
TAPE- AND TIME-BOUNDED TURING ACCEPTORS AND AFLs: Extended Abstract t

Ronald V. Book
Harvard University

Sheila A. Greibach
University of California at Los Angeles

Ben Wegbreit
Harvard University

Abstract

Complexity classes of formal languages
defined by time- and tape-bounded Turing
acceptors are studied with the aim of showing
sufficient conditions for these classes to be
AFLs and to be principal AFLs.

Introduction

Much recent work in automata theory has
focused on the computational complexity of
functions and of languages. In particular
families of languages have been defined by various
measures of complexity (among others see [i], [2],
[8], [9], [ill - [14], [16], [19]). At the same
time researchers in formal language theory have
attempted to discover unifying concepts which
underlie the study of formal languages ([I0],
[3]). One approach is to define abstract
families of languages or AFLs as collections of
languages closed under certain operations common
to several families studied extensively in formal
language theory. This viewpoint has influenced
the study of formal languages to the extent that
in studying properties of formal languages, one
now asks if these are properties of AFLs or at
least of certain types of AFLs. Here we study
complexity classes of formal languages as
determined by time- and tape-bounded Turing
acceptors with the aim of showing sufficient
conditions for these classes to be AFLs and to
be principal AFLs.

In Section 1 we define the classes of
languages to be studied by placing bounds on the
amount of time (i.e., number of steps used) or
the amount of tape (i.e., number of tape squares
visited) in an accepting computation by
(deterministic or nondeterministic) multitape
Turing acceptors. Certain useful "representation"
theorems are established, relating these families
to certain homomorphic images of the family Q
of quasi-realtime languages, the family CS of
context-sensitive languages, and the family
DetLBA of languages accepted by deterministic

%
Th i s research was supported i n p a r t by A i r

Force Cambridge Research Laborator ies , O f f i c e
o f Aerospace Research, USAF, u n d e r C o n t r a c t
F19628-68-C-0029 , by g r a n t f rom t h e M i l t o n
Fund o f R a r v a r d U n i v e r s i t y , and by t h e D i v i s i o n
of E n g i n e e r i n g and Applied Phys ics of H a r v a r d
U n i v e r s i t y .

linear bounded automata. From one of these
representation theorems and results on Q in
[2], it is shown that a time-bounded nondeter-
ministic Turing acceptor need have only two
storage tapes, one a pushdown store and the other
a stack.

In Section 2 certain lemmas are given which
are useful in establishing conditions for the
families studied to be AFLs. Some of these lemmas
are directed toward clarifying the role of the
operator which takes the family ~' (those

~,f
languages determined by machines whose B-complex-
ity is bounded by function f where ~ is time

or tape) to the family ~(~ ,f) = Uk~ ,fk

where for any positive integer k and all real
x, fk(x) = f(kx). It is Shown that there are
two questions to be asked in order that ~f~ ,f

be an AFL: (i) what are the conditions such that
~(~ ,f) is an AFL, and (il) what are the

conditions such that ~(~ ,f) = o~,f It

is shown that for the families studied here,
~(~,f) is an AFL if f is superadditlve

(V'xV'y (f(x+y) ~ f(x) + f(y)) and
~(~,f) =J" ,f if f is semihomogeneous

(~k I > 0 ~k 2 > 0 ~'x > 0 (f(k].x) ~ k 2 f(x))).

Section 3 is concerned with sufficient
conditions for the families studied to be princi-
pal AFLs. An AFL is principal if it is the
smallest AFL containing some particular language,
the generator. Each language in a principal AFL
can be obtained from the generator by AFL
operations (operations under which every AFL is
closed). Here we give sufficient conditions for
tile families defined by time- or tape-bounded
Turing acceptors to be principal AFLs. The
arguments given are generalizations of those in
[17], and the conditions are natural generaliza-
tions of the real-tlme countable functions of [18]
or the constructlble functions of 1116].

Section I

we begin this section by formally defining
multltape Turing acceptors so as to give a precise
definition of the families of languages involved.
There are many different models of Turing machines
available and it is well known thal: many variations
(e.g., one-way vs. two-way) do not affect the
computational power even with respect to time and
tape bounds. The model given bel~ was chosen to
facilitate proofs of some of the results and to
be readily comparable to the definition of an

92-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800161.805154&domain=pdf&date_stamp=1970-05-04

abstract family of automata found in [3].

i.i Definition. An n-tape Turin$ machine is a
(n+6)-tuple M = (K, Z, rl, ... , rn, 6, qo' F, n)
where

(i) K, Z, Fi, ... , F n are finite sets, qo ¢ K,

F c K, n is a non-negative integer, and
E is a special symbol not in F. for

l
l~iZ_n;

(2) 6 is a function from
K × (E tJ {e}) ×

[(FLU {e}) x (rnO {e})]
into the finite subsets of,
K × [(F 1 × {i, 0, -i}) tJ r I t9 {E}] x

* O {E}] * ... x [(r n x {i, 0, -l}O r n

M is deterministic if for all q g K,

A i e FlU {e},

(3) ~(q, e, Ai, ... , A n) # ~ implies

6(q, a, Ai, ... , A n) = ~ for all

and

(4) for all a g Z U {e},

#6(q, a, Ai, ... , A n) ~ i. %%

acE,

1.2 Definition. A configuration of

M = (K, E, Fi, ... , Fn, 6, q0' F, n) is a

(2n + 2)-tuple (q, w, Yi' "'" ' Yn' il' "'" ' in)
where

(i) q ¢ K, w E E ,

(2) for i £ k 5 n, Yk e F k and

0 ~ i k £ lYkl. tit

1.3 Notation. We define a relation ~ between
configurations as follows:

Let (q, aw, Yi' Yn' il' "'" , i n) be

a configuration, a E E U {e}.
Let (q'' °i' "'" , o n) be in

~(q, a, Ai, ... , An).

Then (q, aw, Yl Yn' il in)~----

(q', w, y[..... Yn' Jl Jn) if for each

k, 1 ~ k ~ n, either

(i) A k ¢ Fk, o k = (B, i), Yk = xAkY '

Yk' = xBy, i k = Ixl + 1

0 ~ Jk = ik + i~ lykl or

For a set A, A is the mon~id with identity
e freely generated by 'A. A = A*A.

t* For a finite set S, let #S be the
cardinality of S.

tit
For a string w, lwl is the length of w.

(2) A k = e = Yk' Ok = Zk g Fk' Yk Zk, and

jk = I zkl or

(3) A k g r k, Ok = Zk g rk ' Yk = XAk '

i k = I xl + i, y~ = xz k , Jk = I XZkl or

(4) A k g Fk, o k = E, YE = XAkY' ik = IXAkI'

Yk' = e, Jk = O.

Define the relations ~ m (m .~ O) and I *

as follows. For any configuration C, C ~ 0 C.

If C 0 ~ C I ~----... ~---Cm , then
I m

c O r c m , and if

CO = (qo' w, e, ... , e, O, ... , 0) then

CO, Ci, ... , Cm is called a m-step computation

on w; if C m = (q, e, e, ... , e, 0, ...~0) and

q e F, then it is an accepting computation. For

Ci, C2, C I ~ * C 2 if C I ~--C 2 for some

m 9 0. If C O ~-- CiI ... ~-- C m and

k > 0 is a constant such that for each
configuration

C. = (q, Yi' " Yn' il ' J wj, .. , ... , in),

every Yt is such that lYtl _~ k, then

M yisits no more than k tape squares on any
one of its storage tapes in the computation

CO, ... , C .m

Finally, define

z*I e(M) = {w E ~ q g F,

(q0' W, e, ... , e, 0, ... , 0) ~--

(q, e, e e, 0, 0)}.

The functions which we shall use as upper
bounds on the amount of tape or the amount of
time used in a computation or on the amount of
erasing a homomorphism may perform are total
functions which are real-valued functions of a
single real variable. Each such function f
has the following properties:

(i) if x .~ 0, then f(x) ~> 0 ;

(ii) for some constant tf ~ 0 and all

x .~ tf, f(x) ~ x.

We shall assume that any function used in this
paper has these properties.

1.4 Definition. An outline multitape Turing
acceptor M operates within time bound f if
for each input string w accepted by M, every
accepting computation of M on w has no more
than max (lwl, f(lwl)) steps. Define
TIME(f) = {L(M) I M is a nondeterministic
multitape Turing aeceptor which operates within
time bound f} and DetTIME(f) = {L(M) I M is a
deterministic multitape Turing acceptor which
operates within time bound f}.

93-

For any function f and any constant k > O,
the methods of [8] and [2] can be applied to show
that Tl~IE(kf) = TIME(f). The methods of [8] can
be applied to show that

DetTIME(~ + i) = DetTIHE(f)
where i is the identity function, i(x) = x, and
for any function g and all x,

(g + i)(x) = g(x) + i(x). T
The languages accepted in quasi-realtime by
nondeterministic multitape Turing acceptors form
the family Q = TIME(i) [2]. The family of real-
time definable languages of [14] is the family
DetTIME(i).

1.5 Definition. A multitape Turing acceptor M
operates_w_ithintape bound f if for each input
string w accepted by M, every accepting
computation of M on w visits no more than
max([wl, f(lwl)) tape squares on any one of its
storage tapes. Define TAPE(f) = {L(M) I M is a
nondeterministic multitape Turing acceptor which
operates within tare bound f}. and
DetTAPE(f) = {L(M)| M is a deterministic
multitape Turing acceptor which operates within
tape bound f}.

For any function f and any constant k > 0,
TAPE(kf) = TAPE(f) and DetTAPE(f) = DetTAPE(kf)
[16]. As shown in [ii], [16], in considering
TAPE(f) or DetTAPE(f) we need only consider
Turing acceptors with one storage tape. The
context-sensitive languages form the family
CS = TAPE(i) and the family of languages accepted
by deterministic linear bounded automata is the
family DetLBA = DetTAPE(i).

Tile definition of acceptance by a non-
deterministic Turing acceptor differs from the
usual one in that we require all accepting
computations to meet the appropriate condition
instead of simply requiring the existence of some
computation which meets that condition. If the
bounding function is the appropriate generalization
of the real-time countable functions of [18] or
the constructible functions of [16] to non-
deterministic machines, the definitions are
equivalent in the sense that the same families are
defined. In Section 2 we discuss tlle invariance
of our results with regard to variations in the
definitions of acceptance.

We now establish certain "representation"
theorems for the families TIME(f), TAPE(f),
and DetTAPE(f).

1.6 Definition. If h: ~ + A is a homomorphism,
LEE* and f is a function such that for some P

k > 0 and all w E L, lwl e kf(lh(w) l), then
h_is f-bounded on L. For any family ~ of

For any real number xj ~ is the least integer
greater than or equal to x, and L~ is the
greatest integer less than or equ~_ to x. For
a~(function f, r~ is the function given by

x) = r ~ and f~ is the function given
by ~f (x) = ,f(x)j.

languages and any function f, the image of
under f-bounded erasing is IIf[~] = {h(L) I L eL

and h is a homomorphism which is f-bounded on
L}.

1.7 Theorem. For any function f,
Tl~(f) = IIf[Q]. That is, a language L is

accepted by a (nondeterministic) multitape
Turing machine which operates within time bound
f if and only if there is a quasi-realtime
language L' and a homomorphism h which is
f-bounded on L' such that h(L') = L.

In tlle proof of the ~leorem 1.7, the
construction of the new machines involves only
changing the way the input is advanced. No new
tapes were added. Thus from the ~leorem 1.7 and
tile results in [2] characterizing the family Q ,
we obtain the following:

1.8 Theorem. For any function f, tlle following
are equivalent:

(i) L c Tl~(f) ;

(if) L is the f-bounded homomorphic image of
a quasi-realtime language ;

(iii) L is the f-bounded homomorphic image of
the intersection of three context-free
languages ;

(iv) L is accepted by a nondeterministic one
stack, one pushdown store automaton
operating within time bound f.

The methods used in the proof of Theorem 1.7
generalize to the families TAPE(f) and
DetTAPE(f), and thus we obtain Theorem 1.9 below.
Results closely related to Theorem 1.9 were
established in [7] but the definition of a
homomorphism being f-bounded on a language L
differs from Definition 1.6 in that the function
f is applied to the other side of the inequality.

1.9 Theorem. For any function f,
TAPE(f) = Hf[CS] and DetTAPE(f) = Hf[DetLBA].

The "representation" theorems, 1.7 and 1.9,
are very useful since they allow one to use
results obtained for families of the form Hf[~]

where ~ is an arbitrary family of languages or
is an AFL. This is the tactic used here, that is~
we shall establish certain results concerning
families of languages of the form Hf[~] and

then apply these results to the families TIME(f),
TAPE(f), and DetTAPE(f) since they can be
expressed as Hf[Q], Hf[CS], and Hf[DetLBA],

respectively.
We note that the representations

TIME(f) = He[Q], etc., are deceptive at first
glance. If r L is any recursive~ty enumerable
set, then for some L' c Q and some homomorphism
h, h(L') = L [2]. In this case the amount of
erasing that h performs on words of L' is not

g4

restricted. Here we wish to restrict the amount
of erasing that h performs on all words of L'
by the same function which bounds the number of
steps in an accepting computation of a Turing
acceptor M such that L(M) = L. To obtain the
equation h(L') = L where h is f-bounded on
L', it is necessary to construct L' in such a
way that substrings that will be erased do not get
too long. This is the role played by the
requirement in Definition 1.4 that for every
w e L(M), every accepting computation of M on
w has no more than max(lwl, f(lwI)) steps. In
the construction used in the proof of Theorem 1.7,
the number of "dummy" symbols in words in L'
cannot become too large. Similar remarks hold
for tile cases of TAPE(f) and DetTAPE(f).

i.i0 Definition. A function f is superadditiv~
if for every x, y ~ 0,

f(x) + f(y) ~ f(x + y).
A function f is semihomoseneous if for every
k I > 0 there is a k 2 > 0 such that for all

x 9 O, f(klX) £ k2f(x).

It is straightforward to verify the following
properties of any superadditive function f:

(i) f is nondecreasing ;

(ii) for every integer k > 0 and every x > O,
kf(x) ~ f(kx) ;

(iii) for every x I x n e 0,

f(x I) + ... + f(x n) ~ f(x I + ... + x n) •

Note that a nondecreasing function f is semi-
homogeneous if and only if there is a k I > 1

such that for some k 2 > 0 and all x ~ 0,

f(klX) ~ k2f(x).

I.ii Notation. For any function f and any
integer k > O, fk is the function given by

fk(x) = f(kx).

It is immediate that for any function f and
any constant k > 0, if f is superadditive, so
is fk' and if f is semihomogeneous, so is fk"

1.12 Definition. For any function f, define

~TIP~(f) = ~ rlME(fk) ,

~DetTIME(f) = O k DetTIME(fk)

TAPE(f) = ~ TAPE(fk) , and

~ DetTAPE(f) = ~ DetTAPE(fk) .

For any family ~ of languages and any function

f, ~'Hf[~] = U k Hfk[~].

From Theorems 1.7 and 1.9, the following is
immediate:

1.13 Corollary. For any function f,

~TI~m(f) = ~lif[Q] ,

JTAPE(f) = ~Hf[CS] , and

JDetTAPE(f) = ~Hf[DetLBA] .

We note that representation theorems similar
to Theorem 1.7 and Corollary 1.13 may be obtained
for time-bounded AFA (as defined in [3]).

1.14 Definition. An Abstract Family of Lansuages
(AFL) is defined in [3] to be a nonempty collection
6~ of languages such that:

(1) at least one language in ~ is nonempty;

(ii) if L E L , there is a finite vocabulary
E such that L~--Z * ;

(iii) ~ is closed under union, concatenation,
Kleene +, intersection with regular sets,
nonerasing homomorphic mappings, and
inverse homomorphic mappings.

The smallest AFL containing a family ~ of
languages is ~(~). An AFL ~ is principal
if there is a language L such that ~ = ~({L})
[4].

In Section 2 we investigate the problem of
finding sufficient conditions on f so that
TIME(f), TAPE(f), etc., will be AFLs. As suggested
by results in [3], [7], and [6], it is suitableto
carry out this task by asking two questions:
(i) what are sufficient conditions for f so that
~TIME(f), ~TAPE(f), etc., will be AFLs?, and
(il) what are sufficient conditions for f so
that TIME(f) = JTIME(f), TAPE(f) = JTAPE(f),
etc.?

In Section 3 we investigate the problem of
finding sufficient conditions on f so that
TIME(f), TAPE(f), etc., will be principal AFLs.
In this case it is appropriate to ask for
sufficient conditions on f such that if
~TIME(f) (resp., ~TAPE(f), etc.) is an AFL,
then ~TIME(f) (resp., ~TAPE(f), etc.) is a
principal AFL.

We may summarize the main results of this
investigation as follows:

(i) If f is a superadditive function, then
~Tl~(f), J TAPE(f), and J'DetTAPE(f)
are AFLs (Theorem 2.9).

(ii) If f is a semihomogeneous function, then
~TIME(f) = TIME(f), ~'TAPE(f) = TAPE(f),
and ~DetTAPE(f) = DetTAPE(f) (Cot. 2.6).

(iii) If f is a superadditive time
constructlble (resp., tape constructlble,
deterministic-tape constructlble), then
~Tl~(f) (resp., ~TAPE(f), ZDetTAPE(f))
is a principal AFL. (Theorem 3.3).

Section 2

In this Section we shall extablish results
connecting the families TIME(f), TAPE(f),
DetTAPE(f) with AFLs. We begin with a general
result about families of languages of the form

Hf[X 1.

-95-

2.1 Lemma. For any function f and any nonempty
family ~- of languages, ~'Hf[~] ~ ~(Hf[~]).

2.2 Corollary. For any function f and any
nonempty family of languages,

~(~{Hf[.~]) = ~(Hf[~]) ,

that is, the smallest AFL containing ~Hf[~] is
the smallest AFL containing Hf[~].

2.3 Corollary. For any function f and any
nonempty family of languages, if Hf[~] is an

AFL, then J Hf[~] = IIf[~].

As shown by Theorenm 1.7 and 1.9 and by
Corollary 1.13, the results of Lemma 2.1 and
Corollaries 2.2 and 2.3 could be restated in
terms of Tl~(f) and ~TIME(f), TAPE(f) and
~TAPE(f), and DetTAPE(f) and ~DetTAPE(f).
Thus in obtaining conditions for TIFf(f),
TAPE(f), or DetTAPE(f) to be AFLs, the families
UriNE(f), GrAPE(f), and ~ DetTAPE(f),
respectively, play a vital role.

2.4 Lemma. For any semihomogeneous function f
and any family ~ of languages,

Hf[~] ~ Hf[~] .

2..5 Corollar Z. For any semihomogeneous function
f and any family of languages,

~Hf[~] = Hf[I] .

We use l%eorems 1.7 and 1.8 to express the
preceding corollary in terms of ~TIME(f) and
TIME(f), etc.

2.6 Corollary. For each semihomogeneous function
f', JTIME(f) = TIFf(f), JTAPE(f) = TAPE(f),
and ~DetTAPE(f) = DetTAPE(f).

In order to show that TIME(f), etc., forms
an AFL when f is sufficiently well-behaved, we
rely on a result of [6]. The result as stated
here is in a slightly different form from that
stated in [6] in that we use the "~'" operator
here and we define the operator "Hf" in a

somewhat different manner. However, it is
immediate that the proofs in [6] can be altered to
the form of the result stated below. Alter-
natively, it is not difficult to verify this
result directly.

2.7 Theorem. For any superaddltive function f
and any AFL <, ~9'Hf[~] is an AFL.

2.8 Corollary. For any superadditive semi-
homogeneous function f and any AFL ~, Hf[~]
is an AFL.

From Corollary 1.13 and Theorem 2.7 and from
the fact that the families Q, CS, and DetLBA
form AFLs, the following is immediate.

2.9 Theorem. For any superadditiw~ function f,
the families ~TIME(f), ~TAPE(f) and
~DetTAPE(f) are AFLs.

2.10 Corollary. For any superaddi~=ive semi-
homogeneous function f, the families Tl~(f),
TAPE(f), DetTAPE(f) are AFLs.

It is not difficult to verify Theorem 2.9
and Corollary 2.10 directly, and in doing so the
superaddltivity of f is not necessary in the
cases of TAPE(f) and DetTAPE(f). However, in
order to show that TIME(f) is clo~sed under
Kleene + , the superadditivity of f appears to
be necessary.

In [i] it is shown that results similar to
Theorem 2.9 and Corollary 2.10 hold for the
families of languages generated by time-bounded
grammars.

There are several variations on the defini-
tions of the families Tl~(f), TAPE(f), and
DetTAPE(f) such that Theorem 2.9 and Corollary
2.10 still hold. In particular these results
hold if we define TIME(f) to be any of the
following families of languages:

(i) (L(M) I for each w ~ L(M), there exists
an accepting computation of M on w
which has no more than max(lwl, f(lwl))
steps} ;

(ii) {L(M)[for each input string w, every
computation of M on w has no more than
max(lwl, f(lwl)) steps} ;

If Tl~(f) is defined by either (i) or (ii)
above, it is straightforward to verify that
Theorem 2.9 and Corollary 2.10 hold for the
families Tl}~(f) and ~ TIFf(f). However, these
families may not be equal to the family Hf[Q] so

that the various results concerning Hf[Q] (or

Hf[~]) may not be used. If f is the

appropriate generalization of a real-time count-
able function [18], then defining TIME(f) either
by (i) or by (ii) yields the family Hf[Q] so

that all the proofs hold in the form given here.
In the definitions (i) or (ii) above, if the

bound on the number of steps is replaced by the
same bound on the number of tape squares visited,
then we obtain the corresponding definitions of
TAPE(f) or DetTAPE(f). In this case it is
straightforward to verify that Theorem 2.9 and
Corollary 2.10 hold for the families TAPE(f) and
~TAPE(f), and for DetTAPE(f) and JDetTAPE(f).
These families may not be equal to the families
Hf[CS] or Hf[DetLBA], but equality can be

assured if f is the appropriate generalization
of a eonstruetible function [16].

We now consider the case of DetTIME(f). If
f is superaddltlve, then DetTIME(f) is closed
under marked union, marked concatenation, marked
Kleene + , and intersection with regular sets
[5], and ~DetTIME(f) is closed under all of
these operations as well as inverse homomorphism.

-96-

Thus if f is superadditive, then ~DetTIME(f)
is a pre-AFL [5], so that ~DetTIME(f) is an
AFL if and only if

H(~ DetTIME(f)) c ~'DetTIME(f),

where H = H i (again, i is the identity
function). -It is straightforward to show that
for any function f, any integer k ~ i, and any
constant t • i,

H(DetTIME(fk)) ~ J DetTIME([t, f])

where for all x, [tt f](x) = tXf(x). Thus for
any t • i,

H(~DetTIME(f)) ~ ~/DetTIME([t, f]).

Suppose f has the property that for some e • 0
and all sufficiently large x,

(f(2x))/(f(x)) ~ (i + c) x.

Then for any t • I there is an integer
k t ~ 1 such that for all sufficiently large x

fkt(X) = f(ktx) ~ tXf(x) = [t, f](x) ,

and hence

DetTIME([t,f]) ~ DetTIME(fkt) ~'DetTIME(f).

Thus if f is a superadditive function such that
for some e • 0 and all sufficiently large x,

(fE2x))l(f(x)) ~ (I + c) x

then ~DetTIME(f) is an AFL.

Consider a superadditlve function f such
that for some E • 0 and all sufficiently large
x,

(f(2x))l(f(x)) z (f(x)) c .

Then for any integer t ~ i, there is an integer
k such that for all sufflciently large x,

fk(x) = f(kx) = (f(x)) t .

Thus if for any integer t ~ I, the function ft

is defined for all x by ft(x) = (f(x)) t, then

DetTIME(f t) ~ ~ DetTIME(f)

TIME(f t) ~'TIME(f) ,

DetTAPE(f t) ~ ~'DetTAPE(f) p and

TAPE(f t) ~ ~'TAPE(f)

and so

JDetTIME(f t) =~DetTIME(f) ,

~(~iME(f t)) = ~ TIME (ft) = ~T~ME(f) = I(TIME(f)),

~(TAPE(ft)) -~TAPE(f t) - JTAPE(f) = I(TAPE(f)),

I(DetTAPE(ft)) - ~DetTAPE(f t) -

~DetTAPE(f) =.~(DetTAPE(f)) .

From this we see the following:

(i) The results of [8] on imitating multitape
on-line Turing acceptors with single tape
off-line Turing acceptors can be applied
to show that L is in ~'DetTIME(f) if
and only if L is accepted by an off-llne

deterministic single tape Turlng acceptor
M such that for some k ~ I, M operates
within time bound fk " Clearly this
result can be extended to nondeterministic
machines so that L is in .g'(TIME(f))
if and only if L is accepted by an off-
line nondeterministic single tape Turlng
acceptor M such that for some k e i,
M operates within time bound fk"

(ii) Suppose that in addition f is construct-
ible [16] by a deterministic Turing
machine (or f is "deterministic-tape
construetible" as in Definition 3.1).
The results of [15] can be applied to
show that TAPE(f) ~ DetTAPE(f2). Since

DetTAPE(f 2) ~ TAPE(f 2) ~ re'TAPE(f) ,

we see that

JTAPE(f) = ~(TAPE(f))=

~(DetTAPE(f)) = ~'DetTAPE(f).

Now the question of whether the inclusion
DetLBA ~ CS is proper is a long-standing
open question. If DetLBA = CS, then
for any f, DetTAPE(f) = TAPE(f), since
Hf[DetLBA] = }If[CS]. If DetLBA # CS,

then we have shown that for certain
functions at least the AFL defined by
TAPE(f) is exactly the AFL defined by
DetTAPE(f), that is, ~TAPE(f) =~'DetTAPE(f).

Finally, note that the family DetLBA is
an AFL which is closed under intersection and
which contains the context-free languages. Hence
Q ~ DetLBA [2], and so for any f,

TIME(f) = Hf[Q] £ Hf[DetLBA] = DetTAPE(f) and

JTIME(f) ~ ~'DetTAPE(f) .

Section 3

In this section we show that the families
TIME(f), TAPE(f) and DetTAPE(f), are principal
AFLs if the bounding function f has certain
properties. As in Section 2 the basic results
are first established for the families ~'TIME(f),
etc., and then extended. The proof of the basic
result is a generalization of the arguments given
in [17] showing that the families CS and DetLBA
are principal.

3.1 Definition. A function f is tape construc-
tabl__._.e (determlnistic-tape constructible) if there
is a multitape Turing machine (deterministic
multitape Turing machine) M such that for any
input w to M any resulting computation of M
on w visits precisely f(lw|) tape squares on
at least one of its storage tapes and visits no
more than f(lwl) tape squares on any one of its
storage tapes. The machine M is said to tape-
construct f.

-97-

3.2 Definition. A function f is said to be
time oonstructible (deterministic-time construct-
ible) if there ls a multltape Turing machine
(deterministic multitape Turing machine) M such
that for any input w to M, any resulting
computation of M on w requires precisely
f(lwl) steps. The machine M is said to time-
construct f.

The generalizations of the real-time functions
of [18] and the constructible tape functions of
[16] which we shall use here are the time
constructible, deterministic-tlme constructible,
tape constructible, and deterministlc-tape i.
constructible functions. While it is the case
that still weaker conditions can be placed on the
functions in order to obtain the following
theorem, doing so would obscure the proof.

3.3 Theorem. Let f be a superadditive function,

(1) If f is tape constructible, then 2.
~TAPE(f) is a principal AFL.

(ii) If f is deterministic-tape constructible,
then ~DetTAPE(f) is a principal
AFL.

(lii) If f is time constructible, then
~TIME(f) is a principal AFL. 3.

3.4 Corollary. Let f be a superadditive
function.

(i) If f is tape constructible and TAPE(f) 4.
is an AFL, then it is principal.

(il) If f is determinlstic-tape construct- 5.
ible and DetTAPE(f) is an AFL, then it
is principal.

(iii) If f is time constructible and TIME(f)
is an AFL, then it is principal. 6.

3.5 Corollary. Let f be a superadditive
semihomogeneous function.

(1) If f is tape constructible, then 7.
TAPE(f) is a principal AFL.

(ii) If f is deterministic-tape constructible,
then DetTAPE(f) is a principal AFL.

8.
(ill) If f is time constructible, then

TIME(f) is a principal AFL.

As pointed out in [2], the family Q is a 9.
principal AFL. In [17] it was shown that both CS
and DetLBA are principal AFLs. Thus we have
provided answers for three special cases of the
following question: If ~ is a principal AFL, I0.
what are sufficient conditions on f in order
that Hf[~] be a principal AFL?

ii.
Suppose f is a superadditive function

which is also deterministic-time constructible.
Further, suppose that for some e > 0 and all
sufficiently large x, 12.

(f(2x))/(f(x)) 9 max((i + e) x, (f(x))e).

As pointed out in Section 2, ~DetTIME(f) is
then an AFL and ~DetTIME(f) = {L I L is
accepted by an off-llne deterministic single
tape Turing acceptor M such that for some
k ~ I, M operates within time bound fk }. In

this case the methods used to establish Theorem
3.3 can be applied to yield the fact that
~DetTIME(f) is a principal AFL.

References

R. Book, "Grammars with time functions", Ph.D.
thesis, Harvard University, 1969, Also appears
as MathematicalLin~uistlcs and Automatic
Translation, Report No. NSF-23, Aiken
Computation Laboratory, Harvard University,
1969.

R. Book and S. Greibach, "quasi-realtime
languages", in Math. Systems Theory, 4 (1970).
An extended abstract appears in the Proceedings
of the First ACM Symposium on the Theory of
Computing, Marina del Rey, Callfornia, May,
1969.

S. Ginsburg and S. Grelbach, "Abstract
families of languages", Studies in Abstract
Families of Languages, Memoir N o. 87, Amer.
Math. Soc., 1-32 (1969).

S. Ginsburg and S. Greibach, "Principal AFL",
SDC Technical Report, 1969.

S. Ginsburg, S. Greibach, and J. Hopcroft,
"Pre-AFL",Studies in Abstract Families of
Languages, Memoir No. 87, Amer. Math. Sot.,
41-51 (1969).

S. Ginsburg and J. Hopcroft, "]images of AFL
under certain families of homor~orphisms",
SDC Technical Report, 1969.

S. Greibach and J. Hopcroft, "Independence of
AFL operations", Studies in Abstract Families
of LanBuages , Memoir No. 87, 313-40 (1969).

J. Hartmanis and R. Stearns, "On the computa-
tional complexity of algorithms", Trans. Amer.
Math. Sot., 117, 285-306 (19651).

J. Hartmanis and R. Stearns, "Automata-based
computational complexity", Information Sciences,
i, 173-184 (1969).

J. Hopcroft and J. Ullman, "An approach to a
unified theory of automata", Bell System
Technical Journal, 46, 1763-1829 (1967).

J. Hopcroft and J. Ullman, Formal Languages
and their Relation to Automata, Addison-
Wesley~ 1969.

J. Hopcroft and J. Ullman, "Some results on
tape-bounded Turing machines", J. Assoc.
Computing Math., 16, 168-177 (1969).

-98-

13. P. M. Lewls~ III R. Stearnsl and J. Hartmanls,
"Memory bounds for recognition of context-free
and context-sensltlve languages", 1965 IEEE
Conference Record on Swltchln 8 Circuit Theory
and Logical Design.

14. A. L. Rosenbergp "Real-tlme definable languages"
J. Assoc. Computing Mach., 14p 645-662 (1967).

15. W. Savltchp "Relationships between nondetermln-
istlc and deterministic tape complexities",
submitted for publication. An extended
abstract appears in t h e Proceedings of the
First ACM Symposium on the Theory of Computln~,
Marina de1 Rey, Callfornlap May, 1969.

16. R. Stearns, J. Hartmanls, and P. M. Lewls~ If,
"Hierarchies of memory limited computatlons"~
1965 IEEE Conference Record on Switchln B
Circuit Theory and Logical Deslgn~ 179-190.

17. B. Wegbreit, "A generator of context-sensltlve
languages"~ J. Computer and System Sclencesp 3,
456-462 (1969).

18. H. Yamada~ "Real-tlme computation and recursive
functions not real-tlme computable", IEEE
Transactions on Electronic Computer~, ii,
753-760 (1962).

19. P. R. Young, "Toward a theory of enumeration",
J. Assoc. Computln 8 Mach., 16, 328-348 (1969).

-99-

