
TP~EE-ORI~NTED PROOFS OF SOME THEOR/~S ON
CONTEXT-FREE AND INDEXED LANGUAGES

William C. Rounds
Case Western Reserve University

Cleveland, Ohio 44106

Summary

In this paper we study some applications and
generalizations of the yield theorem: the yield of
a recognizable set of trees (dendrolanguage) is an
indexed language I1]. Standard results on con-
text-free languages can be obtained quickly using
this theorem. We consider here the Peters-
Ritchie theorem [4] : the language analyzable by
a finite set of CS rules is CF.

An extension of the yield theorem reads: the
yield of a CF set of trees is an indexed lan-
guage. We prove some closure properties of CF
sets of trees. Applying the yield theorem, we
obtain properties of indexed languages. As a
special result, we can solve the infiniteness
problem for such languages.

Introduction

Recent work on generalized finite automata
has shown that many standard facts in the theory
of CF languages can be obtained by considering,
instead of grammars, finite automata which check
derivation or parsing trees. As examples of this
technique (for motivational purposes) we will
sketch tree automaton arguments which prove:
(I) CF languages are closed under intersection
with regular sets; and (2) the result of Peters
and Ritchie [4] ~ presented last year at this
conference, that the language analyzable by a
finite set of CS rules is a CF language.
These techniques are not original; Thatcher [8],
Rabin [5], and others have made use of the same
constructions, but we would like to use them here
as background for the similar applications to the
theory of indexed languages.

In the second section of the paper, our con-
cern will be context-free sets of trees. Here we
are using still another definition of CF gram-
mar on trees, but by a theorem in [6], it is
equivalent to the one we presented here last year.
This definition is a natural extension to trees of
the ordinary definition of CF grammar for
strings. By the yield theorems, CF sets of
trees bear the same relation to indexed languages
as recognizable sets of trees do to CF lan-
guages. Some indexed-language theorems are ob-
tained using this fact; hopefully, more such
theorems could be proved similarly.

We assume a familiarit, with basic tree auto-
mata theory. We adopt the notation of Thatcher
[9] with minor changes. Although we have written
out detailed constructior3 and inductive asser-
tions, we have omitted detailed inductive proofs.

Notational Preliminaries

Let (Z,r) be a ranked alphabet, where

r c Z X I~. Define Z = r-l[n}. Let I be a set
- n

disjoint from Z. The set JE(I) of terms

(trees) indexed by I is the smallest set such
that

(i) Z o U I ~ Z (I)

(ii) AEZn, and to, ..., tn_iEJZ(1) imply

A(to~ ..., tn_ l) EJ2(I).

In particular, I is often a countable set
X = [Xo, Xl, ...] of variables. ~z(X) is

written JZ, and ~Z(~) is written 4.

A Z-automaton a consists of a finite set
Q of states, together with a specification for
each A E E n a partial function

fA: Qn+Q.

If L E E o, fk is either a constant or undefined.
Each automaton also has a set F ~ Q of desig-
nated final states. Every automaton has an asso-
ciated response function ir fIR:

(i) ll Jla = fk for k E Zo such that fk
is defined;

(ii) iIA(to, ,tn_l)lh=q(IrtoJJ~,.. ,Htn_llf Q

iff all litiiIc are defined, and fA is defined

for these values.

~o is accepted by a iff lltiI~ is de- t E~ E

fined and in F.

This is the so-called "frontier-to-root"
version of a tree automaton. No loss of general
theory results from allowing partial transition
functions.

A dendrolanguage over E is a subset of
. A dendrolanguage ~ is recognizable iff for

some automaton ~, we have

= [t lt is accepted by ~I"

Define the function yield: ~ ~ E+ o by in-
duction:

yield(k) = L for k E E o ;

yield (A (to,..., tn_ I))=yield (t o).... -yield (tn_l).

-109-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800161.805156&domain=pdf&date_stamp=1970-05-04

For later purposes, we want another yield function
for indexed terms in ~(I). This is the "indexed

yield YI: £Z (I) * I*

Yi(i) = i for i E I;

yI(k) = A (empty string) for k 6 Eo;

Yi(A(to,...,tn_l) = Yi(to) "...°Yi(tn_l).

If u E £Z(I) and Yi(U) = i ° ... ip_l, we will

write u= U[io,...,ip_l].

Context-free Language Applications

The yield theorem (Mezei-Wright [3], ÷
Thatcher [9]), states that a language L _~ ~o

is CF if and only if L = yield[£] for £ a
recognizable dendrolanguage. We can show without
any further preliminaries how this theorem gives
us results about CF languages.

Lemma. Let R ~ ~ be a regular set. Then

It E ~I yield(t) E R} is a recognizable dendro-

language.

Proof. (Rabin, personal comm.) Recall that
R is regular iff there is a finite semigroup S,

epimorphism q0: Z* -~ S, and subset T of S
O

such that R = q0-1[T]. Define a finite tree auto-
maton (~ with state set S, f~=90(k) for K EZo,
and

fA(So,...,Sn_ l) = SoO....Sn_ 1

(product in S.) Let F = T. Then

so that

I l t l lc~ = qp(yield (t))

JltJla ~ F <=~ ~(yield(t)) E T
~_> yield(t) E R.

+
Corollary. The class of CF subsets of Zo

is closed under intersection with regular sets.

Proof. Let L = yield(k) for ~ recogniz-
able. Let ~ = [tiYield(t) E R I. Then

L N R= yield(~ N £).

But ~ N ~ is recognizable, because ~and
are. Hence, the result follows by the yield
theorem.

We note that since the semigroup S can be
effectively obtained, both the lemma and its
corollary are effective.

Now let us turn to an application in lin-
istic theory discovered by Peters and Ritchie
]. Suppose F is a finite set of rules over

Z = N U T, of the form

~A~ . ~

where A E N, ~ and ~ E E*, and w E E +. E
becomes a ranked alphabet if we define r(a,o)
for a E T, and r(A,n) if there is a produc-
tion ~A~ , ~w~ in F with length (~) = n.

For each tree t E ~ we define the set of proper.

analyses P(t) _c E + inductively:

(i) P(a) = ~a} for a E T~

(ii) P(A(to, ... ,tn_l))

= ~A] UP(to).P(t l) P(tn_l).

Thus, P[A(B(a,b), C(D(a)))]

= {A,BC,BD,Ba,abC,abD,aba I .

For the given set F of rules, define

~I = {A , w I for some (~,~), ~A~ * ~w~ E F].

If t' = B(So,...,Sm_ l) define top(t')=B.

Let u E __~ and let A(to,...,tn_ l) be a sub-

tree of u. This subtree is an occurrence of a
rule w in H if w is

A * top(t °) top(tn.1).

Given an occurrence of w in u, temporarily re-

place A(to,...,tn_ I) by ~(to,...,tn_ I) where

is a new symbol. Let u be the tree so ob-
tained. Consider the set of proper analyses of
of the form x~y. Then, the set of analyses of
u which include the occurrence of w is the set

{xAylxXy is a p.a of

We say that t E ~ is analyzable by the set

F if every subtree of t is an occurrence of
some rule in H (except the terminal subtrees)
and for every occurrence of a rule A -~ w in t,
there is a proper analysis p ~A B p' of t which
includes the occurrence of A * w and such that
~A~ , ~w~ E F. Note: if pxAyp' is a proper
analysis including the occurrence of A , w, we
call (x,y) a context of A * ~.

Theorem. (Peters and Ritchie.) The set of
all trees analyzable by F is a :recognizable
dendrolanguage.

(If we define the language analyzable by F
to be the yield of the dendrolanguage analyzable
by F, the result as stated by Peters and Ritchie
follows immediately by the yield theorem.)

Proof. We have only to construct a tree
automaton to check a tree for compatibility with
the rules F. If we think in terms of a bottom-
up sweep, we immediately see that this construc-

-110-

tion can be done. We try to determine all possi-
ble contexts of every occurrence of rules A *
in a given tree t, and to check that at least
one context is a pair (~,8) such that ~A8 * ~8
is in F. Let m be the maximum length of ~,
or ~, with (~,8) such a pair. We have only to
remember contexts (x,y) such that ~(x) and
~(y) ~ m. We first introduce some notation.
For L ~ E*, let

Into(L): {x6E* I~(x)~m and (Zy) xy6L}

Finm(L)= {xEE* I%(x)~m and (~y) yx~L}

(L)m= {x 6 L I~(x) ~m}.

For t 64, define

S(t) = In (P(t))
m

S ~ (t) = Finm(P(t))

Y(t) : (P(t)) m.

The state set of the automaton a will now be
constructed. The states will be tuples of the
form

(A,~,S,S',Y)

where A 6 E; S,S', and Y are subsets of
(E*)m, and ~ is a function with domain a sub-
set of H such that for each ~ 6 dom ~,~(~) is

a pair (C,g) where C ~ (~*)m x (E*) m is the

set of contexts of w and g is a function from
C to {O,1} × {O,1} giving information about
completed contexts. We want

lltll = (A,~,S,S',Y)

if and only if A=top(t), S=S(t), S'=S'(t),
Y = Y(t), and if ~(~) : (C,g) then C will be
the set of contexts of ~ taken over arbitrary
occurrences of n in t, and g tells for each
(~,8) 6 C whether or not there is a proper anal-
ysis (p.a.) of t, say p ~A 8 P', including
with p empty, p' empty, both, or neither.
Specifically, g(~,8) = (0,0) if every p.a.
p ~A~p' is such that p ~ A and p' ~ A;
g(~,8) = (O,1) if there is a p.a. p ~A~pl
with p' = A but none with p = A; g(~,8)= (1,O)
if there is a p.a. with p = A but none with
p' = A, and is (1,1) if there is a p.a. ~A~.
Note that this last condition is equivalent to the
denial of the other three, because if ~A8 p' and
p ~A~ are two p.a.'s with p' ~ A, ~ ~ A,
then ~A8 is also a p.a.

The foregoing description is actually the in-
ductive assertion to be verified for the response
function of our automaton. If we let
(A,~,S,S',Y) 6 F if and only if for each
w 6 dom ~, there is an (~,~) in C where
~(w) : (C,g)~ such that ~A~ ~ ~ 6 F (where

is A * ~), we will have the desired result.

Now let us construct the transition functions.
First, for a 6 Eo, define

-111-

fa = (a,~,{a],{a},{a}).

Here, the function ~ is totally undefined.
Now suppose that for i ~ n-l, we are given the
states (Ai,~i,Si,Sl,Yi) , and A £ E n. We show

how to calculate a new state

(A,~,S,S',Y).

First of all, A* A ° o,. An_ 1 must be a rule

£ E. Otherwise the next state will be unde-
o

fined. Assuming that A * Ao...An_ 1 is legiti-

mate, let us construct S, S I and Y. To construct
S, form the set

= {A} U S o O YoSi U YoYiS2 U oo.

U Y U Yo"" " o'""Yn-2Sn-1 "'Yn-1

Let S = Inm(~). Similarly, let S'= Finm(S') ,
where

S! = {A} U Sn_ It U S~_2Yn_ 1 U S~_3Yn_2Yn_ 1 U ...

U S~Yi'...'Yn_ 1 U Yo'...'Yn_l •

Define Y = (Yo.....Yn_l)m.

Now let us construct 9" For each i < n
define

Si = {A] U Si+ 1UYi+iSi+2 UYi+iYi+2Si+ 3 ...

U Yi+l "'''" Yn-i

and

usl2h lu l i-i "'"

U S~Yi'...'Yi_ 1U Yo....oYi_l .

For w 6 dom ~i' and (m,~) 6 C i, where

~i(n) = (Ci,gi) , define

17
Hi(a, ~) =

[{(~,~)] if gi(a,~): (0,0)

{a} XInm(~[i) if gi(%~) = (O,1)

Finm([la) X {~] if gi(a,~): (i,0)

Finm([~a) X Into(g[i) otherwise.

Set H (~) : U H~(a,~).

(~,~)Ec i

Define ~(n) = (C,g), where

U Hi(n) if ~ ~ Wo [i
c = i u Hi(n) u {(A,^)] if

t i
TT---- ~oe

Define g(a,~) as follows: Let T. =
1

Inm(Yo.....Yi_lSi) and also T!l =

Finm(S~Yi+l.....Yn_l). If for each i, a ~ T i

and ~ ~ T~, put g(a,~) = (0,0). If for some i,

a E T i, but for each i, ~ ~ T~, put g(a,~) =

(1,O). Conversely, if for each i, a ~ T i but

for some i, ~ E T~, put g(a,~) = (O,1).

Otherwise, put g(a,~) = (1,1). Note that
g(A,A) = (i,i).

This completes the construction. It may be
verified that the inductive assertion holds for
these transition functions.

Remarks. We were not able to understand the
proof of this theorem as presented in [4]. In
particular, we were not able to verify that with-
out loss of generality, the maximum-length context
has length m = i.

The theorem seems to generalize in various
ways. For example, we can allow F to be a set
of type 0 rules aA~ 4 aw~ with ~ possibly
empty. Trees to be checked in this case will have
a special leaf e which counts as a member of ~o

but which is interpreted as the empty string by
the checking automaton. The yield theorem tells
us that the analyzable language is CF over the
set Z ° U ~e}, but we can obtain the desired

language simply by erasing e.

Another generalization which seems to be
valid comes when we allow scattered contexts in
the definition of analyzability. Instead of re-
quiring that for each occurrence of A * w, there
be a p.a. p aA ~p' with sAn ~ aw~ E F, we
require only a p.a.

XlalX2. • • ak_lXkAYl ~lY2 ... ~j_lYj

for some j and k, xi, Yi' such that

= a, ~l...~j_l = ~, and aA~* aw~ E F° %~2"''%-1

The theorem s t a t ing tha t the language accept-
ed by a pda is context-free follows from a
Peters-Ritchie argument about trees which repre-
sent computations by the pda. Constructing the
standard Turing machine rewriting system for a
pda, one is forced to put in context-sensitive
rules for states in which the stack symbol is
erased. By using essentially these rules as anal-
yzing rules, however, one can show that the anal-
yzed language is the language accepted by the
pda~ hence it is OF.

Context-free Dendrolanguages

In this section we discuss a definition of
grammar on trees which is a natural generalization
of grammars on strings. We shall not prove it
here, but this type of grammar is equivalent to
the grammars which were presented at this confer-

ence last year [7]. (A proof of the equivalence
can be found in [6].)

Trees will have two types of nodes: finished
and operative. Finished nodes are analogous to
terminal symbols in the string case, but may ap-
pear anywhere in a tree. Productions apply only
to operative nodes, in the same way that CF pro-
ductions apply to nonterminal symbols. The effect
will be to replace the operative node by the right
hand side of the production which has the subtrees
of the original node grafted (substituted) into
it.

Let (E,r) be a ranked alphabet, and assume
E : F U N, where F O N = ~. N is the set of
operative symbols, and F the set of finished
symbols. Productions are pairs
(A(xo,... ,Xn_l),U) , also written

A(Xo,...,Xn_ I) -~ u, such that

u E ~E([Xo,...,Xn_ll), and r(A,n). They apply

as in this example: Let
t=a(b(Xo,Xl),B(C(a),D(Xo))). : Suppose F= [a,b,c },

N = ~B,C,D}. Let B(xo,X l) -~ B(b(Xl,Xo),C(Xo))
be a production. Then

B(C(a),D(Xo)) ~ B(b(D(Xo),C(a)),C(C(a)))= ~.

Also

t ~ a(b(Xo,Xl),~).

Formally, we give an inductive definition of
direct generation via a production w.

(i) If t = k E Z o, then t =~ t'

iff w is k ~ t', where t' E ~Z @

(ii) If t = x E X, then there is no such-
tree t' ;

(iii) If t = A(to,...,tn_l) , then either for

some i, t i ~wt~ and t' is A(to,...,t~,...,tn_l) ,

or else ~ is A(Xo,...,Xn_ I) -~ u, and t' is

obtained from u by substituting t i for each
occurrence of x. in u.

i

Definition. A context-free dendrogrammar is
a 3-tuple (Z,So,II) where E is a ranked alpha-

bet (E = F U N), So c_ ~Z is a finite set of

starting trees, and H is a finite set of pro-
ductions.

Write t = t' if for some w E rl, t ~_t t .
Let =* be the reflexive, transitive closur~
of =. Define

~(~) = {u~l (~ ~So)(S ~ u)}.

Example.. F = ~a,b ,c ,k ,h}; N = ~H,K}.
Let S O = [H(a,b,c)}. Take 3 productions:

H(Xo,Xl,X 2) -~ H(K(a, Xo),K(b, x2) ,K(c,x2))

-112-

H(Xo,Xl,X 2) * k(h(Xo,Xl,X2),h(Xo,Xl,X2)):

K(Xo, %) * k(Xo,Xl).

For a derivation in G, consider

H(a,b,c) = H(K(a,a),K(b,b),K(c,c))

=k~ (K(a, a),K(b, b), K (c,c)), h (K (a, a), K (b,b), K (c, c)))

~¢~(a,a),k(b,b),k(c,c)),h (k(a,a),k(b,b),k(c,c))).

Apparently, yield[~(G)] = {anbncnanbncnin ~ 1}.

This definition of dendrogrammar is plainly
related to the definition of unrestricted macro
grammar by M. Fischer [2]. Given a CF dendro-
grammar G, one can immediately define a macro
grammar G' such that L(G') = yield[~(G)]. Con-
versely given a macro grammar with no rules of
the form S * A and no productions containing A
as an argument, one can define a dendrogrammar
with the same property. Fischer's theorem [2,
theorem 5.3] thus implies the extended yield
theorem: the yield of a CF dendrolanguage is
an indexed language~ and conversely, except for
the empty string. By considering A(G) instead
of its yield, we may be able to say something
about indexed languages in the same way we did
about context-free languages.

We want to state some easy consequences of
the definitions. These results are all generaliza-
tions of corresponding results for CF grammars.
First, we have the tree analogue of left-to-right
derivations.

Definition. A derivation in a CF dendro-
grammar is top-down (Fischer: outside-in) if when-
ever a production A(Xo,...,Xn_ l~ * u is applied,

the node A has no operative nodes above it.
More formally, t ~ t'(TD) iff t' is either

A(to,...,tn_ l) and ~ applies to A, or t is

a(to,...,tn_ l) with a E F, and for some i,

t i %t~(TO).

Lemma (Fischer). Given a CF dendrogrammar
G, every tree in ~(G) can be obtained via a
top-down derivation (with possibly many more
steps).

Trying to generalize the standard proof for
strings, one realizes why many more steps are
needed in a top-down derivation. Also, it is clear
why an analogous lemma for "bottom-up" derivations
is false: trees are not reversible.

Definition. A CF dendrogrammar is in
normal form if each production is in one of the
two forms

(i) A(Xo,...,Xn_l) 4 a(Xo,...,Xn_l) ~,

where A E N, a E F, or

(2) A(Xo,...,Xn_ l) * u

where u E ~N({Xo,...,Xn_l}).

Lenmua. For every CF dendrogrammar G,
can effectively find a grammar G l in normal
form with ~(G') = ~(G).

we

This lemma is again a special case of a re-
suit of Fischer which gives a strict normal form
for 0I grammars. Our result is, however,
trivial. The form we have here is the analogue of
the normal form A * a; A * ~A2...Ap; for CF
grammars.

Define a production A(Xo,...,Xn_ l) * u to

be useless if there is no tree t E #~(X) such

that u ~ t.

Lemma. If G' is obtained from G by dis-
carding all useless productions, then ~(G')= £(G).

Clearly £(G') ~ ~(G). If t E £(G), con-
sider the sequence of productions applied to de-
rive t. Let t i = ti+ 1 be the last application

of a useless production, t. has a subtree
l

A(Uo,...,U~_l) ,_o and ti+ 1 has a subtree ~ such

that A is transformed via w, and there is no
tree t'in ~F with ~ =~ t' We can therefore

assume that no further prcductions apply in u;
thus that if ti+ 1 =~l ti+ 2, then t i ~ , ti+ 2.

This eliminates the use of ~.

The emptiness problem is solvable for indexed
languages~ hence for CF dendrolanguages. Thus
we can decide if a given production is useless.

Finally, we notice that CFD's are closed
under union, and that we can take the starting set
to consist of a single symbol in Z o.

ilClosure Properties

One of the first theorems one would like to
prove is that the class of CF dendrolanguages is
closed under intersection with recognizable sets.
This is the case,land we shall prove it as a con-
sequence of clos~fre under certain finite-state
mappings. (A general treatment of finite-state
mappings can be found in [6].)

Definition. A (nondeterministic) linear
finite-state transformation is a 4-tuple

T = (Z,Q, Qo,H)

where Z is a ranked alphabet, Q is a finite set
of states, Qo ~ Q are the initial states, and ~ ~
is a finite set of productions

a(Xo,...,Xn_ l) *

where ~ E ~z(Q X {Xo,...,Xn_l}). Further if the

indexed yield of ~ is

- 1 1 3 -

(qo,Xio)(qlXil) •) "'(qp-lXip_ 1

we require that i : [~...,p-l] + {O,...,m-1] be
injective. (This means that every variable x.

3
occurs at most once in a.)

Linear productions apply to trees in
~E(Q × JE) as follows: Let (q,a(to,...,tn_l))

be an index of a tree u E ~(Q × J Z). Let

),. ,(qp_l,Xi)] be a(Xo,...,Xn_ 1) e[(qo,Xio .. p_j

a production. Form the tree

a' = a[(q°'tio)'''" (qP-l'tip-1)]"

Replace the given index (q,a(to,...,tn_l)) of

by a t. The result is the tree u t obtained by
applying the given production.

U

For

Definition° For t 6 ~-Z' q 6 Q, define

~(q,t) = [t' E 3-z(Q X ~'£) I (q,t) =~ t'}

T(q,t) =

g_c~ Z,

T[~] =

It' E 4 1 (q,t) ~ t'].

define

U T(q,s) .

qEQ o

sER

Theorem. The class of CF dendrolanguages is
closed under linear finite-state transformations
(effectively.)

Proof. Let G be a normal form dendrogram-
mar from which all useless productions have been
eliminated. (This can be done effectively.) Let
T be a linear transformation. Our technique is
a standard one - - run T and G simultaneously.
G will car~ out top-down derivations; as soon as
G produces finished symbols, T will transform
them. Since T is not allowed to make copies of
its input, the simultaneous grammar will not ever
produce more trees than T could produce, acting
on ~(o).

Productions of G' will now be given. When-
ever A(Xo,...,Xn_ I) ~ a(Xo,...,Xn_ l) is in

H(G), put

(q,A(Xo,...,Xn_l)) * ~[(qo,Xio),...,(qp_l,Xip_l)]

into H(G')~ for each production

(q, a (Xo,... , Xn_ I)) ~ ~[(qo,Xio), ..., (qP-l'Xip-1)]

in H(T). If A(Xo,...,Xn_ l) * u 6 H(G), then

in each q E Q, put the production

(q,A(Xo,...,Xn_l)) 4 (q,u)

into H(G'). (Recall u E ~N(X))"

The productions of G t have bhe form of
creative productions as defined in [6]. They ap-
ply to trees in ~(Q×~) in the same manner as

productions of T do. [The starting trees of G'
will be of the form (q,t) where q E Qo,t E So.]

G l is a creative dendrogrammar, exactly like the
grammars defined at this conference last year.
G l is thus equivalent to a CF dendrogrammar
(effectively). The result follows when we show
that ~(G') = T[~(G)]. To verify this, we need
some notation. Since derivations in G are top-
down, we may view intermediate stages as trees of
the form V[Vo,...,Vm_ 1] where v E~F(X) and

E 4. We claim that for each k ~ O, that if V i

for some ~ and p,

))= (k)[(qo'Wo)' "'" (qp-l'Wp-i)]' (q'A(Yo'""Yn-i G'

then there is a V[Vo,...,v~_ I].~ E ,~ and a 1-1

function f : [O,...,m-11 * [O,...,m-1] such that
wfli) = vi, and such that

~[~qo,Xf_l(0)),...,(qp_l,Xf_l(p_l))] is a member

of ~(q,V[Xo,...,x__.~ i]), and
(k) -]. Conversely, if A(Yo,...,Yn_i)= G V[Vo,...,Vm_ 1

there is such a v and f, then an appropriate
exists.

The proof of this statement and its converse.
is by induction on k and is omitted. Linearity
of T is essential to the proof.

Having these results, it is easy to see that
T[~(G)] ~(G'). If ~ 6 ~(G'), letv[Vo,...,~_l]

be given by the inductive statement. All produc-
tions of G are useful, so each vi =~ ~i' where

~i £ ~F" Since p=o, and ~ET(q, Vo,...,Vm_l])

we have ~ E T(q,V[~o,...,%_l]), so ~ET[~(G)].

Corollary. The class of CF dendrolanguages
is closed under intersection with recognizable
sets.

Proof.
of a linear
defined.

Every recognizable set is the domain
FST which acts as the identity when

Corollary. Indexed languages are closed
under intersection with regular sets.

Proof. This follows by the yield theorem ex-
actly as for CF languages.

An interesting linear transformation is the
fan transformation which eliminates unary branches
from trees. Specifically,

fan (k)= ~;

fan (a(to))= to;

fan (a(to,...,tp+2))= a(to,...,tp+2).

-114-

If £ is a dendrolanguage, then~ by the theorems
so is fan[Z]. Moreover, yield[fanL£]=yield[£],
and fan[S] is infinite if and only if yield[£]
is infinite. (Recall that the empty symbol does
not occur in dendrolanguages.)

Theorem. The infiniteness problem is solv-
able for indexed languages.

Sketch of proof. Consider an indexed gram-
mar G without A-rules. Such a grammar can be
converted immediately into a CF dendrogrammar
G' with yield[£(G')] = L(G). As we have seen
above, by taking fan[£(G')] we reduce the
problem to the infiniteness problem for dendro-
languages. The solvability of this problem is a
consequence of the fact that if £ is a CF
dendrolanguage, then the set of paths through
trees of £ is (effectively) a CF language.
To decide infiniteness of ~, simply decide in-
finiteness for the set of paths of £. This
trick, incidentally, avoids the problem of dev-
eloping an intercalation theorem [10] for indexed
languages. We outline some of the details needed
to prove the path result.

For each letter A E E let

symbol, where n ~ O. For each

the set of h-paths through t EJ~(X)

(i) PK(x)=~, xEX;

[~, ~ E go' ~ ~;
(ii) P()

K ' ~ " = ~[{K}, K ~ E o, ~ : K .

A be a new
n

K E Eo define

i n d u c t i v e l y :

n-1
(iii) Pk(A(to,...,tn_l)= U {Ai(w)lwEPK(ti)}.

i=o

Example. PK(A(B(k),C(X,~))

= {Ao(Bo(k)),~(Co(k)) }.

Define the symbols A. to have rank i. Terms in

such symbols can be regarded as s t r i n g s ; thus Pk
above can be written

{AoBok, ~Cok}.

For @ ~, define

Pig] = U U P k (t) .
keg o tEg

Proposition. If g is a CF dendrolanguage,
then PIg], regarded as a set of strings, is a
CF language.

To prove this, let G be a normal-form, use-
ful CF dendrogrammar. The idea is to take paths
of trees occurring in all productions. We must be
careful which paths we choose, however. If u is
the right-hand side of a production, and x is
a variable occurring in u, we want todistinguish

the paths of u which end in

(i) Px(k) = ~, k E Eo

x. Thus,

f#, yjx;
(ii) Px(y)= [{x*}, y= x.

Here, ~ ~ X is a new variable

n-1
(iii) Px(A~o,...,tn_l))= .U {Ai(w)lw E Px(ti)}.

1--O

Now if B(Xo,...,Xn_l) 4 u is a production

of G, put the productions B.(x*) * w into G'
1

for each w E Px.(t), and each i < n. Also,
1

put the productions B.(~ ~) ~ w (for each
w E Pk(t), each i, land each k) into G'.

Let the initial strings of G' be P[S o]

where S is the set of initial trees of G. It
o

follows via an easy inductive proof that
£(G') = P[£(G)]. But G' is in essence a CF
grammar. If Ai(~) * w(~ ~) then let A i * w

be a CF production. (If w(x*) = x let
A i * A.) If A.(x*)m * w(K), let A.m * wk. Thus,

P[£(G)] is indeed a CF language.

[i]

[2]

[~]

[4]

[5]

[6]

[7]

References

Aho, A.V. "Indexed grammars -- an extension
of the context-free grammars," JACM l~
(1968), 647-67].

Fischer, M.J. "Grammars with macro-like
productions," Proc, 9th IEEE Symp, on
Switching and Automata Theory, October,
1968.

Mezei, J. and J.B. Wright, "Algebraic
automata and context-free sets," In__~.
Control Ii (1967), 3-29.

Peters, P.S. and R.W. Ritchie, "Context-
sensitive immediate constituent analysis--
context-free languages revisited," Proc.
ACM Svmp, on Theory of Computing, May, 1969.

Rabin, M.O. "Mathematical Theory of Automata,"
Mathematical Asoects of Computer Science
(Proc. Symposia Appl. Math., XIX, 173-175)
American Mathematical Society, Providence,
R.I., 1967.

Rounds, W.C. "Mappings and grammars on trees,"
submitted to Math, Systems Theory.

ontext-free grammars on trees," Rounds, W.C. "C
Proc, ACM Symp, on Theory of Computing, May,
1969.

-115-

is]

[9]

[io]

Thatcher, J.W., personal communication.

Thatcher, J.W. "Transformations and transla-
tions from the point of view of generalized
finite automata theory, "Proc, ACM Symp, on
Theory of Computing, May, 1969.

Ogden, W.F. "Intercalation theorems for stack
automata," Proc, ACM Symp, on Theory of
Computing, May, 1969.

-116-

