
TP~EE-ORI~NTED PROOFS OF SOME THEOR/~S ON 
CONTEXT-FREE AND INDEXED LANGUAGES 

William C. Rounds 
Case Western Reserve University 

Cleveland, Ohio 44106 

Summary 

In this paper we study some applications and 
generalizations of the yield theorem: the yield of 
a recognizable set of trees (dendrolanguage) is an 
indexed language I1 ]. Standard results on con- 
text-free languages can be obtained quickly using 
this theorem. We consider here the Peters- 
Ritchie theorem [ 4] : the language analyzable by 
a finite set of CS rules is CF. 

An extension of the yield theorem reads: the 
yield of a CF set of trees is an indexed lan- 
guage. We prove some closure properties of CF 
sets of trees. Applying the yield theorem, we 
obtain properties of indexed languages. As a 
special result, we can solve the infiniteness 
problem for such languages. 

Introduction 

Recent work on generalized finite automata 
has shown that many standard facts in the theory 
of CF languages can be obtained by considering, 
instead of grammars, finite automata which check 
derivation or parsing trees. As examples of this 
technique (for motivational purposes) we will 
sketch tree automaton arguments which prove: 
(I) CF languages are closed under intersection 
with regular sets; and (2) the result of Peters 
and Ritchie [ 4 ] ~ presented last year at this 
conference, that the language analyzable by a 
finite set of CS rules is a CF language. 
These techniques are not original; Thatcher [ 8 ], 
Rabin [ 5 ], and others have made use of the same 
constructions, but we would like to use them here 
as background for the similar applications to the 
theory of indexed languages. 

In the second section of the paper, our con- 
cern will be context-free sets of trees. Here we 
are using still another definition of CF gram- 
mar on trees, but by a theorem in [6 ], it is 
equivalent to the one we presented here last year. 
This definition is a natural extension to trees of 
the ordinary definition of CF grammar for 
strings. By the yield theorems, CF sets of 
trees bear the same relation to indexed languages 
as recognizable sets of trees do to CF lan- 
guages. Some indexed-language theorems are ob- 
tained using this fact; hopefully, more such 
theorems could be proved similarly. 

We assume a familiarit, with basic tree auto- 
mata theory. We adopt the notation of Thatcher 
[ 9 ] with minor changes. Although we have written 
out detailed constructior3 and inductive asser- 
tions, we have omitted detailed inductive proofs. 

Notational Preliminaries 

Let (Z,r) be a ranked alphabet, where 

r c Z X I~. Define Z = r-l[n}. Let I be a set 
- n 

disjoint from Z. The set JE(I) of terms 

(trees) indexed by I is the smallest set such 
that 

(i) Z o U I ~ Z ( I )  

(ii) AEZn, and to, ..., tn_iEJZ(1) imply 

A(to~ ..., tn_ l) EJ2(I). 

In particular, I is often a countable set 
X = [Xo, Xl, ...] of variables. ~z(X) is 

written JZ, and ~Z(~) is written 4. 

A Z-automaton a consists of a finite set 
Q of states, together with a specification for 
each A E E n a partial function 

fA: Qn+Q. 

If L E E o, fk is either a constant or undefined. 
Each automaton also has a set F ~ Q of desig- 
nated final states. Every automaton has an asso- 
ciated response function ir fIR: 

(i) ll Jla = fk for k E Zo such that fk 
is defined; 

(ii) iIA(to, ,tn_l)lh=q(IrtoJJ~,.. ,Htn_llf Q 

iff all litiiIc are defined, and fA is defined 

for these values. 

~o is accepted by a iff lltiI~ is de- t E~ E 

fined and in F. 

This is the so-called "frontier-to-root" 
version of a tree automaton. No loss of general 
theory results from allowing partial transition 
functions. 

A dendrolanguage over E is a subset of 
. A dendrolanguage ~ is recognizable iff for 

some automaton ~, we have 

= [t lt is accepted by ~I" 

Define the function yield: ~ ~ E+ o by in- 
duction: 

yield(k) = L for k E E o ; 

yield (A (to,..., tn_ I ) )=yield (t o ).... -yield (tn_l). 
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For later purposes, we want another yield function 
for indexed terms in ~(I). This is the "indexed 

yield YI: £Z (I) * I* 

Yi(i) = i for i E I; 

yI(k) = A (empty string) for k 6 Eo; 

Yi(A(to,...,tn_l) = Yi(to) "...°Yi(tn_l). 

If u E £Z(I) and Yi(U) = i ° ... ip_l, we will 

write u= U[io,...,ip_l]. 

Context-free Language Applications 

The yield theorem (Mezei-Wright [ 3 ], ÷ 
Thatcher [ 9 ]), states that a language L _~ ~o 

is CF if and only if L = yield[£] for £ a 
recognizable dendrolanguage. We can show without 
any further preliminaries how this theorem gives 
us results about CF languages. 

Lemma. Let R ~ ~ be a regular set. Then 

It E ~I yield(t) E R} is a recognizable dendro- 

language. 

Proof. (Rabin, personal comm. ) Recall that 
R is regular iff there is a finite semigroup S, 

epimorphism q0: Z* -~ S, and subset T of S 
O 

such that R = q0-1[T]. Define a finite tree auto- 
maton (~ with state set S, f~=90(k) for K EZo, 
and 

fA(So,...,Sn_ l) = SoO....Sn_ 1 

(product in S.) Let F = T. Then 

so that 

I l t l lc~ = qp(yield (t) ) 

JltJla ~ F <=~ ~(yield(t)) E T 
~_> yield(t) E R. 

+ 
Corollary. The class of CF subsets of Zo 

is closed under intersection with regular sets. 

Proof. Let L = yield(k) for ~ recogniz- 
able. Let ~ = [tiYield(t) E R I. Then 

L N R= yield(~ N £). 

But ~ N ~ is recognizable, because ~and 
are. Hence, the result follows by the yield 
theorem. 

We note that since the semigroup S can be 
effectively obtained, both the lemma and its 
corollary are effective. 

Now let us turn to an application in lin- 
istic theory discovered by Peters and Ritchie 
]. Suppose F is a finite set of rules over 

Z = N U T, of the form 

~A~ . ~ 

where A E N, ~ and ~ E E*, and w E E +. E 
becomes a ranked alphabet if we define r(a,o) 
for a E T, and r(A,n) if there is a produc- 
tion ~A~ , ~w~ in F with length (~) = n. 

For each tree t E ~ we define the set of proper. 

analyses P(t) _c E + inductively: 

(i) P(a) = ~a} for a E T~ 

(ii) P(A(to, ... ,tn_l)) 

= ~A] UP(to).P(t l) ..... P(tn_l). 

Thus, P[A(B(a,b), C(D(a)))] 

= {A,BC,BD,Ba,abC,abD,aba I . 

For the given set F of rules, define 

~I = {A , w I for some (~,~), ~A~ * ~w~ E F]. 

If t' = B(So,...,Sm_ l) define top(t')=B. 

Let u E __~ and let A(to,...,tn_ l) be a sub- 

tree of u. This subtree is an occurrence of a 
rule w in H if w is 

A * top(t ° ) ..... top(tn.1). 

Given an occurrence of w in u, temporarily re- 

place A(to,...,tn_ I) by ~(to,...,tn_ I) where 

is a new symbol. Let u be the tree so ob- 
tained. Consider the set of proper analyses of 
of the form x~y. Then, the set of analyses of 
u which include the occurrence of w is the set 

{xAylxXy is a p.a of 

We say that t E ~ is analyzable by the set 

F if every subtree of t is an occurrence of 
some rule in H (except the terminal subtrees) 
and for every occurrence of a rule A -~ w in t, 
there is a proper analysis p ~A B p' of t which 
includes the occurrence of A * w and such that 
~A~ , ~w~ E F. Note: if pxAyp' is a proper 
analysis including the occurrence of A , w, we 
call (x,y) a context of A * ~. 

Theorem. (Peters and Ritchie. ) The set of 
all trees analyzable by F is a :recognizable 
dendrolanguage. 

(If we define the language analyzable by F 
to be the yield of the dendrolanguage analyzable 
by F, the result as stated by Peters and Ritchie 
follows immediately by the yield theorem. ) 

Proof. We have only to construct a tree 
automaton to check a tree for compatibility with 
the rules F. If we think in terms of a bottom- 
up sweep, we immediately see that this construc- 
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tion can be done. We try to determine all possi- 
ble contexts of every occurrence of rules A * 
in a given tree t, and to check that at least 
one context is a pair (~,8) such that ~A8 * ~8 
is in F. Let m be the maximum length of ~, 
or ~, with (~,8) such a pair. We have only to 
remember contexts (x,y) such that ~(x) and 
~(y) ~ m. We first introduce some notation. 
For L ~ E*, let 

Into(L): {x6E* I~(x)~m and (Zy) xy6L} 

Finm(L)= {xEE* I%(x)~m and (~y) yx~L} 

(L)m= {x 6 L I~(x) ~m}. 

For t 64, define 

S(t) = In (P(t)) 
m 

S ~ (t) = Finm(P(t)) 

Y(t) : (P(t)) m. 

The state set of the automaton a will now be 
constructed. The states will be tuples of the 
form 

(A,~,S,S',Y) 

where A 6 E; S,S', and Y are subsets of 
(E*)m, and ~ is a function with domain a sub- 
set of H such that for each ~ 6 dom ~,~(~) is 

a pair (C,g) where C ~ (~*)m x (E*) m is the 

set of contexts of w and g is a function from 
C to {O,1} × {O,1} giving information about 
completed contexts. We want 

lltll = (A,~,S,S',Y) 

if and only if A=top(t), S=S(t), S'=S'(t), 
Y = Y(t), and if ~(~) : (C,g) then C will be 
the set of contexts of ~ taken over arbitrary 
occurrences of n in t, and g tells for each 
(~,8) 6 C whether or not there is a proper anal- 
ysis (p.a.) of t, say p ~A 8 P', including 
with p empty, p' empty, both, or neither. 
Specifically, g(~,8) = (0,0) if every p.a. 
p ~A~p' is such that p ~ A and p' ~ A; 
g(~,8) = (O,1) if there is a p.a. p ~A~pl 
with p' = A but none with p = A; g(~,8)= (1,O) 
if there is a p.a. with p = A but none with 
p' = A, and is (1,1) if there is a p.a. ~A~. 
Note that this last condition is equivalent to the 
denial of the other three, because if ~A8 p' and 
p ~A~ are two p.a.'s with p' ~ A, ~ ~ A, 
then ~A8 is also a p.a. 

The foregoing description is actually the in- 
ductive assertion to be verified for the response 
function of our automaton. If we let 
(A,~,S,S',Y) 6 F if and only if for each 
w 6 dom ~, there is an (~,~) in C where 
~(w) : (C,g)~ such that ~A~ ~ ~ 6 F (where 

is A * ~), we will have the desired result. 

Now let us construct the transition functions. 
First, for a 6 Eo, define 

-111- 

fa = (a,~,{a],{a},{a}). 

Here, the function ~ is totally undefined. 
Now suppose that for i ~ n-l, we are given the 
states (Ai,~i,Si,Sl,Yi) , and A £ E n. We show 

how to calculate a new state 

(A,~,S,S',Y). 

First of all, A* A ° o,. An_ 1 must be a rule 

£ E. Otherwise the next state will be unde- 
o 

fined. Assuming that A * Ao...An_ 1 is legiti- 

mate, let us construct S, S I and Y. To construct 
S, form the set 

= {A} U S o O YoSi U YoYiS2 U oo. 

U Y U Yo"" " o'""Yn-2Sn-1 "'Yn-1 

Let S = Inm(~). Similarly, let S'= Finm(S') , 
where 

S! = {A} U Sn_ It U S~_2Yn_ 1 U S~_3Yn_2Yn_ 1 U ... 

U S~Yi'...'Yn_ 1 U Yo'...'Yn_l • 

Define Y = (Yo.....Yn_l)m. 

Now let us construct 9" For each i < n 
define 

Si = {A] U Si+ 1UYi+iSi+2 UYi+iYi+2Si+ 3 ... 

U Yi+l "'''" Yn-i 

and 

usl2h lu l i-i "'" 

U S~Yi'...'Yi_ 1U Yo....oYi_l . 

For w 6 dom ~i' and (m,~) 6 C i, where 

~i(n) = (Ci,gi) , define 

17 
Hi(a, ~) = 

[ {(~,~)] if gi(a,~): (0,0) 

{a} XInm(~[ i) if gi(%~) = (O,1) 

Finm([la) X {~] if gi(a,~): (i,0) 

Finm([~a) X Into(g[ i) otherwise. 

Set H (~) : U H~(a,~). 

(~,~)Ec i 

Define ~(n) = (C,g), where 

U Hi(n) if ~ ~ Wo [i 
c = i u Hi(n) u {(A,^)] if 

t i 
TT---- ~oe 



Define g(a,~) as follows: Let T. = 
1 

Inm(Yo.....Yi_lSi ) and also T!l = 

Finm(S~Yi+l.....Yn_l). If for each i, a ~ T i 

and ~ ~ T~, put g(a,~) = (0,0). If for some i, 

a E T i, but for each i, ~ ~ T~, put g(a,~) = 

(1,O). Conversely, if for each i, a ~ T i but 

for some i, ~ E T~, put g(a,~) = (O,1). 

Otherwise, put g(a,~) = (1,1). Note that 
g(A,A) = (i,i). 

This completes the construction. It may be 
verified that the inductive assertion holds for 
these transition functions. 

Remarks. We were not able to understand the 
proof of this theorem as presented in [4]. In 
particular, we were not able to verify that with- 
out loss of generality, the maximum-length context 
has length m = i. 

The theorem seems to generalize in various 
ways. For example, we can allow F to be a set 
of type 0 rules aA~ 4 aw~ with ~ possibly 
empty. Trees to be checked in this case will have 
a special leaf e which counts as a member of ~o 

but which is interpreted as the empty string by 
the checking automaton. The yield theorem tells 
us that the analyzable language is CF over the 
set Z ° U ~e}, but we can obtain the desired 

language simply by erasing e. 

Another generalization which seems to be 
valid comes when we allow scattered contexts in 
the definition of analyzability. Instead of re- 
quiring that for each occurrence of A * w, there 
be a p.a. p aA ~p' with sAn ~ aw~ E F, we 
require only a p.a. 

XlalX2. • • ak_lXkAYl ~lY2 ... ~j_lYj 

for some j and k, xi, Yi' such that 

= a, ~l...~j_l = ~, and aA~* aw~ E F° %~2"''%-1 

The theorem s t a t ing  tha t  the language accept-  
ed by a pda is context-free follows from a 
Peters-Ritchie argument about trees which repre- 
sent computations by the pda. Constructing the 
standard Turing machine rewriting system for a 
pda, one is forced to put in context-sensitive 
rules for states in which the stack symbol is 
erased. By using essentially these rules as anal- 
yzing rules, however, one can show that the anal- 
yzed language is the language accepted by the 
pda~ hence it is OF. 

Context-free Dendrolanguages 

In this section we discuss a definition of 
grammar on trees which is a natural generalization 
of grammars on strings. We shall not prove it 
here, but this type of grammar is equivalent to 
the grammars which were presented at this confer- 

ence last year [7]. (A proof of the equivalence 
can be found in [6].) 

Trees will have two types of nodes: finished 
and operative. Finished nodes are analogous to 
terminal symbols in the string case, but may ap- 
pear anywhere in a tree. Productions apply only 
to operative nodes, in the same way that CF pro- 
ductions apply to nonterminal symbols. The effect 
will be to replace the operative node by the right 
hand side of the production which has the subtrees 
of the original node grafted (substituted) into 
it. 

Let (E,r) be a ranked alphabet, and assume 
E : F U N, where F O N = ~. N is the set of 
operative symbols, and F the set of finished 
symbols. Productions are pairs 
(A(xo,... ,Xn_l),U) , also written 

A(Xo,...,Xn_ I) -~ u, such that 

u E ~E([Xo,...,Xn_ll), and r(A,n). They apply 

as in this example: Let 
t=a(b(Xo,Xl),B(C(a),D(Xo))). : Suppose F= [a,b,c }, 

N = ~B,C,D}. Let B(xo,X l) -~ B(b(Xl,Xo),C(Xo)) 
be a production. Then 

B(C(a),D(Xo)) ~ B(b(D(Xo),C(a)),C(C(a)))= ~. 

Also 

t ~ a(b(Xo,Xl),~). 

Formally, we give an inductive definition of 
direct generation via a production w. 

(i) If t = k E Z o, then t =~ t' 

iff w is k ~ t', where t' E ~Z @ 

(ii) If t = x E X, then there is no such- 
tree t' ; 

(iii) If t = A(to,...,tn_l) , then either for 

some i, t i ~wt~ and t' is A(to,...,t~,...,tn_l) , 

or else ~ is A(Xo,...,Xn_ I) -~ u, and t' is 

obtained from u by substituting t i for each 
occurrence of x. in u. 

i 

Definition. A context-free dendrogrammar is 
a 3-tuple (Z,So,II) where E is a ranked alpha- 

bet (E = F U N), So c_ ~Z is a finite set of 

starting trees, and H is a finite set of pro- 
ductions. 

Write t = t' if for some w E rl, t ~_t t . 
Let =* be the reflexive, transitive closur~ 
of =. Define 

~(~) = {u~l (~ ~So)(S ~ u)}. 

Example.. F = ~a,b ,c ,k ,h};  N = ~H,K}. 
Let S O = [H(a,b,c)}. Take 3 productions: 

H(Xo,Xl,X 2) -~ H(K(a, Xo),K(b, x2) ,K(c,x2))  
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H(Xo,Xl,X 2) * k(h(Xo,Xl,X2),h(Xo,Xl,X2)): 

K(Xo, %) * k(Xo,Xl). 

For a derivation in G, consider 

H(a,b,c) = H(K(a,a),K(b,b),K(c,c)) 

=k~ (K(a, a ),K(b, b), K (c,c)), h (K (a, a ), K (b,b), K (c, c ) ) ) 

~¢~(a,a),k(b,b),k(c,c)),h (k(a,a),k(b,b),k(c,c))). 

Apparently, yield[~(G)] = {anbncnanbncnin ~ 1}. 

This definition of dendrogrammar is plainly 
related to the definition of unrestricted macro 
grammar by M. Fischer [2]. Given a CF dendro- 
grammar G, one can immediately define a macro 
grammar G' such that L(G') = yield[~(G)]. Con- 
versely given a macro grammar with no rules of 
the form S * A and no productions containing A 
as an argument, one can define a dendrogrammar 
with the same property. Fischer's theorem [2, 
theorem 5.3] thus implies the extended yield 
theorem: the yield of a CF dendrolanguage is 
an indexed language~ and conversely, except for 
the empty string. By considering A(G) instead 
of its yield, we may be able to say something 
about indexed languages in the same way we did 
about context-free languages. 

We want to state some easy consequences of 
the definitions. These results are all generaliza- 
tions of corresponding results for CF grammars. 
First, we have the tree analogue of left-to-right 
derivations. 

Definition. A derivation in a CF dendro- 
grammar is top-down (Fischer: outside-in) if when- 
ever a production A(Xo,...,Xn_ l~ * u is applied, 

the node A has no operative nodes above it. 
More formally, t ~ t'(TD) iff t' is either 

A(to,...,tn_ l) and ~ applies to A, or t is 

a(to,...,tn_ l) with a E F, and for some i, 

t i %t~(TO). 

Lemma (Fischer). Given a CF dendrogrammar 
G, every tree in ~(G) can be obtained via a 
top-down derivation (with possibly many more 
steps ). 

Trying to generalize the standard proof for 
strings, one realizes why many more steps are 
needed in a top-down derivation. Also, it is clear 
why an analogous lemma for "bottom-up" derivations 
is false: trees are not reversible. 

Definition. A CF dendrogrammar is in 
normal form if each production is in one of the 
two forms 

(i) A(Xo,...,Xn_l) 4 a(Xo,...,Xn_l) ~, 

where A E N, a E F, or 

(2) A(Xo,...,Xn_ l) * u 

where u E ~N({Xo,...,Xn_l}). 

Lenmua. For every CF dendrogrammar G, 
can effectively find a grammar G l in normal 
form with ~(G') = ~(G). 

we 

This lemma is again a special case of a re- 
suit of Fischer which gives a strict normal form 
for 0I grammars. Our result is, however, 
trivial. The form we have here is the analogue of 
the normal form A * a; A * ~A2...Ap; for CF 
grammars. 

Define a production A(Xo,...,Xn_ l) * u to 

be useless if there is no tree t E #~(X) such 

that u ~  t. 

Lemma. If G' is obtained from G by dis- 
carding all useless productions, then ~(G')= £(G). 

Clearly £(G') ~ ~(G). If t E £(G), con- 
sider the sequence of productions applied to de- 
rive t. Let t i = ti+ 1 be the last application 

of a useless production, t. has a subtree 
l 

A(Uo,...,U~_l) ,_o and ti+ 1 has a subtree ~ such 

that A is transformed via w, and there is no 
tree t'in ~F with ~ =~ t' We can therefore 

assume that no further prcductions apply in u; 
thus that if ti+ 1 =~l ti+ 2, then t i ~ , ti+ 2. 

This eliminates the use of ~. 

The emptiness problem is solvable for indexed 
languages~ hence for CF dendrolanguages. Thus 
we can decide if a given production is useless. 

Finally, we notice that CFD's are closed 
under union, and that we can take the starting set 
to consist of a single symbol in Z o. 

ilClosure Properties 

One of the first theorems one would like to 
prove is that the class of CF dendrolanguages is 
closed under intersection with recognizable sets. 
This is the case,land we shall prove it as a con- 
sequence of clos~fre under certain finite-state 
mappings. (A general treatment of finite-state 
mappings can be found in [6].) 

Definition. A (nondeterministic) linear 
finite-state transformation is a 4-tuple 

T = (Z,Q, Qo,H) 

where Z is a ranked alphabet, Q is a finite set 
of states, Qo ~ Q are the initial states, and ~ ~ 
is a finite set of productions 

a(Xo,...,Xn_ l) * 

where ~ E ~z(Q X {Xo,...,Xn_l}). Further if the 

indexed yield of ~ is 
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(qo,Xio)(qlXil) • ) "'(qp-lXip_ 1 

we require that i : [~...,p-l] + {O,...,m-1] be 
injective. (This means that every variable x. 

3 
occurs at most once in a.) 

Linear productions apply to trees in 
~E(Q × JE) as follows: Let (q,a(to,...,tn_l)) 

be an index of a tree u E ~(Q × J Z). Let 

),. ,(qp_l,Xi )] be a(Xo,...,Xn_ 1 ) e[(qo,Xio .. p_j 

a production. Form the tree 

a' = a[ (q°'tio)'''" (qP-l'tip-1) ]" 

Replace the given index (q,a(to,...,tn_l)) of 

by a t. The result is the tree u t obtained by 
applying the given production. 

U 

For 

Definition° For t 6 ~-Z' q 6 Q, define 

~(q,t) = [t' E 3-z(Q X ~'£) I (q,t) =~ t'} 

T(q,t) = 

g_c~ Z, 

T[~] = 

It' E 4 1  (q,t) ~ t']. 

define 

U T(q,s) . 

qEQ o 

sER 

Theorem. The class of CF dendrolanguages is 
closed under linear finite-state transformations 
(effectively.) 

Proof. Let G be a normal form dendrogram- 
mar from which all useless productions have been 
eliminated. (This can be done effectively.) Let 
T be a linear transformation. Our technique is 
a standard one - - run T and G simultaneously. 
G will car~ out top-down derivations; as soon as 
G produces finished symbols, T will transform 
them. Since T is not allowed to make copies of 
its input, the simultaneous grammar will not ever 
produce more trees than T could produce, acting 
on ~(o). 

Productions of G' will now be given. When- 
ever A(Xo,...,Xn_ I) ~ a(Xo,...,Xn_ l) is in 

H(G), put 

(q,A(Xo,...,Xn_l)) * ~[(qo,Xio),...,(qp_l,Xip_l )] 

into H(G')~ for each production 

(q, a (Xo,... , Xn_ I ) ) ~ ~[ (qo,Xio), ..., (qP-l'Xip-1) ] 

in H(T). If A(Xo,...,Xn_ l) * u 6 H(G), then 

in each q E Q, put the production 

(q,A(Xo,...,Xn_l)) 4 (q,u) 

into H(G'). (Recall u E ~N(X))" 

The productions of G t have bhe form of 
creative productions as defined in [6]. They ap- 
ply to trees in ~(Q×~) in the same manner as 

productions of T do. [The starting trees of G' 
will be of the form (q,t) where q E Qo,t E So.] 

G l is a creative dendrogrammar, exactly like the 
grammars defined at this conference last year. 
G l is thus equivalent to a CF dendrogrammar 
(effectively). The result follows when we show 
that ~(G') = T[~(G)]. To verify this, we need 
some notation. Since derivations in G are top- 
down, we may view intermediate stages as trees of 
the form V[Vo,...,Vm_ 1] where v E~F(X) and 

E 4. We claim that for each k ~ O, that if V i 

for some ~ and p, 

))= (k)[ (qo'Wo)' "'" (qp-l'Wp-i) ]' (q'A(Yo'""Yn-i G' 

then there is a V[Vo,...,v~_ I].~ E ,~ and a 1-1 

function f : [O,...,m-11 * [O,...,m-1] such that 
wfli) = vi, and such that 

~[~qo,Xf_l(0)),...,(qp_l,Xf_l(p_l))] is a member 

of ~(q,V[Xo,...,x__.~ i]), and 
(k) - ]. Conversely, if A(Yo,...,Yn_i)= G V[Vo,...,Vm_ 1 

there is such a v and f, then an appropriate 
exists. 

The proof of this statement and its converse. 
is by induction on k and is omitted. Linearity 
of T is essential to the proof. 

Having these results, it is easy to see that 
T[~(G)] ~(G'). If ~ 6 ~(G'), letv[Vo,...,~_l] 

be given by the inductive statement. All produc- 
tions of G are useful, so each vi =~ ~i' where 

~i £ ~F" Since p=o, and ~ET(q, Vo,...,Vm_l]) 

we have ~ E T(q,V[~o,...,%_l]), so ~ET[~(G)]. 

Corollary. The class of CF dendrolanguages 
is closed under intersection with recognizable 
sets. 

Proof. 
of a linear 
defined. 

Every recognizable set is the domain 
FST which acts as the identity when 

Corollary. Indexed languages are closed 
under intersection with regular sets. 

Proof. This follows by the yield theorem ex- 
actly as for CF languages. 

An interesting linear transformation is the 
fan transformation which eliminates unary branches 
from trees. Specifically, 

fan (k)= ~; 

fan (a(to))= to; 

fan (a(to,...,tp+2))= a(to,...,tp+2). 
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If £ is a dendrolanguage, then~ by the theorems 
so is fan[Z]. Moreover, yield[fanL£]=yield[£], 
and fan[S] is infinite if and only if yield[£] 
is infinite. (Recall that the empty symbol does 
not occur in dendrolanguages.) 

Theorem. The infiniteness problem is solv- 
able for indexed languages. 

Sketch of proof. Consider an indexed gram- 
mar G without A-rules. Such a grammar can be 
converted immediately into a CF dendrogrammar 
G' with yield[£(G')] = L(G). As we have seen 
above, by taking fan[£(G')] we reduce the 
problem to the infiniteness problem for dendro- 
languages. The solvability of this problem is a 
consequence of the fact that if £ is a CF 
dendrolanguage, then the set of paths through 
trees of £ is (effectively) a CF language. 
To decide infiniteness of ~, simply decide in- 
finiteness for the set of paths of £. This 
trick, incidentally, avoids the problem of dev- 
eloping an intercalation theorem [10] for indexed 
languages. We outline some of the details needed 
to prove the path result. 

For each letter A E E let 

symbol, where n ~ O. For each 

the set of h-paths through t EJ~(X) 

(i) PK(x)=~, xEX; 

[~, ~ E go' ~ ~; 
(ii) P( ) 

K ' ~ "  = ~[{K}, K ~ E o, ~ : K .  

A be a new 
n 

K E Eo define 

i n d u c t i v e l y :  

n-1 
(iii) Pk(A(to,...,tn_l)= U {Ai(w)lwEPK(ti)}. 

i=o 

Example. PK(A(B(k),C(X,~)) 

= {Ao(Bo(k)),~(Co(k)) }. 

Define the symbols A. to have rank i. Terms in 

such symbols can be regarded  as  s t r i n g s ;  thus  Pk 
above can be written 

{AoBok, ~Cok}. 

For @ ~, define 

Pig]  = U U P k ( t ) .  
keg o tEg 

Proposition. If g is a CF dendrolanguage, 
then PIg], regarded as a set of strings, is a 
CF language. 

To prove this, let G be a normal-form, use- 
ful CF dendrogrammar. The idea is to take paths 
of trees occurring in all productions. We must be 
careful which paths we choose, however. If u is 
the right-hand side of a production, and x is 
a variable occurring in u, we want todistinguish 

the paths of u which end in 

(i) Px(k) = ~, k E Eo 

x. Thus, 

f#, yjx; 
(ii) Px(y)= [{x*}, y= x. 

Here, ~ ~ X is a new variable 

n-1 
(iii) Px(A~o,...,tn_l))= .U {Ai(w)lw E Px(ti)}. 

1--O 

Now if B(Xo,...,Xn_l) 4 u is a production 

of G, put the productions B.(x*) * w into G' 
1 

for each w E Px.(t), and each i < n. Also, 
1 

put the productions B.(~ ~) ~ w (for each 
w E Pk(t), each i, land each k) into G'. 

Let the initial strings of G' be P[S o] 

where S is the set of initial trees of G. It 
o 

follows via an easy inductive proof that 
£(G') = P[£(G)]. But G' is in essence a CF 
grammar. If Ai(~) * w(~ ~) then let A i * w 

be a CF production. (If w(x*) = x let 
A i * A.) If A.(x*)m * w(K), let A.m * wk. Thus, 

P[£(G)] is indeed a CF language. 
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