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Abstract 

Let f be a partial recursive function defined 
in terms of other functions gl,'",gn such that f 
converges if and only if some well defined asser- 
tions about the convergency of gl,''',gn hold: 
then we can find a total function (depending on 
the number of steps required to compute gl,''',gn) 
that bounds the step counting function of f almost 
everywhere f is defined. It is also shown that, 
in that cas% to compute the bound to the step 
counting function is not much harder than comput- 
ing the step counting function itself. 

i. Introduction 

Notation i: in what follows we assume the reader 
to be familiar with the notion of standard index- 
ing ~i~i of all partial recursive functions 
(p.r.f.). Given any function ~i, we call a 
p.r.f.~ i the step counting function (or the com- 
plexity measure) of ~i if: 

i) ~i(x) converges iff ~i(x) converges 
2) the relation #i(x)=y is recursive in 

i,x,y. 
Besides, when we write (Vx)(f(x)~g(x)), we mean 
that f(x)~g(x) for all but a finite number of 
values of the argument x. 

Given a partial recursive function f defined 
in terms of partial recursive functions gl,g2,... , 
gn, it is sometimes possible to find a (total) re- 
cursive function r that bounds the number of steps 
required to compute f in terms of the number of 
steps required to compute gl,''',gn, almost every- 
where that f is defined. For example we can prove 
the following facts: 

Fact i.i Let o be a recursive function of two var- 
iables with the property that for all i,j,x, 
~(i,j)(x) converges iff ~i(x) and ~j(x) converge. 
Then there exists a recursive function r such that, 
for all i and j and almost all x: 

~i(x) defined & ~j(x) defined ÷ 

#q(i " ) (x)<r (x,max{# i (x) ,¢j (x) } ) 
Proof. "bet ~s define: 

t (x,i,j,u) = ~ w~(i'j)(x) if ¢i(x)~u and ~j(x)<u 

I 0 otherwise 
L 

r (x,u) = max {t (x,i,j,u) I i,j!x} 

r is a recursive function since t is a recursive 
function. Furthermore, #i(x) defined & ~(x) de- 
fined ÷ max {~i(x),~(x)} defined ÷ t(x,ilj,max 
{@i (x) '#~ (x)}) = ¢o(~ ~(x) ÷ r(x,max{@~(x),#~(x)}) 
>~o(i,j)~x), provided'~ J> max {i,j}. Hence o~r 
~esult-follows for all x--~ max {i,j}. 

Fact 1.2 Let ~ be a recursive function of one 
variable with the property that for all i,x and 
y, ~ (x,y) converges iff ~i(0,y), ~i(l,y) ..... 
~i( )converge. Then there exists a recursive 
function r such that for all i and almost all x 

(Vz~x)(¢i(z,y)defined) + (x,y)! 
r(x,max{¢i(z,y ) i zix}) ~G(i) 

Proof. Let us define: 

t (x,y,i,u)= ~ ~G[i)(x'y) if(Vzix)(~i(z'Y)<--u) 

kO otherwise 

r (x,y,u) = max{t (x,y,i,u) I i<x,y} 

Then (Vz<x)(#i(z,y)defined) + $o(i)(x,y)~r 
(x,y,max~i(z,y) I z<x}) for all f and all x,y~i 

Fact 1.3. Let ~ be a recursive function of two 
variables with the property that for all i,k and 
allx ~(i,k)(X) is defined iff the number of steps 
required by the computation of $i(x) is greater 
than k. Then there exists a recursive function r 
such that for all i and k and almost all x 

~i(x)>k + ~c(i,k)(x)!r(x) 

Proof. Let us define: 

t (x,i,k) ={ ~(i'k)(x) if ~i(x)>k 

k0 otherwise 

r (x) = max {t (x,i,k) I i,k<x} 

Then ~i(x)>k + ~G(~,k)(x)<r (x) for all i and k 
and all x~ max[i,k# 
Instances and proofs of these types of facts occur 
frequently in the literature. For example we have: 
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Blum2: Extended Recursion Theorem 

~N,rg~, r monotonically increasing in its sec- 
ond variable, such that Vi,eeN 

i) ~D(i,e) = ~e(i,~(i,e) ) 

2) (Vx)(~n(i,e) (x) defined ÷ ~n(i,e)(x) 

~e (i,n (i, e)) (x)) 

3) (Vx)(~r i .(x) defined + ~N(i,e)(X) Hk , e )  
5r(x'~e(i,n(i,e))(x))) 

where 3) holds for all x>max{i,e,~e(i,q 
(i,e))}- 

Borodin3: Proposition 5 

Let ogC~ n be such that, given a set ! = {il,i 2, 
...,i n } of indices, for all il,...,ineN 

(Vigi)(#i(x) is defined) ÷ ~O(i I .... in)(X ) is 
defined. 

Then there exists a total function r(x,ul,...,u n) 
such that for all x~ max{i I ..... i n } 

~ ''" n 
(i I .,in)(X)br(x,~il (x) ..... ~i (x)). 

2. A General Framework 

The tight similarity among the facts proved 
in the preceding paragraph, as much as the simi- 
larity among the proofs themselves, suggests the 
construction of a general framework in which to 
prove the existence of a recursive function that 
bounds almost everywhere the number of steps re- 
quired to compute functions. 

In fact, we are interested in producing a 
class~ of "assertions about partial recursive 
functions," and then showing that, for every as- 
sertion A of the class~ the following is true: 
"let G be a recursive function such that, for 
every tuple of indices ! (of a given enumeration 
of partial recurslve functions), and every tuple 
of variables x $ .... (~) is defined iff A[~,~] 
holds. Then ~e ~)flnd a recursive function r 
and a partial recursive function u~ such that for 
all values of i and all but a finite number of 
values of E, if A[!,~ ] holds then u#[i,x] is de- 
fined and 

~O (!) (~)5r (~' u~ C! ,~] ) "" 

In this rather informal statement of the 
problem the square brackets are to specify that 
i and ~ are not arguments of A and u~ but both A 
and u~ "depend in some way" on functions (or mul- 
tiply composed functions) whose indices and/or 
arguments range in ~ and/or ~. 

From the preceding paragraph we can take 
some example of assertions A and functions r and 
u~. 

a) from Fact i.i: ! = {i,j}, ~ = {x} 
A[!,~] = "~i(x) and ~j(x) defined". 

r is the function defined in the proof of 
fact i.i 

u~[!, ~] = m~x{~i(x), ~j(x)} 
b) from Fact 1.3: i = {i,k}, x = {x} 

A[!,~ ] = "~i(x)>k,, 

r is as defined in fact 1.3 

u#[~,x] = 0 (r depends only on x so we could 
have chosen any other value for 
u¢) 

c) from Blum's Extended Recursion Theorem i = 
{i,e}, ~ = {x} 

A[i,x] = "~e(i,~[i,e))defined" 

r is as defined in E.R.T. 

u#[i,x] = ~e(i,n(i,e))(x) 
Before giving a formal definition of the 

problem and considering the class for which we 
will prove the theorem, we need to introduce a 
notation to simplify the symbol manipulation job, 
and some definitions for objects that we fre- 
quently deal with. 

a. Notation: we will generally use a prefix 
notation so that we can distinguish, by po- 
sition, between the operator and an unspe- 
cified number of operands. The basic oper- 
ators that will appear in our expressions 
will be: 
#: (~a b c) is interpreted as (~a(b,c): a-th 
function in the enumeration, computed with 
b and c as arguments; 

D: (D a b c) is interpreted as the predicate 
"~a(b,c) is defined";~: (~ a b e) is inter- 
as ~a(b,c): step counting function for ~a(b,e). 

Other operators such as LE (less or 
equal), Jk (and), V(or), etc. will be used 
and their interpretation is clear. 

b. Definitions: the terms out of which we define 
assertions will represent functions and step 
counting functions whose indices and arguments 
are variables or functions. There are two 
kinds of terms, viz. <term>, representing 
functions, and <s.c. term> representing step 
counting functions. Formally: 

<i-var>::= i,j,k, ...... (infinite set) 

<x-var>::= x,y,z, ...... (infinite set) 

<var>:: = <i-var>[<x-var> 

<term>::= (~<arg-string>) 

Example: (~(~i(~xJ))z) ,i.e. ~i(~x(j))(z) 

<arg-strlng>:: = <arg><arg>l<arg><arg-string> 

<arg>::= <var>l<term> 

<s.c. term>::= (#<arg-string>) 
Example: (~x(~i j y)z),i.e. ~x(~i(j,y),z) 

We will use the metasymbols ! and ~ to repre- 
sent finite (possibly empty) set of i-varia- 
bles and x-variables. The metssymbols t and 
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will represent terms and finite (possibly 
empty) set of terms, respectively. 

Let teL: We say t is a term in i and 
and we write (t[i,x]) iff any variable occur- 
ring in t belongs to ! or to ~. In the same 
case if ~ is a finite set of s.c. terms and 
TEE we say T is a s.c. term in ~ and ~ and 
we write T[~,x]. 

Our goal is to define a class of asser- 
tions as a formal language,~. If AEgis an 
assertion we say A is an assertion about 
and ~, written A[~,x], iff any variable oc- 
curring free in A belongs to ! or to ~. 

An assertion A[i,~] will be interpreted 
as a statement about the convergency of func- 
tions (or about the values of step counting 
functions) whose indices and/or arguments 
range in i and/or x. The truth-valuation 
will be such that K[~,~] is true if and only 
if the corresponding statement holds. 

Now we are able to give a more formal 
statement of 

Aim 2.1: we want to define classes of assertions 
such that we can prove the following: 

"Let A[~,x]e~be an assertion about ~ and 
where ! is an n-tuple of i-varlables and ~ an 
m-tuple~of x-variables; 
let oe~ be a total function such that, for any 
! (i.e. for any n-tuple of values of variables of 
i) and any 

#o(i)(~) is defined ~-+ A[~,~] 

then we can find a total recursive function 
rECk1_ and a partial recursive function u~ such 
that 

(V!)(V~x)(A[i,~] + OO(~)(x) ~ r(~,u~(i,~)))" 

3. Bounds Relative to Assertions in Disjunctive 
Normal Form. 

The class of assertions we want to consider 
are assertions about the convergency of terms, 
closed under conjunction, disjunction and bounded 
quantifiers. 

The associative and distributive properties 
of conjunctions and disjunctions allow us to put 
any such assertion in a sort of disjunctive nor- 
mal form so that we can give an easy formal def- 
inition of~ (see also definitions on page ~). 

= {<assertions>} where 

<assertion> :: = <D - pred>l<conj>l<b-univ> I 
<disj>l<b-exist> 

<D-pred> :: = (D<arg-string>) 

<conj> :: = (A<D-string>) 

<D-string> :: = <D-pred><D-pred>l<D-pred> 
<D-string> 

<b-univ> :: = (V <var><bound><body> ) 

<body> :: = <D-pred>l<conj>I<b-univ> 

<bound> :: = <var>l<integer> 

<disj> :: = (V<body-string>) 

<body-string> :: = <body><body>l<body> 
<body-string> 

<b-exist> :: = (~<var><bound><assertion>) 

The interpretation of an assertion of~ is 
immediately derived as soon as we interpret a 
term as a function and a <D-pred> as the pred- 
icate asserting that a function is defined and 
the usual interpretation of statements in gtate- 
ment Calculus is applied. 

Let us give some example of assertions of ~ 
whose interpretation is given in the first para- 
graph. 

From Fact i.i: (A (D i x) (D j x)) 

From Fact 1.2: (V z x (D i z y )) 

From Blum's E.R.T.: (D(~ e i (~ j i e )) x) 
where j is such that n=~j 

From Borodin's Prop. 5: (V j n (D (~ e j) x)) 
where e is such that ~e(O) = i O, .... 

~e(n) = i n 

Before proving that iris a class of asser- 
tions that satisfies Aim 2.1, we introduce an- 
other language t~ # whose words have to be inter- 
preted as statements about step counting functions 
and their relation with the value of one free 
variable (u). 

~ = {<~ -assertions>} where 

<~ -assertion> :: = <# -relation>l<#-conJ> I 
<#-b-univ>l<# -disj> I l<~-b-exist> 

<~ -relation> :: = (LE <s.c.term> u) 

<~ -conj> :: = (A <0 -string> ) 

<~ -string> :~ = <~ -relation> <~ -relation> I 
<~ -relation><# -string> 

<#-b-univ> :: = (V <var><bound><# -body> ) 

<~ -body> :: = <~ -relation>l<~ -conj>l<#-b-univ> 

<~ -disj> :: = ( V <~ -body-string> ) 

<D-body-string> :: = <~ -body><~ -body>I<#-bOdy> 
<~ -body-string> 

<Q-b-exist> :: = (~<var><bound><#-assertion>) 

Now we are ready to prove: 

Lemma 3.1: Let AlL,x] e~ be an assertion about 
and ~; we have an effective procedure to gen- 

erate a # -assertion P[i,x,u] such that 

(V !,~) (A[~,~] ÷ (~u) P [i,x,u]) 

Proof: to generate P from A we have to perform 
two steps of symbol manipulation; 

Step I: 

i. Look for the first <D-pred> in A, from the 
left to the right, and call it d; 

2. call the first <arg>, of the <arg-string> d, 
a; 
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3. if a is a <var> go to 6, otherwise (it is a 
<term>) make a copy of it, where # is re- 
placed by D, and call it d'; 

4. if d is in the scope of a symbol A go to 5, 
otherwise substitute d in A with (/k d) ; 

5. put d' immediately after d ; 

6. if a was not the last <arg> in the <arg- 
string> call the next <arg> a and go to 3, 
otherwise go to 7; 

7. if there is, still one <D-pred> to the 
left of d, call it d and go to 2; otherwise 
you are through step i. Call the result A' 
and go to step 2. 

Step 2: 

i. Look for the first <D-pred> in A' from the 
left to the right, and call it d; 

2. Let <arg-string> be such that d = (D<arg- 
string>): substitute d in A' with 

( LE (~ <arg-string> ) u) 

3. look for the next <D-pred> in A', to the 
left of d: if there is one, call it d and 
go to 2; otherwise you are through step 2. 
Call the result P[~,x,u]. 

Through the first step we make explicit that 
if a function is defined, then its index and ar- 
guments are defined. Then, if the assertion A 
was claiming that, for example, the functions t I 
and t 2 are defined, through step 2 we have that 
P is claiming that the number of steps to compute 
those functions is less than or equal to u: this 
is clearly true as soon as u is equal to the max- 
imum of the number of steps required to compute 
t I and required to compute t 2. 

Now we will prove that, in general, for 
every ! and ~ such that A[i,K] holds, there exists 
a value of u such that P[~,x,u] holds. For this 
we will induct on the structure of A[i,~]. Since 
step i converts a word in,~ in anothe~ word in 

, the actual translation between t2~ and t~ ~ 
is performed by step 2. Let ! and ~ be such that 
A[!,x] holds. 
- If A is a<D-pred> then there is a value of u 

such that A÷P. In fact in that case A' is a 
<D-pred> or is the conjunction of two or more 
<D-pred>. So, let ~(~ be the set of all step 
counting terms obtained from every <D-pred> by 
changing D with ~. Let us take ~ = max -~(*). 
Since A[i,x] holds max ~ is defined and 

= max ~[~ is a value of u that satisfies every 
<q-relation> in the assertion P[i,x,u]. 

- If A is a conjunction of <D-pred> , suppose we 
have found u--1,...,u-- n such that for each <D-pred> 

Pi if Pi holds then the corresponding conjunc- 
tion of <q-relation> holds with u = ~ : 
then we choose ~ = max {Ui } we have that 
P[!,x,~] holds. 

- If A is an assertion with bounded universal 
quantifier and <body>(**) is such that for 
each value i of the running variable, from 0 
to the bound, if <body> holds then <q-body> 
holds with u = ~i, then if we choose ~ = max 
{~i }, we have that P[~,~,~] holds. 

- If A is a disjuction and if for each <body> of 
<body-string> the inductive hypothesis holds 
with u = ~i, then if we choose ~ = min {~i }, 
we have that P[i,x,~] holds. 

- If A is an assertion with bounded existential 
quantifier and the body (that in this case may 
be a D-predicate or a conjunction or a <b-univ> 
or a disjunction or even a <b-exist>)(**), is 
such that, for each value i of the running 
variable, from 0 to the bound, if it holds 
then the body of the <Q-assertion> holds with 

= ~i, then if we choose ~ = min {u i} we have 
that P[i,x,~] holds. 

Lemma 3.2: Let All,x] g t~ and P[!,~,u] e ~ 
be as in Lm 3.1. We can define a partial func- 
tion u~ with the property that, for every ! and 

such that A[i,x] holds, uq(!,~) is defined and 
its value ~ is such that P[i,~,~] holds. 

Proof: we have simply to reverse the inductive 
argument that we have used in the existence proof 
and we get a recursive procedure to produce a 
function uq, whose arguments are step counting 
functions and whose value satisfies the theorem. 

Let us call~ the procedure that, when 
applied to the assertion A' e,~ gives the func- 
tion u& corresponding to A'. - 
- If A T is of the type (~<var><bound><asser- 

tion> L 
u~ = ~A' = sin {7 <assertion>l<var> 
<bound>} 

- If A' is of the type ( V <body>,...,<body> ) 
~A' = rain {~ <body> ..... ~<body>} 

- If A' is of the type ( V <var><bound><body> ) 
~A' = max {~ <body>l<var> ! <bound>} 

- If A' is of the type (A <D-pred> ,..., <D-pred>) 
~A' = max {~ <D-pred> ..... ~<D-pred>} 

- If A' is of the type ( D <arg-string> ) 
~A' = (~<arg-string>) 

By the same argument of the existence proof, 
it is clear that ~A' = u~(!,~) is a function 
whose arguments are step counting terms on ! and 

and such that for every ! and ~ u~ is defined 
if A[~,~] holds and its value ~ is such that 
P[i,~,~] holds. 

For every i and x, max(min) ~ ~consists in com- 
puting the steps counting functions corresponding 
to the step counting terms in ~and taking their 
maximum (minimum). If ~ = ~, max ~ = mln 
C~ = 0. 

If there are multiple bounded quantifiers of 
the same type then induct on the number of quan- 
tifiers. 
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Examples: 

I) From Fact 1.2: 

A[i,~] = ( v z x (D i z y)) 

i = {i} , ~ = {x,y} 

A'[!, ~] = (V z x (D i z y)) 

F[!,x,u] = (V z x (eE (~ i z y) u)) 

u~(!,~) = ~ax {(¢ i z y) Iz ! x} 

2) Let us suppose: 

A[!,~] = (V(D(~ i x)x) (D j y)) 

! = {i,j} , ~ = {x,y} 

A'[!,£] = (V(A(D(~ i x)x) (D i x)) (D j y)) 

P[!,~,u] = (V(A (LE(~(~ i x)x)u)(nE(~ i x) 
u)) (LE(~ j y)u)) 

u~[~,~) = m/n{max{'(~[$i x)x), 
(m ix)} , (¢ j y)} 
Now we can prove 

Theorem 3.1: Let A[!,~] be an assertion of the 
class,~ where ! is an n-tuple of i-variables and 

an m-tuple of x-variables; let o be a recursive 
function in C~n such that 

~o(!)(x) is defined ~-+ A[!,~ ] 

then there is a total function r(~,u)e t~m+l and 
a partial function u$ such that (V!) (Vx)(A[!,~ ] 

+ ~(i)(~) ~ r(~,u~(!,~))) 

Proof. Let P[~,~,u] be as in Lm 3.1 and 3.2. 
Let us define 

#O(!) (~) 
if P[!,~,u] 

t (i,a,u) = 
k 0 otherwise 

we claim that 

r(x,u) = max (t(!,~,u) l ! ! ~ (+)} 

satisfies the theorem. In fact r(~,u) is total 
since P[!,~,u] is recursive and furthermore, by 
Lemma 3.2, A[!,x] ÷ U~ defined ÷ t(i,x,u#(i,x)) 
= ~i)(x) ÷ r(x,u~(i,x)) ~ ~o(i)(~) provided 

_C" 

4. Validity of the Theorem. 

To clarify the meaning of theorem 3.1, let 
us suppose we have a function f defined in terms 
of other functions gl .... gn in such a way that f 
converges if and only if a certain statement A 
about the convergency of gl .... gn holds. If this 
statement is a certain combination of disjunc- 
tions and conjunctions (even with bounded quanti- 
fiers) of such elementary statements as "gl con- 
verges", '"''"gn converges", we know we can 
write it in a normal form so that it is expressed 
by an assertion of:~ . Then theorem 3.1 tells 

(+)i < x ~-+ (V ig!) (V xCx) (i ! x) 

us that: 

i) the number of steps required to compute f is 
bounded (almost everywhere f is defined) by a 
certain function r of the number of steps re- 
quired to compute gl,...,gn, 

2) the function r is total, 

3) there is an effective way to know how to 
compute r, given the statement A. 

The class of assertions ~is not so wide ta 
include, for example, all the Facts of § i: in 
Fact 1.3 we have an assertion that is not repre- 
sentable by words of~ . To widen the class 
in order to include more general types of asser- 
tions may be an interesting exercise but we tend 
to consider~ large enough to be meaningful and 
to allow us to discuss the validity of the main 
result. 
4.1 Reduction of the number of arguments of r: 
in theorem 3.1 the step counting function ~O(i)(x) 
is bounded by r(x,~) where the value ~ depends-on 
the number of steps required to compute the func- 
tions that occur in A. In other words it depends 
on all the s.c. terms whose corresponding term 
occurs in A. Since in some term (like (~ j k) 
where j,ke~, for example) sometimes only i-varia- 
bles occur, once we have fixed the values of all 
igi, these terms behave like constants and so, in 
some cases, we can get rid of them while computing 
r. This happens, for example, for the subclass of 
~where only conjunctions and bounded universal 
quantifier occur. 
Let us call this class t~ . 

o 
We can prove: 

Theorem 4.1. Let A[~,x] be an assertion of the 
class ~ ; let ~ be a recursive function in ~n 
such that v 

~o(i)(x) is defined ~-+ A[i,x~ 

then there are a total function r(x,u)c ~m+l 
and two partial functions u~, v~ such that 

(V i) (V x~i,v m (!)) 

(A[i,~] ÷ ¢~(i) (~) ! r(~,u¢(!,~))) 

Proof. Let us define 

<# -relation> :: = (LE(~ <arg-string> )u)I(LE(~ 
<arg-string>)v). 

Then let us execute step 1 as in Lemma 3.1 and 
change step 2 in the following way: 

Step 2: 

i. as in Lemma 3.1 

2. Let <arg-strlng> be such that d = (D <arg- 
string> ) : if some x-variables occur among 
the variables or in the terms of <arg-string>, 
then substitute d in A' with (LE(~ <arg- 
string> ) u), otherwise, substitute d in A' 
with (LE(~ <arg-string> ) v) 
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3. as in Lemma 3.1 

Call the result P[!,~,u,v] 

Now we can prove, that for every ! and x such 
that A[i,x] holds there exist values of u and v 
such that P[i,x,u,v] holds. 
- If A is a <D-pred> or the conjunction of two or 

more <D-pred>, then P is a <$ -relation> or the 
conjunction of two or more <$ -relation>. Let 
us put their <s.c. term> in two classes ac- 
cording to the alternatives of instruction i of 
step 2. In other words, let us call U# the set 
of all the step counting terms that we compare 
with u, and V~ the set of all the step counting 
terms that we compare with v. Since A holds, 
max U¢ and max V¢ are defined and ~ = max US, 

= max V~ are values of u and v satisfying P. 
- If A is an assertion with bounded universal 

quantifier and the body is such that for each 
value i of the running variable from 0 to the 
bound, if <body> holds then <$ -body> holds 
with ~ = u i and v = ~i, then if we choose ~ = 
max {~i } and V = max ~i } we have that P[i,x, 
~, V] holds. 

Now, as in Lemma 3.2, we can reverse the argument 
and define u¢ and v~ to be functions of i and x 
such that 
- if A' is of the type (~ <var><bound><body> ) 

us = ~A' = max { ~<body>l<var> ~ <bound>} 

v¢ = ~A' = max { ~ <body>I<var> < <bound>} 

if A' is of the type (A<D-pred>,...,<D-pred>) 

~A' = max { ~<D-pred> ..... 
~<D-pred>} 

~A' = max { ~<D-pred> ..... 

• < D - p r e d > }  

- if A' is of the type (D <arg-string> ) 

if no x-variable occurs free in <arg- 
string> 

~A' = 0 

• A' = (~ <arg-string> ) 

otherwise 

~A' = (~ <arg-string> ) 

• A' = 0 

For every ! and x, A[!,~] implies that us 
and v$ are defined and their values u, v are such 
that P[!,~,~,~] holds. So let us define (as in 
theorem 3.1) : 

t (!,x,u,v) = {~O(!)(~) of P[!,x~u,v] 

0 otherwise 

and r(x,u) = max {t(!,x,u,v)]i~x,v~x } 

r(x,u) is total recursive since P[i,x,u,v] is a 
reeursive predicate and furthermore A[!,5] + u~ 
and v~ defined + 

÷ t(~,~,u¢(i,~), v¢(!)) = %(!)(~) ÷ 

÷ r(x,u$(!,x)) ~ ~O(i)(~) provided x>i and 
9~v¢(1) - ---- 

Example: 

In Blum's E.R.T. : 

A[!, ~] = (D (~ e i (~ j i e)) x) 

= {i,e,j} ~ = {x} 

A'[!, ~] = (A (D(~ e i (~ j i e))x)(D e i 
(~ j i e))(D j ie)) 

US = {($(~ e i (¢ j i e))x)} 

v¢ = {(¢ e i (+ j 

P[_i,x,u,v] = (A (LE(~(~ 

(LE (~ e 

(LE($ j 

u¢(i,x) = (¢ (¢ e i(¢ j 

v~(i) = max {($ e i(q~ j 

i e)), ($ j i e)} 

e i(~ j i e))x)u) 

i (¢ j i e))v) 

i e)v)) 

i e))x) 

i e)),(~ j i e)} 

We can see that in this way r depends only 
on the values of s.c. functions depending on x 
but we have to pay for this with an increase in 
the number of values of ~ for which $O(i)(x ) may 
not be bounded by r. 

4.2 Theorem 3.1 gives us a bound cn the number N 
of values of the arguments xgx fox which $ .~(x) 

- o(i - 
is defined but r does not provide a bound to-the 
step counting function ~q(i~(x). In fact we 
have proved that, given ~,-N ~s greater than max 
{i~i}. 

Since this is a consequence of the fact 
that we define r as the maximum of t (i,x,u) 
while every ig! is running between 0 and the 
least xe~, we can easily figure out how to im- 
prove our result by reducing the number N. In 
fact we can make iei run between 0 and the value 
of some functions (growing faster than the iden- 
tity function) of a scapegoat variable XoeX: i.e. 
define for example 

X 

r(~,u) = max {t (~,~,u) li~2 o, XoEX } 

In this way the bound on the step counting func- 
tion holds for every i, for every xe~, different 
from x o and for all the values of x o greater or 
equal to log 2 (max !). 

It is clear that we could improve this re- 
sult in order to reduce N to a nun~er growing 
extremely slowly with ~, but we will see in 4.3, 
that this brings some disadvantages. 

As far as the result of theorem 4.1 is con- 
cerned we must consider that the reason why we 
have to pay in N (i.e. the number of values of x 
where the bound on the s.c. function does not 
hold), for getting rid of some of the s.c. func- 
tions in the computation of r, is more deep than 
we can realize at a first moment. 

In fact, suppose we can get rid of all of 
the s.c. functions not depending on an x-variable 
without paying in N: we can prove that this 
would contradict the undecidability of the "halt- 
ing problem". 
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Fact 4.2 Let A[!,x] be an assertion of~ and 
let ~ be a recursive function in ~n such that 

~o(!)(~) is defined +-- A[i,~] 

then there is no total function r(x) such that 

(V!) (Vx~i~ (A C!,~] ~ ~(~) (~) ! r (x)) 

Proof. Let us define 

~(i) (x) = ix if ~i(i) is defined 

undefined otherwise 

Suppose such an r(x) exist. Since ~g(i)(i) is 
defined if and only if ~i(i) is defined, and 
since for x~i(#i(i) defined ~ ~g(i)(x) ~ r (x)) 
we should have that for every x~f ~i(1) defined 
iff ~g(i)(x) < r (x). So we could compute r(i) 
and th4n-star~ computing ~q(i)(i): if this 
takes more than r(i) steps ~i(i) is not defined, 
otherwise it is defined. So we could solve the 
halting problem. 

Thus it is impossible that we get rid of 
all of the s.c. functions not depending on x- 
variables, without paying on N (or better: with- 
out making N depend on such s.c. functions) 
otherwise we could have r dependent only on x and 
contradleting Fact 4.2. 

4.3 The third point we are interested in, is dis- 
cussing how hard it is to compute the bound r 
with respect to the step counting function 

~(i)(~)" 
Let us call R(5,u) the step counting function of 
r(x,u). 

We can prove: 

Fact 4.3: For some "reasonable measures" the 
number of steps required to compute r(x,u~(i~x)) 
is bounded, wherever theorem 3.1 holds, between 
a function g1(x,u~(i,x), ~o(i)(x)) and a function 
g2(x,u¢(!,x_), r(~,u~(!,~))) 

Proof. In the best case, to compute r(x~u#(!,~)) 
we need to compute only ~(i)~) because only for 

= ! we have that P[l,~,u¢]i,x~] holds; in the 
worst case, for all 1 ~ x O we have that P[l,x~ 
u~(!,~) ] holds and so we have to compute ~O(i)(5 ) 
for every ! ~ Xo (where x O is as in point 4.2). 
So, let n be the cardlnality of !, since we have 
that for every lei, i runs from 0 to x o, and for 
every ! we need u steps to check if P[~,x,u] 
holds or not, R(~,u#(!,~)) ~ (x o + i) n • m. u~ 
(i,x) + #@(~)(x) where m is the number of step 
c~unting fd~ction to match with u~(!,x) 

On the other side: 

R(~,u (!,~)) ~ (x o + i) n • m • u~(!, ~) 

x o 

+~l ~(!) (~) + M (x o) 
0 -- 

may consider growing with x~ for some "reasonable 
measures". 

Considering that r(x,u~(i,x)) = max{~, ~(x) I 
1 ! xn} R(x,u~[i,x]) ! (Xo + l)n " m • u¢[~l 
~(x o ~ i) n • r(x,u~(i,x)) + M (x o) 

The meaning of Fact 4.3 is that to compute the 
bound to the step counting function is usually 
not much harder than computing the step counting 
function itself. 

In order to reduce the strong dependence on 
x o (remember that the values of x o for which r is 
a bound to the s.c. function are all greater than 
i, i.e. rather big values) we could make i (for 
all ie~) run between 0 and ( ~--~o ~ i) (instead 
of x o) so that the factor dependent on x o should 
be reduced to x o itself. The reason why we must 
be careful in doing so is that in point 4.2 we 
have seen that such a bound on the range of i 
would determine an increase in the number N of 
points where r is not a bound for ~o(i)(x) 

For the opposite reason we cannot try to 
reduce N without increasing the difficulty of 
computing r. So we need to balance these two 
exigencies. 
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where M (Xo) is the number of steps required to 
find the maximum in {t(l,X,U) l! ! Xo} that we 
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