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Abstract 

Complexity classes of formal languages 
defined by time- and tape-bounded Turing 
acceptors are studied with the aim of showing 
sufficient conditions for these classes to be 
AFLs and to be principal AFLs. 

Introduction 

Much recent work in automata theory has 
focused on the computational complexity of 
functions and of languages. In particular 
families of languages have been defined by various 
measures of complexity (among others see [i], [2], 
[8], [9], [ill - [14], [16], [19]). At the same 
time researchers in formal language theory have 
attempted to discover unifying concepts which 
underlie the study of formal languages ([I0], 
[3]). One approach is to define abstract 
families of languages or AFLs as collections of 
languages closed under certain operations common 
to several families studied extensively in formal 
language theory. This viewpoint has influenced 
the study of formal languages to the extent that 
in studying properties of formal languages, one 
now asks if these are properties of AFLs or at 
least of certain types of AFLs. Here we study 
complexity classes of formal languages as 
determined by time- and tape-bounded Turing 
acceptors with the aim of showing sufficient 
conditions for these classes to be AFLs and to 
be principal AFLs. 

In Section 1 we define the classes of 
languages to be studied by placing bounds on the 
amount of time (i.e., number of steps used) or 
the amount of tape (i.e., number of tape squares 
visited) in an accepting computation by 
(deterministic or nondeterministic) multitape 
Turing acceptors. Certain useful "representation" 
theorems are established, relating these families 
to certain homomorphic images of the family Q 
of quasi-realtime languages, the family CS of 
context-sensitive languages, and the family 
DetLBA of languages accepted by deterministic 
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linear bounded automata. From one of these 
representation theorems and results on Q in 
[2], it is shown that a time-bounded nondeter- 
ministic Turing acceptor need have only two 
storage tapes, one a pushdown store and the other 
a stack. 

In Section 2 certain lemmas are given which 
are useful in establishing conditions for the 
families studied to be AFLs. Some of these lemmas 
are directed toward clarifying the role of the 
operator which takes the family ~' (those 

~,f 
languages determined by machines whose B-complex- 
ity is bounded by function f where ~ is time 

or tape) to the family ~(~ ,f) = Uk~ ,fk 

where for any positive integer k and all real 
x, fk(x) = f(kx). It is Shown that there are 
two questions to be asked in order that ~f~ ,f 

be an AFL: (i) what are the conditions such that 
~(~ ,f) is an AFL, and (il) what are the 

conditions such that ~(~ ,f) = o~,f It 

is shown that for the families studied here, 
~(~,f) is an AFL if f is superadditlve 

(V'xV'y (f(x+y) ~ f(x) + f(y)) and 
~(~,f) =J" ,f if f is semihomogeneous 

(~k I > 0 ~k 2 > 0 ~'x > 0 (f(k].x) ~ k 2 f(x))). 

Section 3 is concerned with sufficient 
conditions for the families studied to be princi- 
pal AFLs. An AFL is principal if it is the 
smallest AFL containing some particular language, 
the generator. Each language in a principal AFL 
can be obtained from the generator by AFL 
operations (operations under which every AFL is 
closed). Here we give sufficient conditions for 
tile families defined by time- or tape-bounded 
Turing acceptors to be principal AFLs. The 
arguments given are generalizations of those in 
[17], and the conditions are natural generaliza- 
tions of the real-tlme countable functions of [18] 
or the constructlble functions of 1116]. 

Section I 

we begin this section by formally defining 
multltape Turing acceptors so as to give a precise 
definition of the families of languages involved. 
There are many different models of Turing machines 
available and it is well known thal: many variations 
(e.g., one-way vs. two-way) do not affect the 
computational power even with respect to time and 
tape bounds. The model given bel~ was chosen to 
facilitate proofs of some of the results and to 
be readily comparable to the definition of an 
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abstract family of automata found in [3]. 

i.i Definition. An n-tape Turin$ machine is a 
(n+6)-tuple M = (K, Z, rl, ... , rn, 6, qo' F, n) 
where 

(i) K, Z, Fi, ... , F n are finite sets, qo ¢ K, 

F c K, n is a non-negative integer, and 
E is a special symbol not in F. for 

l 
l~iZ_n; 

(2) 6 is a function from 
K × (E tJ {e}) × 

[(FLU {e}) x .... (rnO {e})] 
into the finite subsets of, 
K × [(F 1 × {i, 0, -i}) tJ r I t9 {E}] x 

* O {E}] * ... x [(r n x {i, 0, -l}O r n 

M is deterministic if for all q g K, 

A i e FlU {e}, 

(3) ~(q, e, Ai, ... , A n ) # ~ implies 

6(q, a, Ai, ... , A n ) = ~ for all 

and 

(4) for all a g Z U {e}, 

#6(q, a, Ai, ... , A n ) ~ i. %% 

acE, 

1.2 Definition. A configuration of 

M = (K, E, Fi, ... , Fn, 6, q0' F, n) is a 

(2n + 2)-tuple (q, w, Yi' "'" ' Yn' il' "'" ' in) 
where 

(i) q ¢ K, w E E , 

(2) for i £ k 5 n, Yk e F k and 

0 ~ i k £ lYkl. tit 

1.3 Notation. We define a relation ~ between 
configurations as follows: 

Let (q, aw, Yi' .... Yn' il' "'" , i n ) be 

a configuration, a E E U {e}. 
Let (q'' °i' "'" , o n ) be in 

~(q, a, Ai, ... , An). 

Then (q, aw, Yl ..... Yn' il ..... in)~---- 

(q', w, y[ ..... Yn' Jl ..... Jn ) if for each 

k, 1 ~ k ~ n, either 

(i) A k ¢ Fk, o k = (B, i), Yk = xAkY ' 

Yk' = xBy, i k = Ixl + 1 

0 ~ Jk = ik + i~ lykl or 

For a set A, A is the mon~id with identity 
e freely generated by 'A. A = A*A. 

t* For a finite set S, let #S be the 
cardinality of S. 

tit 
For a string w, lwl is the length of w. 

(2) A k = e = Yk' Ok = Zk g Fk' Yk Zk, and 

jk = I zkl or 

(3) A k g r k, Ok = Zk g rk ' Yk = XAk ' 

i k = I xl + i, y~ = xz k , Jk = I XZkl or 

(4) A k g Fk, o k = E, YE = XAkY' ik = IXAkI' 

Yk' = e, Jk = O. 

Define the relations ~ m (m .~ O) and I * 

as follows. For any configuration C, C ~ 0 C. 

If C 0 ~ C I ~----... ~---Cm , then 
I m 

c O r c m , and if 

CO = (qo' w, e, ... , e, O, ... , 0) then 

CO, Ci, ... , Cm is called a m-step computation 

on w; if C m = (q, e, e, ... , e, 0, ...~0) and 

q e F, then it is an accepting computation. For 

Ci, C2, C I ~ * C 2 if C I ~--C 2 for some 

m 9 0. If C O ~-- CiI ... ~-- C m and 

k > 0 is a constant such that for each 
configuration 

C. = (q, Yi' " Yn' il ' J wj, .. , ... , in), 

every Yt is such that lYtl _~ k, then 

M yisits no more than k tape squares on any 
one of its storage tapes in the computation 

CO, ... , C .m 

Finally, define 

z*I e(M) = {w E ~ q g F, 

(q0' W, e, ... , e, 0, ... , 0) ~-- 

(q, e, e ..... e, 0, .... 0)}. 

The functions which we shall use as upper 
bounds on the amount of tape or the amount of 
time used in a computation or on the amount of 
erasing a homomorphism may perform are total 
functions which are real-valued functions of a 
single real variable. Each such function f 
has the following properties: 

(i) if x .~ 0, then f(x) ~> 0 ; 

(ii) for some constant tf ~ 0 and all 

x .~ tf, f(x) ~ x. 

We shall assume that any function used in this 
paper has these properties. 

1.4 Definition. An outline multitape Turing 
acceptor M operates within time bound f if 
for each input string w accepted by M, every 
accepting computation of M on w has no more 
than max (lwl, f(lwl)) steps. Define 
TIME(f) = {L(M) I M is a nondeterministic 
multitape Turing aeceptor which operates within 
time bound f} and DetTIME(f) = {L(M) I M is a 
deterministic multitape Turing acceptor which 
operates within time bound f}. 
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For any function f and any constant k > O, 
the methods of [8] and [2] can be applied to show 
that Tl~IE(kf) = TIME(f). The methods of [8] can 
be applied to show that 

DetTIME(~ + i) = DetTIHE(f) 
where i is the identity function, i(x) = x, and 
for any function g and all x, 

(g + i)(x) = g(x) + i(x). T 
The languages accepted in quasi-realtime by 
nondeterministic multitape Turing acceptors form 
the family Q = TIME(i) [2]. The family of real- 
time definable languages of [14] is the family 
DetTIME(i). 

1.5 Definition. A multitape Turing acceptor M 
operates_w_ithintape bound f if for each input 
string w accepted by M, every accepting 
computation of M on w visits no more than 
max([wl, f(lwl)) tape squares on any one of its 
storage tapes. Define TAPE(f) = {L(M) I M is a 
nondeterministic multitape Turing acceptor which 
operates within tare bound f}. and 
DetTAPE(f) = {L(M)| M is a deterministic 
multitape Turing acceptor which operates within 
tape bound f}. 

For any function f and any constant k > 0, 
TAPE(kf) = TAPE(f) and DetTAPE(f) = DetTAPE(kf) 
[16]. As shown in [ii], [16], in considering 
TAPE(f) or DetTAPE(f) we need only consider 
Turing acceptors with one storage tape. The 
context-sensitive languages form the family 
CS = TAPE(i) and the family of languages accepted 
by deterministic linear bounded automata is the 
family DetLBA = DetTAPE(i). 

Tile definition of acceptance by a non- 
deterministic Turing acceptor differs from the 
usual one in that we require all accepting 
computations to meet the appropriate condition 
instead of simply requiring the existence of some 
computation which meets that condition. If the 
bounding function is the appropriate generalization 
of the real-time countable functions of [18] or 
the constructible functions of [16] to non- 
deterministic machines, the definitions are 
equivalent in the sense that the same families are 
defined. In Section 2 we discuss tlle invariance 
of our results with regard to variations in the 
definitions of acceptance. 

We now establish certain "representation" 
theorems for the families TIME(f), TAPE(f), 
and DetTAPE(f). 

1.6 Definition. If h: ~ + A is a homomorphism, 
LEE* and f is a function such that for some P 

k > 0 and all w E L, lwl e kf(lh(w) l), then 
h_is f-bounded on L. For any family ~ of 

For any real number xj ~ is the least integer 
greater than or equal to x, and L~ is the 
greatest integer less than or equ~_ to x. For 
a~( function f, r~ is the function given by 

x) = r ~  and f~ is the function given 
by ~f (x) = ,f(x)j. 

languages and any function f, the image of 
under f-bounded erasing is IIf[~] = {h(L) I L eL 

and h is a homomorphism which is f-bounded on 
L}. 

1.7 Theorem. For any function f, 
Tl~(f) = IIf[Q]. That is, a language L is 

accepted by a (nondeterministic) multitape 
Turing machine which operates within time bound 
f if and only if there is a quasi-realtime 
language L' and a homomorphism h which is 
f-bounded on L' such that h(L') = L. 

In tlle proof of the ~leorem 1.7, the 
construction of the new machines involves only 
changing the way the input is advanced. No new 
tapes were added. Thus from the ~leorem 1.7 and 
tile results in [2] characterizing the family Q , 
we obtain the following: 

1.8 Theorem. For any function f, tlle following 
are equivalent: 

(i) L c Tl~(f) ; 

(if) L is the f-bounded homomorphic image of 
a quasi-realtime language ; 

(iii) L is the f-bounded homomorphic image of 
the intersection of three context-free 
languages ; 

(iv) L is accepted by a nondeterministic one 
stack, one pushdown store automaton 
operating within time bound f. 

The methods used in the proof of Theorem 1.7 
generalize to the families TAPE(f) and 
DetTAPE(f), and thus we obtain Theorem 1.9 below. 
Results closely related to Theorem 1.9 were 
established in [7] but the definition of a 
homomorphism being f-bounded on a language L 
differs from Definition 1.6 in that the function 
f is applied to the other side of the inequality. 

1.9 Theorem. For any function f, 
TAPE(f) = Hf[CS] and DetTAPE(f) = Hf[DetLBA]. 

The "representation" theorems, 1.7 and 1.9, 
are very useful since they allow one to use 
results obtained for families of the form Hf[~] 

where ~ is an arbitrary family of languages or 
is an AFL. This is the tactic used here, that is~ 
we shall establish certain results concerning 
families of languages of the form Hf[~ ] and 

then apply these results to the families TIME(f), 
TAPE(f), and DetTAPE(f) since they can be 
expressed as Hf[Q], Hf[CS], and Hf[DetLBA], 

respectively. 
We note that the representations 

TIME(f) = He[Q], etc., are deceptive at first 
glance. If r L is any recursive~ty enumerable 
set, then for some L' c Q and some homomorphism 
h, h(L') = L [2]. In this case the amount of 
erasing that h performs on words of L' is not 
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restricted. Here we wish to restrict the amount 
of erasing that h performs on all words of L' 
by the same function which bounds the number of 
steps in an accepting computation of a Turing 
acceptor M such that L(M) = L. To obtain the 
equation h(L') = L where h is f-bounded on 
L', it is necessary to construct L' in such a 
way that substrings that will be erased do not get 
too long. This is the role played by the 
requirement in Definition 1.4 that for every 
w e L(M), every accepting computation of M on 
w has no more than max(lwl, f(lwI)) steps. In 
the construction used in the proof of Theorem 1.7, 
the number of "dummy" symbols in words in L' 
cannot become too large. Similar remarks hold 
for tile cases of TAPE(f) and DetTAPE(f). 

i.i0 Definition. A function f is superadditiv~ 
if for every x, y ~ 0, 

f(x) + f(y) ~ f(x + y). 
A function f is semihomoseneous if for every 
k I > 0 there is a k 2 > 0 such that for all 

x 9 O, f(klX) £ k2f(x). 

It is straightforward to verify the following 
properties of any superadditive function f: 

(i) f is nondecreasing ; 

(ii) for every integer k > 0 and every x > O, 
kf(x) ~ f(kx) ; 

(iii) for every x I ..... x n e 0, 

f(x I) + ... + f(x n) ~ f(x I + ... + x n) • 

Note that a nondecreasing function f is semi- 
homogeneous if and only if there is a k I > 1 

such that for some k 2 > 0 and all x ~ 0, 

f(klX) ~ k2f(x). 

I.ii Notation. For any function f and any 
integer k > O, fk is the function given by 

fk(x) = f(kx). 

It is immediate that for any function f and 
any constant k > 0, if f is superadditive, so 
is fk' and if f is semihomogeneous, so is fk" 

1.12 Definition. For any function f, define 

~TIP~(f) = ~ rlME(fk) , 

~DetTIME(f) = O k DetTIME(fk) 

TAPE(f) = ~ TAPE(fk) , and 

~ DetTAPE(f) = ~ DetTAPE(fk) . 

For any family ~ of languages and any function 

f, ~'Hf[~ ] = U k Hfk[~]. 

From Theorems 1.7 and 1.9, the following is 
immediate: 

1.13 Corollary. For any function f, 

~TI~m(f) = ~lif[Q] , 

JTAPE(f) = ~Hf[CS] , and 

JDetTAPE(f) = ~Hf[DetLBA] . 

We note that representation theorems similar 
to Theorem 1.7 and Corollary 1.13 may be obtained 
for time-bounded AFA (as defined in [3]). 

1.14 Definition. An Abstract Family of Lansuages 
(AFL) is defined in [3] to be a nonempty collection 
6~ of languages such that: 

(1) at least one language in ~ is nonempty; 

(ii) if L E L , there is a finite vocabulary 
E such that L~--Z * ; 

(iii) ~ is closed under union, concatenation, 
Kleene +, intersection with regular sets, 
nonerasing homomorphic mappings, and 
inverse homomorphic mappings. 

The smallest AFL containing a family ~ of 
languages is ~(~). An AFL ~ is principal 
if there is a language L such that ~ = ~({L}) 
[4]. 

In Section 2 we investigate the problem of 
finding sufficient conditions on f so that 
TIME(f), TAPE(f), etc., will be AFLs. As suggested 
by results in [3], [7], and [6], it is suitableto 
carry out this task by asking two questions: 
(i) what are sufficient conditions for f so that 
~TIME(f), ~TAPE(f), etc., will be AFLs?, and 
(il) what are sufficient conditions for f so 
that TIME(f) = JTIME(f), TAPE(f) = JTAPE(f), 
etc.? 

In Section 3 we investigate the problem of 
finding sufficient conditions on f so that 
TIME(f), TAPE(f), etc., will be principal AFLs. 
In this case it is appropriate to ask for 
sufficient conditions on f such that if 
~TIME(f) (resp., ~TAPE(f), etc.) is an AFL, 
then ~TIME(f) (resp., ~TAPE(f), etc.) is a 
principal AFL. 

We may summarize the main results of this 
investigation as follows: 

(i) If f is a superadditive function, then 
~Tl~(f), J TAPE(f), and J'DetTAPE(f) 
are AFLs (Theorem 2.9). 

(ii) If f is a semihomogeneous function, then 
~TIME(f) = TIME(f), ~'TAPE(f) = TAPE(f), 
and ~DetTAPE(f) = DetTAPE(f) (Cot. 2.6). 

(iii) If f is a superadditive time 
constructlble (resp., tape constructlble, 
deterministic-tape constructlble), then 
~Tl~(f) (resp., ~TAPE(f), ZDetTAPE(f)) 
is a principal AFL. (Theorem 3.3). 

Section 2 

In this Section we shall extablish results 
connecting the families TIME(f), TAPE(f), 
DetTAPE(f) with AFLs. We begin with a general 
result about families of languages of the form 

Hf[X 1. 
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2.1 Lemma. For any function f and any nonempty 
family ~- of languages, ~'Hf[~] ~ ~(Hf[~]). 

2.2 Corollary. For any function f and any 
nonempty family of languages, 

~(~{Hf[.~]) = ~(Hf[~]) , 

that is, the smallest AFL containing ~Hf[~] is 
the smallest AFL containing Hf[~ ]. 

2.3 Corollary. For any function f and any 
nonempty family of languages, if Hf[~] is an 

AFL, then J Hf[~] = IIf[~]. 

As shown by Theorenm 1.7 and 1.9 and by 
Corollary 1.13, the results of Lemma 2.1 and 
Corollaries 2.2 and 2.3 could be restated in 
terms of Tl~(f) and ~TIME(f), TAPE(f) and 
~TAPE(f), and DetTAPE(f) and ~DetTAPE(f). 
Thus in obtaining conditions for TIFf(f), 
TAPE(f), or DetTAPE(f) to be AFLs, the families 
UriNE(f), GrAPE(f), and ~ DetTAPE(f), 
respectively, play a vital role. 

2.4 Lemma. For any semihomogeneous function f 
and any family ~ of languages, 

Hf[~] ~ Hf[~] . 

2..5 Corollar Z. For any semihomogeneous function 
f and any family of languages, 

~Hf[~] = Hf[I] . 

We use l%eorems 1.7 and 1.8 to express the 
preceding corollary in terms of ~TIME(f) and 
TIME(f), etc. 

2.6 Corollary. For each semihomogeneous function 
f', JTIME(f) = TIFf(f), JTAPE(f) = TAPE(f), 
and ~DetTAPE(f) = DetTAPE(f). 

In order to show that TIME(f), etc., forms 
an AFL when f is sufficiently well-behaved, we 
rely on a result of [6]. The result as stated 
here is in a slightly different form from that 
stated in [6] in that we use the "~'" operator 
here and we define the operator "Hf" in a 

somewhat different manner. However, it is 
immediate that the proofs in [6] can be altered to 
the form of the result stated below. Alter- 
natively, it is not difficult to verify this 
result directly. 

2.7 Theorem. For any superaddltive function f 
and any AFL <, ~9'Hf[~] is an AFL. 

2.8 Corollary. For any superadditive semi- 
homogeneous function f and any AFL ~, Hf[~ ] 
is an AFL. 

From Corollary 1.13 and Theorem 2.7 and from 
the fact that the families Q, CS, and DetLBA 
form AFLs, the following is immediate. 

2.9 Theorem. For any superadditiw~ function f, 
the families ~TIME(f), ~TAPE(f) and 
~DetTAPE(f) are AFLs. 

2.10 Corollary. For any superaddi~=ive semi- 
homogeneous function f, the families Tl~(f), 
TAPE(f), DetTAPE(f) are AFLs. 

It is not difficult to verify Theorem 2.9 
and Corollary 2.10 directly, and in doing so the 
superaddltivity of f is not necessary in the 
cases of TAPE(f) and DetTAPE(f). However, in 
order to show that TIME(f) is clo~sed under 
Kleene + , the superadditivity of f appears to 
be necessary. 

In [i] it is shown that results similar to 
Theorem 2.9 and Corollary 2.10 hold for the 
families of languages generated by time-bounded 
grammars. 

There are several variations on the defini- 
tions of the families Tl~(f), TAPE(f), and 
DetTAPE(f) such that Theorem 2.9 and Corollary 
2.10 still hold. In particular these results 
hold if we define TIME(f) to be any of the 
following families of languages: 

(i) (L(M) I for each w ~ L(M), there exists 
an accepting computation of M on w 
which has no more than max(lwl, f(lwl)) 
steps} ; 

(ii) {L(M)[ for each input string w, every 
computation of M on w has no more than 
max(lwl, f(lwl)) steps} ; 

If Tl~(f) is defined by either (i) or (ii) 
above, it is straightforward to verify that 
Theorem 2.9 and Corollary 2.10 hold for the 
families Tl}~(f) and ~ TIFf(f). However, these 
families may not be equal to the family Hf[Q] so 

that the various results concerning Hf[Q] (or 

Hf[~]) may not be used. If f is the 

appropriate generalization of a real-time count- 
able function [18], then defining TIME(f) either 
by (i) or by (ii) yields the family Hf[Q] so 

that all the proofs hold in the form given here. 
In the definitions (i) or (ii) above, if the 

bound on the number of steps is replaced by the 
same bound on the number of tape squares visited, 
then we obtain the corresponding definitions of 
TAPE(f) or DetTAPE(f). In this case it is 
straightforward to verify that Theorem 2.9 and 
Corollary 2.10 hold for the families TAPE(f) and 
~TAPE(f), and for DetTAPE(f) and JDetTAPE(f). 
These families may not be equal to the families 
Hf[CS] or Hf[DetLBA], but equality can be 

assured if f is the appropriate generalization 
of a eonstruetible function [16]. 

We now consider the case of DetTIME(f). If 
f is superaddltlve, then DetTIME(f) is closed 
under marked union, marked concatenation, marked 
Kleene + , and intersection with regular sets 
[5], and ~DetTIME(f) is closed under all of 
these operations as well as inverse homomorphism. 
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Thus if f is superadditive, then ~DetTIME(f) 
is a pre-AFL [5], so that ~DetTIME(f) is an 
AFL if and only if 

H(~ DetTIME(f)) c ~'DetTIME(f), 

where H = H i (again, i is the identity 
function). -It is straightforward to show that 
for any function f, any integer k ~ i, and any 
constant t • i, 

H(DetTIME(fk)) ~ J DetTIME([t, f]) 

where for all x, [tt f](x) = tXf(x). Thus for 
any t • i, 

H(~DetTIME(f)) ~ ~/DetTIME([t, f]). 

Suppose f has the property that for some e • 0 
and all sufficiently large x, 

(f(2x))/(f(x)) ~ (i + c) x. 

Then for any t • I there is an integer 
k t ~ 1 such that for all sufficiently large x 

fkt(X) = f(ktx) ~ tXf(x) = [t, f](x) , 

and hence 

DetTIME([t,f]) ~ DetTIME(fkt ) ~'DetTIME(f). 

Thus if f is a superadditive function such that 
for some e • 0 and all sufficiently large x, 

(fE2x))l(f(x)) ~ (I + c) x 

then ~DetTIME(f) is an AFL. 

Consider a superadditlve function f such 
that for some E • 0 and all sufficiently large 
x, 

(f(2x))l(f(x)) z (f(x)) c . 

Then for any integer t ~ i, there is an integer 
k such that for all sufflciently large x, 

fk(x) = f(kx) = (f(x)) t . 

Thus if for any integer t ~ I, the function ft 

is defined for all x by ft(x) = (f(x)) t, then 

DetTIME(f t) ~ ~ DetTIME(f) 

TIME(f t) ~'TIME(f) , 

DetTAPE(f t) ~ ~'DetTAPE(f) p and 

TAPE(f t) ~ ~'TAPE(f) 

and so 

JDetTIME(f t) =~DetTIME(f) , 

~(~iME(f t)) = ~ TIME (ft) = ~T~ME(f) = I(TIME(f)), 

~(TAPE(ft)) -~TAPE(f t) - JTAPE(f) = I(TAPE(f)), 

I(DetTAPE(ft)) - ~DetTAPE(f t) - 

~DetTAPE(f) =.~(DetTAPE(f)) . 

From this we see the following: 

(i) The results of [8] on imitating multitape 
on-line Turing acceptors with single tape 
off-line Turing acceptors can be applied 
to show that L is in ~'DetTIME(f) if 
and only if L is accepted by an off-llne 

deterministic single tape Turlng acceptor 
M such that for some k ~ I, M operates 
within time bound fk " Clearly this 
result can be extended to nondeterministic 
machines so that L is in .g'(TIME(f)) 
if and only if L is accepted by an off- 
line nondeterministic single tape Turlng 
acceptor M such that for some k e i, 
M operates within time bound fk" 

(ii) Suppose that in addition f is construct- 
ible [16] by a deterministic Turing 
machine (or f is "deterministic-tape 
construetible" as in Definition 3.1). 
The results of [15] can be applied to 
show that TAPE(f) ~ DetTAPE(f2). Since 

DetTAPE(f 2) ~ TAPE(f 2) ~ re'TAPE(f) , 

we see that 

JTAPE(f) = ~(TAPE(f))= 

~(DetTAPE(f)) = ~'DetTAPE(f). 

Now the question of whether the inclusion 
DetLBA ~ CS is proper is a long-standing 
open question. If DetLBA = CS, then 
for any f, DetTAPE(f) = TAPE(f), since 
Hf[DetLBA] = }If[CS]. If DetLBA # CS, 

then we have shown that for certain 
functions at least the AFL defined by 
TAPE(f) is exactly the AFL defined by 
DetTAPE(f), that is, ~TAPE(f) =~'DetTAPE(f). 

Finally, note that the family DetLBA is 
an AFL which is closed under intersection and 
which contains the context-free languages. Hence 
Q ~ DetLBA [2], and so for any f, 

TIME(f) = Hf[Q] £ Hf[DetLBA] = DetTAPE(f) and 

JTIME(f) ~ ~'DetTAPE(f) . 

Section 3 

In this section we show that the families 
TIME(f), TAPE(f) and DetTAPE(f), are principal 
AFLs if the bounding function f has certain 
properties. As in Section 2 the basic results 
are first established for the families ~'TIME(f), 
etc., and then extended. The proof of the basic 
result is a generalization of the arguments given 
in [17] showing that the families CS and DetLBA 
are principal. 

3.1 Definition. A function f is tape construc- 
tabl__._.e (determlnistic-tape constructible) if there 
is a multitape Turing machine (deterministic 
multitape Turing machine) M such that for any 
input w to M any resulting computation of M 
on w visits precisely f(lw|) tape squares on 
at least one of its storage tapes and visits no 
more than f(lwl) tape squares on any one of its 
storage tapes. The machine M is said to tape- 
construct f. 

-97- 



3.2 Definition. A function f is said to be 
time oonstructible (deterministic-time construct- 
ible) if there ls a multltape Turing machine 
(deterministic multitape Turing machine) M such 
that for any input w to M, any resulting 
computation of M on w requires precisely 
f(lwl) steps. The machine M is said to time- 
construct f. 

The generalizations of the real-time functions 
of [18] and the constructible tape functions of 
[16] which we shall use here are the time 
constructible, deterministic-tlme constructible, 
tape constructible, and deterministlc-tape i. 
constructible functions. While it is the case 
that still weaker conditions can be placed on the 
functions in order to obtain the following 
theorem, doing so would obscure the proof. 

3.3 Theorem. Let f be a superadditive function, 

(1) If f is tape constructible, then 2. 
~TAPE(f) is a principal AFL. 

(ii) If f is deterministic-tape constructible, 
then ~DetTAPE(f) is a principal 
AFL. 

(lii) If f is time constructible, then 
~TIME(f) is a principal AFL. 3. 

3.4 Corollary. Let f be a superadditive 
function. 

(i) If f is tape constructible and TAPE(f) 4. 
is an AFL, then it is principal. 

(il) If f is determinlstic-tape construct- 5. 
ible and DetTAPE(f) is an AFL, then it 
is principal. 

(iii) If f is time constructible and TIME(f) 
is an AFL, then it is principal. 6. 

3.5 Corollary. Let f be a superadditive 
semihomogeneous function. 

(1) If f is tape constructible, then 7. 
TAPE(f) is a principal AFL. 

(ii) If f is deterministic-tape constructible, 
then DetTAPE(f) is a principal AFL. 

8. 
(ill) If f is time constructible, then 

TIME(f) is a principal AFL. 

As pointed out in [2], the family Q is a 9. 
principal AFL. In [17] it was shown that both CS 
and DetLBA are principal AFLs. Thus we have 
provided answers for three special cases of the 
following question: If ~ is a principal AFL, I0. 
what are sufficient conditions on f in order 
that Hf[~] be a principal AFL? 

ii. 
Suppose f is a superadditive function 

which is also deterministic-time constructible. 
Further, suppose that for some e > 0 and all 
sufficiently large x, 12. 

(f(2x))/(f(x)) 9 max( (i + e) x, (f(x))e). 

As pointed out in Section 2, ~DetTIME(f) is 
then an AFL and ~DetTIME(f) = {L I L is 
accepted by an off-llne deterministic single 
tape Turing acceptor M such that for some 
k ~ I, M operates within time bound fk }. In 

this case the methods used to establish Theorem 
3.3 can be applied to yield the fact that 
~DetTIME(f) is a principal AFL. 
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