]

+ ~(i)(~) ~ r(~,u~(!,~)))

Proof. Let P[~,~,u] be as in Lm 3.1 and 3.2.
Let us define

#O(!) (~)
if P[!,~,u]

t (i,a,u) =
k 0 otherwise

we claim that

r(x,u) = max (t(!,~,u) l ! ! ~ (+)}

satisfies the theorem. In fact r(~,u) is total
since P[!,~,u] is recursive and furthermore, by
Lemma 3.2, A[!,x] ÷ U~ defined ÷ t(i,x,u#(i,x))
= ~i)(x) ÷ r(x,u~(i,x)) ~ ~o(i)(~) provided

_C"

4. Validity of the Theorem.

To clarify the meaning of theorem 3.1, let
us suppose we have a function f defined in terms
of other functions gl gn in such a way that f
converges if and only if a certain statement A
about the convergency of gl gn holds. If this
statement is a certain combination of disjunc-
tions and conjunctions (even with bounded quanti-
fiers) of such elementary statements as "gl con-
verges", '"''"gn converges", we know we can
write it in a normal form so that it is expressed
by an assertion of:~ . Then theorem 3.1 tells

(+)i < x ~-+ (V ig!) (V xCx) (i ! x)

us that:

i) the number of steps required to compute f is
bounded (almost everywhere f is defined) by a
certain function r of the number of steps re-
quired to compute gl,...,gn,

2) the function r is total,

3) there is an effective way to know how to
compute r, given the statement A.

The class of assertions ~is not so wide ta
include, for example, all the Facts of § i: in
Fact 1.3 we have an assertion that is not repre-
sentable by words of~ . To widen the class
in order to include more general types of asser-
tions may be an interesting exercise but we tend
to consider~ large enough to be meaningful and
to allow us to discuss the validity of the main
result.
4.1 Reduction of the number of arguments of r:
in theorem 3.1 the step counting function ~O(i)(x)
is bounded by r(x,~) where the value ~ depends-on
the number of steps required to compute the func-
tions that occur in A. In other words it depends
on all the s.c. terms whose corresponding term
occurs in A. Since in some term (like (~ j k)
where j,ke~, for example) sometimes only i-varia-
bles occur, once we have fixed the values of all
igi, these terms behave like constants and so, in
some cases, we can get rid of them while computing
r. This happens, for example, for the subclass of
~where only conjunctions and bounded universal
quantifier occur.
Let us call this class t~ .

o
We can prove:

Theorem 4.1. Let A[~,x] be an assertion of the
class ~ ; let ~ be a recursive function in ~n
such that v

~o(i)(x) is defined ~-+ A[i,x~

then there are a total function r(x,u)c ~m+l
and two partial functions u~, v~ such that

(V i) (V x~i,v m (!))

(A[i,~] ÷ ¢~(i) (~) ! r(~,u¢(!,~)))

Proof. Let us define

<# -relation> :: = (LE(~ <arg-string>)u)I(LE(~
<arg-string>)v).

Then let us execute step 1 as in Lemma 3.1 and
change step 2 in the following way:

Step 2:

i. as in Lemma 3.1

2. Let <arg-strlng> be such that d = (D <arg-
string>) : if some x-variables occur among
the variables or in the terms of <arg-string>,
then substitute d in A' with (LE(~ <arg-
string>) u), otherwise, substitute d in A'
with (LE(~ <arg-string>) v)

-45-

3. as in Lemma 3.1

Call the result P[!,~,u,v]

Now we can prove, that for every ! and x such
that A[i,x] holds there exist values of u and v
such that P[i,x,u,v] holds.
- If A is a <D-pred> or the conjunction of two or

more <D-pred>, then P is a <$ -relation> or the
conjunction of two or more <$ -relation>. Let
us put their <s.c. term> in two classes ac-
cording to the alternatives of instruction i of
step 2. In other words, let us call U# the set
of all the step counting terms that we compare
with u, and V~ the set of all the step counting
terms that we compare with v. Since A holds,
max U¢ and max V¢ are defined and ~ = max US,

= max V~ are values of u and v satisfying P.
- If A is an assertion with bounded universal

quantifier and the body is such that for each
value i of the running variable from 0 to the
bound, if <body> holds then <$ -body> holds
with ~ = u i and v = ~i, then if we choose ~ =
max {~i } and V = max ~i } we have that P[i,x,
~, V] holds.

Now, as in Lemma 3.2, we can reverse the argument
and define u¢ and v~ to be functions of i and x
such that
- if A' is of the type (~ <var><bound><body>)

us = ~A' = max { ~<body>l<var> ~ <bound>}

v¢ = ~A' = max { ~ <body>I<var> < <bound>}

if A' is of the type (A<D-pred>,...,<D-pred>)

~A' = max { ~<D-pred>
~<D-pred>}

~A' = max { ~<D-pred>

• < D - p r e d > }

- if A' is of the type (D <arg-string>)

if no x-variable occurs free in <arg-
string>

~A' = 0

• A' = (~ <arg-string>)

otherwise

~A' = (~ <arg-string>)

• A' = 0

For every ! and x, A[!,~] implies that us
and v$ are defined and their values u, v are such
that P[!,~,~,~] holds. So let us define (as in
theorem 3.1) :

t (!,x,u,v) = {~O(!)(~) of P[!,x~u,v]

0 otherwise

and r(x,u) = max {t(!,x,u,v)]i~x,v~x }

r(x,u) is total recursive since P[i,x,u,v] is a
reeursive predicate and furthermore A[!,5] + u~
and v~ defined +

÷ t(~,~,u¢(i,~), v¢(!)) = %(!)(~) ÷

÷ r(x,u$(!,x)) ~ ~O(i)(~) provided x>i and
9~v¢(1) - ----

Example:

In Blum's E.R.T. :

A[!, ~] = (D (~ e i (~ j i e)) x)

= {i,e,j} ~ = {x}

A'[!, ~] = (A (D(~ e i (~ j i e))x)(D e i
(~ j i e))(D j ie))

US = {($(~ e i (¢ j i e))x)}

v¢ = {(¢ e i (+ j

P[_i,x,u,v] = (A (LE(~(~

(LE (~ e

(LE($ j

u¢(i,x) = (¢ (¢ e i(¢ j

v~(i) = max {($ e i(q~ j

i e)), ($ j i e)}

e i(~ j i e))x)u)

i (¢ j i e))v)

i e)v))

i e))x)

i e)),(~ j i e)}

We can see that in this way r depends only
on the values of s.c. functions depending on x
but we have to pay for this with an increase in
the number of values of ~ for which $O(i)(x) may
not be bounded by r.

4.2 Theorem 3.1 gives us a bound cn the number N
of values of the arguments xgx fox which $.~(x)

- o(i -
is defined but r does not provide a bound to-the
step counting function ~q(i~(x). In fact we
have proved that, given ~,-N ~s greater than max
{i~i}.

Since this is a consequence of the fact
that we define r as the maximum of t (i,x,u)
while every ig! is running between 0 and the
least xe~, we can easily figure out how to im-
prove our result by reducing the number N. In
fact we can make iei run between 0 and the value
of some functions (growing faster than the iden-
tity function) of a scapegoat variable XoeX: i.e.
define for example

X

r(~,u) = max {t (~,~,u) li~2 o, XoEX }

In this way the bound on the step counting func-
tion holds for every i, for every xe~, different
from x o and for all the values of x o greater or
equal to log 2 (max !).

It is clear that we could improve this re-
sult in order to reduce N to a nun~er growing
extremely slowly with ~, but we will see in 4.3,
that this brings some disadvantages.

As far as the result of theorem 4.1 is con-
cerned we must consider that the reason why we
have to pay in N (i.e. the number of values of x
where the bound on the s.c. function does not
hold), for getting rid of some of the s.c. func-
tions in the computation of r, is more deep than
we can realize at a first moment.

In fact, suppose we can get rid of all of
the s.c. functions not depending on an x-variable
without paying in N: we can prove that this
would contradict the undecidability of the "halt-
ing problem".

-46-

Fact 4.2 Let A[!,x] be an assertion of~ and
let ~ be a recursive function in ~n such that

~o(!)(~) is defined +-- A[i,~]

then there is no total function r(x) such that

(V!) (Vx~i~ (A C!,~] ~ ~(~) (~) ! r (x))

Proof. Let us define

~(i) (x) = ix if ~i(i) is defined

undefined otherwise

Suppose such an r(x) exist. Since ~g(i)(i) is
defined if and only if ~i(i) is defined, and
since for x~i(#i(i) defined ~ ~g(i)(x) ~ r (x))
we should have that for every x~f ~i(1) defined
iff ~g(i)(x) < r (x). So we could compute r(i)
and th4n-star~ computing ~q(i)(i): if this
takes more than r(i) steps ~i(i) is not defined,
otherwise it is defined. So we could solve the
halting problem.

Thus it is impossible that we get rid of
all of the s.c. functions not depending on x-
variables, without paying on N (or better: with-
out making N depend on such s.c. functions)
otherwise we could have r dependent only on x and
contradleting Fact 4.2.

4.3 The third point we are interested in, is dis-
cussing how hard it is to compute the bound r
with respect to the step counting function

~(i)(~)"
Let us call R(5,u) the step counting function of
r(x,u).

We can prove:

Fact 4.3: For some "reasonable measures" the
number of steps required to compute r(x,u~(i~x))
is bounded, wherever theorem 3.1 holds, between
a function g1(x,u~(i,x), ~o(i)(x)) and a function
g2(x,u¢(!,x_), r(~,u~(!,~)))

Proof. In the best case, to compute r(x~u#(!,~))
we need to compute only ~(i)~) because only for

= ! we have that P[l,~,u¢]i,x~] holds; in the
worst case, for all 1 ~ x O we have that P[l,x~
u~(!,~)] holds and so we have to compute ~O(i)(5)
for every ! ~ Xo (where x O is as in point 4.2).
So, let n be the cardlnality of !, since we have
that for every lei, i runs from 0 to x o, and for
every ! we need u steps to check if P[~,x,u]
holds or not, R(~,u#(!,~)) ~ (x o + i) n • m. u~
(i,x) + #@(~)(x) where m is the number of step
c~unting fd~ction to match with u~(!,x)

On the other side:

R(~,u (!,~)) ~ (x o + i) n • m • u~(!, ~)

x o

+~l ~(!) (~) + M (x o)
0 --

may consider growing with x~ for some "reasonable
measures".

Considering that r(x,u~(i,x)) = max{~, ~(x) I
1 ! xn} R(x,u~[i,x]) ! (Xo + l)n " m • u¢[~l
~(x o ~ i) n • r(x,u~(i,x)) + M (x o)

The meaning of Fact 4.3 is that to compute the
bound to the step counting function is usually
not much harder than computing the step counting
function itself.

In order to reduce the strong dependence on
x o (remember that the values of x o for which r is
a bound to the s.c. function are all greater than
i, i.e. rather big values) we could make i (for
all ie~) run between 0 and (~--~o ~ i) (instead
of x o) so that the factor dependent on x o should
be reduced to x o itself. The reason why we must
be careful in doing so is that in point 4.2 we
have seen that such a bound on the range of i
would determine an increase in the number N of
points where r is not a bound for ~o(i)(x)

For the opposite reason we cannot try to
reduce N without increasing the difficulty of
computing r. So we need to balance these two
exigencies.

Acknowledgments

The author wishes to thank Professor M. Blum
for having provided the motivation for this work
and for his many helpful suggestions.

References

i. Blum, M.: A Machine Independent Theory of
the Complexity of Recursive Functions. ~. ACM,
14,2 (April, 1967).

2. Blum, M.: On Effective Procedures for Speed-
ing up Algorithms. ACM Symposium on Theory
of Computing, Marina del Rey, California
(May 1969).

3. Borodin, A.: Complexity Classes of Recursive
Functions and the Existence of Complexity
Gaps. Ibid.

where M (Xo) is the number of steps required to
find the maximum in {t(l,X,U) l! ! Xo} that we

-47-

